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INTRODUCTION

The distribution of marine top predators and their
prey is influenced by dynamic and complex physical
and biological processes (e.g. Hunt et al. 1999).
Seabirds forage within heterogeneous and dynamic

environments, where the vertical and horizontal distri-
butions of prey resources are governed by diverse
oceanographic processes operating at a range of spa-
tial scales, from macro–mega (1000s of kilometres) to
coarse–meso (10s to 100s of kilometres) (Hunt &
Schneider 1987). Dense prey patches of drifting and
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incubation in June and chick rearing in August of 2007. We used a hierarchical modelling approach
to (1) delineate the foraging habitat of the species using vessel-based surveys and (2) identify its feed-
ing habitat based on tracking data within the Information-Theoretic framework. Our habitat model-
ling analyses suggest that shearwaters respond to complex bio-physical coupling, illustrated by their
association with frontal features and elevated ocean productivity. Our models yielded moderate pre-
dictions of Cory’s shearwater habitats within 2 distinct spatial scales. At the mesoscale, the foraging
range of the species comprised the continental and insular shelf-slope waters of the Iberian Peninsula
and the Balearic Islands, between the Gulf of Lions to the north and Cape Palos to the south. At the
coarse scale, the tracking data highlighted important feeding areas within this larger foraging range:
3 continental shelf-slope ‘hotspots’ — (1) Gulf of Lions, (2) Cape Creus–Barcelona–Ebro Delta and (3)
Cape La Nao–Cape Palos; from north to south — as well as the insular shelf-slope areas around the
Balearic Islands. These results match previous observations of the foraging range and feeding pat-
terns of the species, and are consistent with the interpretation of the regional oceanography. This
study highlights how the integration of tracking and vessel-based survey data can provide a wider
understanding of the predictability of aggregation (i.e. hotspots) and the key oceanographic habitats
of far-ranging seabirds at multiple spatial scales. Thus, complementary data integration is a step
forward in conservation studies of far-ranging marine top predators.
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weakly swimming prey become concentrated at spe-
cific features with enhanced vertical (upwelling/down-
welling) and horizontal (convergence/divergence)
water flow (e.g. Hammer & Schneider 1986, Franks
1992, Haury et al. 1978). In turn, mobile predators con-
centrate and forage at these same features in response
to elevated localized productivity and dense prey
patches (e.g. Rodhouse et al. 1996, Johnston et al.
2005).

The increasing awareness of the serious threats that
marine top predators face at sea, such as fisheries
bycatch and oil spills, has triggered the development
of conservation measures to ensure the protection of
important key marine areas (e.g. foraging areas and
migration corridors; see BirdLife International 2004,
Hooker & Gerber 2004). Understanding the distribu-
tion patterns and habitat associations of these highly
mobile organisms is critical to effectively monitor and
protect them. In particular, the large ranges of most
marine top predators make spatially explicit conserva-
tion approaches targeting high-use areas (hereafter
termed ‘hot spots’) especially attractive (e.g. Hyren-
bach et al. 2000, Alpine & Hobday 2007). Following
this principle, BirdLife International is expanding the
Important Bird Areas (IBAs) programme to the marine
environment with the aim of creating a network of
marine protected areas (MPAs) that will provide
effective protection for seabirds and their underlying
habitats (BirdLife International 2004). This initiative
has lagged behind similar initiatives in terrestrial
ecosystems due to the difficulty of obtaining system-
atic seabird distribution and movement data at sea.
However, this situation has dramatically changed in
the last 2 decades, with the advent of systematic
seabird surveys and the development of miniaturised
tracking technologies (Boyd et al. 2006). Taking
advantage of these advances and benefiting from
EC-LIFE Natura funding, 2 BirdLife partners, SEO/
BirdLife in Spain and SPEA in Portugal, have recently
provided comprehensive inventories of marine IBAs
for their whole territorial waters (Ramírez et al. 2008,
Arcos et al. 2009).

Within the context of the Spanish marine IBA pro-
ject, the present study showcases our research to iden-
tify key marine areas for Cory’s shearwater Calonectris
diomedea in the western Mediterranean, where the
local subspecies (C. diomedea diomedea) is listed as
Threatened in Spain (Carboneras 2004, Red List of
Spanish birds at: www.seo.org/media/docs/LR%20
completo%20para%20web.pdf), and therefore re-
quires rapid conservation action. This study focuses on
vessel-based surveys and GPS-tracking data to assess
the predictability of aggregation hot-spots and the key
supporting oceanographic habitats. These approaches
are complementary, since vessel-based surveys pro-

vide a broad scale (10s to 100s of kilometres) perspec-
tive of population-level distribution and habitat associ-
ations, whereas the tracking data provide detailed
information on the fine-scale (0.1s to 10s of kilometres)
use of the marine environment by individual foragers.
While both methodologies have been proved to be use-
ful for mapping and prioritizing the critical migration
routes and foraging grounds of protected seabirds (e.g.
Hyrenbach et al. 2002, Louzao et al. 2006, González-
Solís et al. 2007, Harris et al. 2007), few studies have
integrated these 2 disparate methodologies (but see
Rodhouse et al. 1996, Hyrenbach & Dotson 2003,
Hyrenbach et al. 2006).

Herein, we develop habitat suitability models for
Cory’s shearwater in the western Mediterranean dur-
ing incubation in June and chick rearing in August,
2007, on the basis of concurrent tracking of individual
birds and vessel-based surveys. Habitat suitability
techniques use information on species records
(time/space) and concurrent environmental factors to
generate statistical predictions of potentially suitable
species habitats (see review by Guisan & Zimmermann
2000), critical for conservation planning (Gray et al.
2007). In a first step, we used a hierarchical modelling
approach to identify those environmental variables
that most accurately reflected the oceanographic habi-
tat of Cory’s shearwater by (1) delineating the foraging
habitat of the birds using vessel-based surveys (i.e.
where the birds search for food) and (2) identifying the
feeding habitat of the species using tracking data (i.e.
where the species feed). After developing the habitat
suitability models accounting for the peculiarities of
the 2 disparate methodologies, the second step
entailed predicting the suitable foraging and feeding
habitats of Cory’s shearwater within the Information-
Theoretic approach. The third step involved evaluat-
ing the predictive performance of the models using
resampling techniques. 

This paper reports the results of this modelling exer-
cise and discusses the limitations and opportunities of
both contrasting datasets for the development of
improved habitat suitability models. We also examine
the conservation implications of this integrated habitat
modelling approach and its findings for identifying key
areas for marine birds.

MATERIALS AND METHODS

Study site. In spring–summer of 2007, we conducted
vessel-based surveys along the Iberian coast and
around the Balearic Islands, whereas Cory’s shearwa-
ters breeding at the Balearic archipelago were tracked
with global positioning system (GPS) loggers (western
Mediterranean; Fig. 1). The Balearic Sea, a sub-basin
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of the western Mediterranean located between the
Iberian Peninsula and the Balearic Islands, is consid-
ered a key transition zone between the Gulf of Lions
and the Algerian basin (see Supplement 1 available in
MEPS Supplementary Material at: www.int-res.com/
articles/suppl/m391p183_app.pdf).

Vessel-based data. At-sea seabird surveys were con-
ducted onboard the R/V ‘Cornide de Saavedra’, taking
advantage of the annual Mediterranean International
Trawl Survey (MEDITS; Bertrand et al. 2002); this survey
coincided with the incubation period of Cory’s shear-
water (May 30 to June 29, 2007). Seabird counts fol-

lowed the methodology proposed by
Tasker et al. (1984), adapted to the
study area (Louzao et al. 2006): birds
were counted within a 300 m strip-
transect band, on 1 or both sides
ahead of the vessel according to cen-
sus conditions; snap-shot counts
were used to census flying birds.
Shearwater observations were
summed into 10 min survey bins.

Tracking data. We deployed GPS
loggers on 29 Mediterranean Cory’s
shearwaters breeding at 3 Balea-
ric Island colonies between early Au-
gust and mid September 2007, coin-
ciding with the chick-rearing
period: 13 birds from Cala Morell and
6 from Illa de l’Aire, both locations in
Menorca, and 10 from Pantaleu in
Mallorca (see details in Table S1 in
Supplement 2 — available in MEPS
Supplementary Material at: www.
int-res.com/articles/suppl/m391p183_
app.pdf — and Fig. 1b for colony loca-
tions). Cala Morell is the main
breeding colony of Cory’s shearwater
in the Balearic archipelago, with ca.
1000 to 6000 breeding pairs; Pantaleu
holds ca. 200 pairs, and Illa de l’Aire
ca. 35 to 40 pairs (Carboneras 2004).

The loggers weighed 25g with
dimensions of 46.5 × 32 × 18.5 mm
(Earth & Ocean Technologies); they
were fixed to the back feathers of
the birds with TESA tape, thus
increasing total weight to almost 30
g. This represented slightly more
than 3% of body mass of the species,
which is the recommended thresh-
old for instruments deployed on
tubenose birds (Phillips et al. 2003).
However, we made efforts to min-
imise the impact of loggers by
deploying them for very short peri-
ods (4 to 17 d) (see Table S1 in
Supplement 2). Whenever an instru-
ment was not retrieved, the attach-
ment system would guarantee the
release of the logger after a few
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Fig. 1. Calonectris diomedea. (a) Foraging and (b) feeding patterns of Cory’s shear-
waters inferred from vessel-based surveys and tracking data after processing based
on 5 n mile cell size, respectively. Vessel-based data corresponds to the presence
(represented by density, with filled circles proportional in size to their values) and
absence (open circles) of the species, whereas tracking data corresponds to the
number of feeding birds by 5 n mile cell. Breeding colonies within the study area
are also indicated, as well as the bathymetry (dark grey) and the 200 m isobath (i.e.
the limit of the continental shelf). Note that some observations are over the coastline 

due to an artefact of binning the data in a standard grid
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weeks of deployment. Moreover, the species does not
seem to be particularly sensitive to carrying devices, as
no detrimental effects were detected with smaller log-
gers (12 g GLS) attached for far longer periods (1 yr)
(Igual et al. 2005).

The programmable GPS recording interval was set
at 5 min initially (first 12 deployments) and extended to
10 min thereafter (remaining 17 deployments) to
increase battery performance (see  Table S1 in Supple-
ment 2). Average battery life-span was 3.7 d (range 2.0
to 4.4) and 8.3 d (range 6.0 to 10.5) for the 5 and 10 min
sampling rates, respectively. At these 2 sampling inter-
vals, we registered an average of 245 and 132 positions
per trip.

Although 29 birds were equipped, we obtained
tracking data for 19 of them. Due to the small positional
error of the GPS loggers (< 20 m for 90% of locations),
we were able to precisely assess fine-scale habitat use
patterns by following the birds’ trajectories in detail.
Moreover, we inferred bird behaviour on the basis of
the apparent flying speeds of the tracked birds: travel-
ling, searching, feeding, and resting (sitting on the
water or nesting). We classified the bird behaviour into
4 categories, on the basis of the movement rates calcu-
lated between successive positions (km h –1) and visual
inspection of trips: resting on the water (< 2), feeding (2
to 10), searching (10 to 15), and travelling (> 15) (see
example in Fig. S1 in Supplement 2). Then, we
grouped these behaviours in 2 classes: ‘feeding’ or ‘not
feeding’ (the latter corresponding to resting on the
water, searching, and travelling) and assigned this cat-
egorical variable to each location.

Data processing. To compare the habitat modelling
results from the vessel-based surveys and the tracking
data, we first standardised these 2 disparate datasets
using a common spatial scale of 5 n miles (~9.3 km) and
a temporal resolution of 1 mo. This resolution, selected
on the basis of the coarser of the inherent scales of the
datasets, was previously used to characterize the
oceanographic habitat of the Balearic shearwater
Puffinus mauretanicus within the same area (Louzao et
al. 2006). Thus, all subsequent analyses were per-
formed using a grid of 5 × 5 n mile cells, with an extent
delineated by the spatial distribution of the tracking
and survey data.

For vessel-based surveys, 10 min Cory’s shearwater
observations within each cell were summed and then
re-coded into a binary presence/absence variable,
indicative of whether at least 1 bird was recorded
within a given cell. Thus, a total of 660 bins (10 min
bins) were aggregated into 212 grid cells correspond-
ing to 30 survey d. Due to cloud cover, we discarded
0.94% of the surveyed grid cells with incomplete
remote sensing information and we used the remain-
ing grid cells (n = 210) as the training dataset for the

analysis of shearwater occurrence, containing 60 ‘pres-
ences’ and 150 ‘absences’.

Regarding tracking data, we derived a binomial
response variable for assessing the feeding habitat
coding those cells containing at least 1 feeding event
(GPS location characterized by 2 to 10 km h–1) as ‘feed-
ing’. Conversely, those cells where no feeding events
were observed were coded as ‘not feeding’. To avoid
pseudoreplication, we randomly selected a complete
foraging trip per bird (tracking dataset: independent
trips of 19 individuals). Thus, the initial training
dataset of 7324 locations from 19 foraging trips was
aggregated into 715 diurnal cells, containing 300
‘feeding’ and 415 ‘not feeding’ events.

Concurrent environmental variables. We selected
environmental variables on the basis of possible bio-
logical relevance and the availability of data (see Table
1 for a complete list). Bathymetry (BAT), sea surface
temperature (SST) and chlorophyll a concentration
(CHL, as a proxy of biological production) were
extracted for the study area containing all locations
(Table 1). Bathymetric data were obtained from
NOAA’s ETOPO 2-minute dataset (www.ngdc.noaa.
gov/mgg/gdas/gd_designagrid.html?dbase=GRDET2).
We derived monthly composites of SST (night-time)
and CHL from MODIS/Aqua (available at ca. 0.04°
spatial resolution in http://poet.jpl. nasa.gov/ and at
ca. 0.05° in http://coastwatch.pfel. noaa.gov/coast-
watch/CWBrowserWW180.jsp, respectively). For dy-
namic variables such as SST and CHL, it is unlikely
that marine top predators distribution responds instan-
taneously to changes in oceanographic variables (Red-
fern et al. 2006). Thus, we used the integrated value of
those variables for the period from February to April
preceding the surveys as a proxy of oceanographic
patterns (see Fig. S2 in Supplement 3, available in
MEPS Supplementary Material at: www.int-res.com/
articles/suppl/m391p183_app.pdf, for details of the
analysis). Since these 3 habitat variables (SST, CHL,
and BAT) were not normally distributed, we used the
median as a central tendency statistic instead of the
mean within each 5 n mile cell grid. The median is less
strongly influenced by outliers, thus minimizing poten-
tial biases in the dataset (Whitmire et al. 2007). Addi-
tionally, we estimated their spatial gradients by esti-
mating their proportional change (PC) within a
surrounding 3 × 3 cell (15 × 15 n mile) grid using a
moving window as follows: PC = [(maximum value –
minimum value) × 100]/maximum value. This dimen-
sionless metric expresses the magnitude of change in
each habitat variable, scaled to the maximum value
(e.g. Louzao et al. 2006). Dynamic variables such as
SST and CHL corresponding to vessel-based surveys
and tracking data are shown in Fig. S3a–d, as well
as static variables such as BAT and its gradient
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(Fig. S3g,h, available in MEPS Supplementary Ma-
terial at: www.int-res.com/articles/suppl/m391p183_
app.pdf).

Distance to oceanographic fronts (FRONT) was esti-
mated in a monthly basis using the analysis of satellite-
derived SST fields (monthly MODIS/Aqua from
http://oceancolor.gsfc.nasa.gov) under a geographic
information system (GIS). Our approach was based on
the Cayula-Cornillon algorithm (Cayula & Cornillon
1992), which identifies fronts by detecting the edge of
adjacent water masses of different surface water
temperature. We used the algorithm implemented
in the Marine Geospatial Ecology Tools (available
at http://code.env.duke.edu/projects/mget) for front
detection and estimated the distance to the closest
oceanographic front for each analysis grid cell
(Fig. S3e,f).

To account for the influence of central-place foraging
shearwaters (Orians & Pearson 1979), we included the
distance between each grid cell and the nearest breed-
ing colony in the case of vessel-based surveys
(unknown origin of shearwaters) and to the colony of
origin in the case of tracking data (COLONY, here-
after). The distance from each grid cell to the nearest
shoreline (COAST) was also included in the model to
take into account onshore–offshore distribution pat-
terns. Finally, we also estimated the distance to the
limit of the continental shelf (SHELF, delimited by the
200 m isobath) since the shelf-break is a productive
bathymetric feature exploited by Cory’s shearwater
(Abelló et al. 2003). All distances were calculated
using the Nearest Features extension of ArcView 3.2
(Jenness 2004).

Statistical analysis. We applied a quantitative habi-
tat modelling procedure in order to identify key areas
for Cory’s shearwater, which involved 3 steps: analysis
of spatial correlation patterns, development of habitat
suitability models within the Information-Theoretic
framework, and model evaluation using resampling
techniques.

Spatial autocorrelation: Species distributional data
are characterised by spatial autocorrelation, which
occurs when adjacent observations are more similar
than would be expected in randomly distributed data
(Sokal et al. 1998). When aggregations are present,
such as seabird flocks, significant positive autocorrela-
tion can cause the false rejection of the null hypothesis
(Type I error), increasing the probability of finding
spurious significant habitat relationships (Hurlbert
1984).

Therefore, prior to habitat modelling, we checked
the independence of the foraging and feeding patterns
of shearwaters by means of the Moran’s I coefficient,
which measures the similarity of the response vari-
ables by relating the values for all pair-wise combina-

tions of cells as a function of their spatial distance.
Moran’s I values range from–1 (negative autocorrela-
tion) to +1 (positive autocorrelation), and the resulting
correlograms typically show a decrease of spatial auto-
correlation to a value of 0, indicating no spatial auto-
correlation at increasing distance between locations
(Sokal et al. 1998). We considered up to 15 lags at
1 grid cell (9.3 km) intervals in all directions (i.e.
isotropic spatial autocorrelation structure). Then, sig-
nificance of the Moran’s I values was assessed by per-
forming 1000 permutations at each lag distance and
contrasting the observed Moran’s I values with those
predicted by Monte Carlo randomization tests, after
applying the Bonferroni correction for multiple testing
(modified alpha = 0.05 /15; 15 lags for each dataset).
All spatial autocorrelation analyses were performed
using the excel add-in Rook Case (Sawada 1999).

Habitat modelling: We used a hierarchical model-
ling approach to identify those environmental vari-
ables that most accurately reflected the oceanographic
habitat of Cory’s shearwater by (1) delineating its
foraging habitat using vessel-based surveys and (2)
identifying its feeding habitat using tracking data of
individual birds. Habitat suitability models were
developed, accounting for the peculiarities of these 2
disparate methodologies.

Prior to modelling, all variables were tested for nor-
mality and, where necessary, were log-transformed
(natural logarithms; in order to avoid the influence of
outliers) and standardized to have a mean of 0 and an
SD of 1 due to differing ranges of variables (Table 1)
(Zuur et al. 2007). A preliminary screening of explana-
tory variables was undertaken to check for colinearity
(cross-correlation analysis) by calculating all pairwise
Spearman rank correlation coefficients. When pairs of
predictor variables were strongly correlated (|rS| > 0.5),
we discarded one of the redundant variables (e.g. Gray
et al. 2007, McAlpine et al. 2008). We selected the
‘non-correlated’ predictors using the lowest Akaike
Information Criteria (AIC) from univariate models of
the 2 predictors (Burnham & Anderson 2002). This
approach led to the removal of 6 predictors in the case
of tracking data (SST, CHLG, BATG, COAST,
COLONY, SHELF) and 2 predictors in the case of the
vessel-based surveys (CHL, BAT) (see Table 2).

Habitat suitability models were developed by means
of logistic regressions in order to generate a statistical
function that would facilitate the prediction of the
potential suitable habitat for the species (review in
Guisan & Zimmermann 2000). We used generalized
linear models (GLMs) for delineating the foraging
habitat of species based on the ‘glm’ function, whereas
generalized linear mixed models (GLMMs) were
applied for identifying the feeding habitat using the
‘lmer’ function implemented in the ‘lme4’ package
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(R Development Core Team 2008). Both logistic regres-
sions were fitted with a binomial error distribution
(‘presence/absence’ and ‘feeding/not feeding’) and a
logit link function. In the case of GLMMs, we included
the individual as random intercept term in order to
account for individual effects. Models were built for all
possible linear combination of ‘non-correlated’
explanatory variables (|rS| < 0.5) and no interaction
terms were included.

Model selection strategy: Models were ranked based
on their AIC value corrected for small sample sizes
(AICc) and we calculated the Akaike weight (wi) for each
model, which represents the relative likelihood of candi-
date models (Burnham & Anderson 2002). If the model
with the lowest AICc is not undoubtedly the ‘best’ (e.g. wi

> 0.90), a model averaging procedure might be more ap-
propriate to account for parameter uncertainty (Burnham
& Anderson 2002). Therefore, we constructed a 95%
confidence set of models where the sum of Akaike
weights was >95, starting with the model with the high-
est Akaike weight (Burnham & Anderson 2002). Accord-
ingly, averaged coefficients were estimated from the
95% confidence set of models containing that variable,
as well as the variance estimator in order to assess the
precision of the estimates (Burnham & Anderson 2002,
Johnson & Omland 2004).

Then, we calculated the probability of shearwater
foraging and feeding for each grid cell using the
averaged logistic model developed with ‘presence/
absence’ and ‘feeding/not feeding’ data. We calculated
the linear predictor (LP) using the intercept and the
variable coefficients from the averaged models, and
calculated the probability of models (Pr) as follows:
Pr = eLP × (1 – eLP)–1.

Finally, we could have ranked predictor impor-
tance summing the Akaike weights for all models
containing an explanatory variable (e.g. Burnham &
Anderson 2002, McAlpine et al. 2008), but Murray &
Conner (2009) found that this approach was not suffi-
ciently sensitive to correctly rank variable impor-
tance, suggesting alternative methods such as hierar-
chical partitioning. As an alternative, Burnham &
Anderson (2002) recommended a randomization pro-
cedure to estimate the baseline value for wi, denoted
as wi0, and then measure variable importance by
computing the difference between wi and wi0. For
those predictors with negligible predictive value,
these differences should be close to zero. We used
this approach for raking predictor importance (see
Supplement 5, available in MEPS Supplementary
Material at: www.int-res.com/articles/suppl/m391p183
_app.pdf).
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Habitat variables Vessel-based surveys Tracking data Indicative of the following processes
Presence Absence Feeding Not feeding

Sea surface 13.97 14.2 14.31 14.3 Water mass distribution
temperature (SST, °C) (13.19–14.74) (13.25–14.88) (13.5–14.9) (13.42–14.87)

SST gradient (SSTG) 1.65 1.66 0.86 1.02 Small-scale SST variability
(0.45–4.87) (0–3.97) (0–11.16) (0–10.07)

Chlorophyll a 0.37 0.38 0.38 0.37 Ocean productivity domains
(CHL, mg m–3) (0.26–1.22) (0.25–1.21) (0.26–1.52) (0.25–2.43)

CHL gradient (CHLG) 11.19 9.47 15.22 9.95 Small-scale CHL variability
(1.49–75.84) (0.83–66.25) 1.12–62.26 (0.22–75.44)

Bathymetry (BAT, m) 154.12 149 153.5 767 Coastal vs. pelagic domains
(32.5–971.25) (20.33–973.5) (30–2511) (35.5–2518.5)

BAT gradient (BATG) 90.39 84.08 81.12 70.77 Presence of topographic features
(39.93–99.61) (16.45–99.42) (4.21–97.84) (4.05–99.64) (shelf-break, seamounts)

Distance to colonya 36.76 47.04 139.36 122.37 Colony influence on central
(COLONY, km) (1.67–196.25) (0.94–198.41) (0.94–313.65) (0.94–310.41) place foragers

Distance to shoreline 10.58 16.12 15.19 27.29 Onshore–offshore distribution patterns
(COAST, km) (0.03–40.59) (0.45–43.30) (0–86.02) (0–101.91)

Distance to oceanographic 50.71 69.14 97.24 93.38 Mesoscale frontal systems
fronts (FRONT, km) (0–84.21) (0–197.54) (0.78–184.36) (0–186.62)

Distance to continental 5.27 6 9.45 13.37 Proximity with shelf-break (slope currents,
shelf (SHELF, km) (0.12–39.05) (0.06–25.04) (0.003–74.05) (0.03–79.76) vertical mixing and prey concentration)

aDistance between the centroid of each grid cell and the nearest breeding colony for vessel-based surveys, and distance to the colony
of origin for tracking data

Table 1. Calonectris diomedea. Median (range) of the explanatory variables for Cory’s shearwater vessel-based survey data
(presence, n = 60, and absence, n = 150) and tracking data (feeding, n = 300, and not feeding events, n = 415) corresponding to 19 

trips. An oceanography interpretation is also provided
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Model fit: To assess the fit of the model with the low-
est AICc, we used a Pearson χ2 goodness-of-fit test
(Crawley 1993); we checked for spatial autocorrelation
in model residuals constructing Moran’s I correlogram
(see Supplement 5).

Model evaluation: Assessing the predictive ability of
a model is a crucial step for allowing its proper use in
ecological applications, especially when conservation
issues are the main objective. The area under the curve
(AUC) of a receiver operating characteristic (ROC) plot
is widely utilised to assess habitat models developed
through logistic regression (e.g. Brotons et al. 2004,
Elith et al. 2006, Louzao et al. 2006, McAlpine et al.
2008), and was used here to validate our model predic-
tions (Fielding & Bell 1997). This approach can also be
applied to any model that produces estimates of proba-
bility for a binomially distributed response variable
(e.g. feeding/not feeding). ROC curves are simply  plots
of sensitivity (the fraction of correctly predicted pres-
ences) against 1– specificity (the fraction of correctly
predicted absences) with changing critical values of
threshold probability. AUC is a threshold-independent
summary statistic that ranges from 0 to 1 (from negligi-
ble to perfect discriminatory power, respectively). AUC
values represent the discriminatory ability of a model
as follows: higher than 0.9, excellent; from 0.9 to 0.8,
good; from 0.8 to 0.7, moderate; from 0.7 to 0.6, poor;
and from 0.6 to 0.50, unsuccessful (Swets 1988).

We applied a cross-validation procedure to assess
the predictive performance of the averaged model
resulting from the Information-Theoretic approach
using 2 different approaches: (1) use of an indepen-
dent dataset for each of the 2 types of data and (2)
resampling techniques (e.g. bootstrap) which provide
an alternative approach for evaluating the model with
the original data (Guisan & Zimmermann 2000,
McAlpine et al. 2008). Concerning vessel-based sur-
vey data, we used the MEDITS surveys corresponding
to 2006, which also covered the same geographic area
comprising 216 cells (5 n mile cells; 51 presences and
165 absences). For tracking data, the independent
dataset was built by randomly selecting a second for-
aging trip for each individual, which includes 15 forag-
ing trips (15 individuals at least performed 2 foraging
trips) with a total of 664 cells (5 n mile cells; 266 ‘feed-
ing’ and 398 ‘not feeding’). Both datasets should be
preferably mentioned as quasi-independent data sets
since they covered the same geographic extent of the
original dataset (Guisan & Zimmermann 2000).

The cross-validation procedure was repeated 1000
times, and during each simulation we randomly assign-
ing the 70% of the original data to the training dataset
and 30% to the test dataset (e.g. Brotons et al. 2004). The
best subset of models resulting from the Information-
Theoretic approach (Table S2 in Supplement 5) was fit-

ted to the training dataset, the averaged coefficients ex-
tracted and the averaged model was fitted to the test
dataset. AUC values were estimated in each simulation
for both training and test datasets. After the 1000 simu-
lations, the mean and upper and lower 95% CI of the
AUC of both training and test dataset were used as a
cross-validation measure of the predictive performance
of the averaged model (McAlpine et al. 2008). If the
lower 95% CI limit does not include the 0.5 value, then
there is evidence that the model has an ability to discrim-
inate between the 2 groups (Hanley & McNeil 1982). We
also conducted the same cross-validation procedure to
the quasi-independent dataset following the same ran-
dom procedure as previously described.

Mapping habitat probability. We represented prob-
abilities of suitable habitat for the vessel-based survey
dataset (June 2007) and the tracking dataset (August
2007) with GIS. A regular lattice of 5 n mile cells was
placed over the study area, and environmental vari-
ables considered in the averaged model were
extracted. Model-averaged predictions of the foraging
and feeding habitat of Cory’s shearwater were esti-
mated. We could have transformed probabilistic pre-
dictions into a binomial response variable based on
threshold values in order to identify the suitable poten-
tial habitat; however, providing a continuous probabil-
ity surface may be the most flexible and powerful
method, thus allowing managers to select different
thresholds depending on the model objective (Free-
man & Moisen 2008). Additionally, the formal combi-
nation of both datasets was disregarded due to the dif-
ferent timing of the datasets, which corresponded to
the Cory’s shearwater incubation period for vessel-
based surveys and chick-rearing for tracking data,
respectively. Therefore, although multiplying both
probabilities might be statistically correct, the most
biologically correct approach might be multiplying
probabilities of the 2 disparate datasets only when
available for exactly the same period.

RESULTS

The seascape of Cory’s shearwater

The seascape occupied by Cory’s shearwater is char-
acterised by the oceanographic patterns typical of the
western Mediterranean Sea, including strong habitat
gradients evidenced by the significant cross-correla-
tions between several habitat variables (|rS| > 0.5,
Table 2). The west and north of the study area (the
Ebro Delta and the Gulf of Lions, respectively) were
characterised by a higher oceanographic variability at
the small scale, reflected in both CHL and SST, and
represent the most productive (8 mg m–3, maximum
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integrated CHL values between February and April)
and coldest waters of the study area (see Supple-
ment 4, available in MEPS Supplementary Material
at: www.int-res.com/articles/suppl/m391p183_app.pdf
for oceanographic characterisation). Additionally, im-
portant mesoscale frontal systems were also identified
within the study area, mainly at the north of the
Balearic Islands (Fig. S3e,f).

Spatial autocorrelation

We found no evidence of significant spatial autocorre-
lation in Cory’s shearwater distributions for either the
vessel-based survey data or the GPS tracking data at the
selected scales of analysis (9.3 km cells, with lags from
9.3 to 139.5 km) (Fig. 2). Both datasets yielded small
magnitude Moran’s I values (from +0.2 to – 0.1), sugges-
tive of weak aggregated spatial patterns (Fig. 2). Thus,
the correlograms revealed that the selected spatial scale
of analysis yielded independent observations, suitable
for performing the habitat modelling.

Modelling foraging probability

For vessel-based data, the model with the lowest
AICc (AICc = 241.581) contained SST, BATG and

COAST (see Table S2 in Supplement 5). Based on the
correlogram analysis, we did not find any significant
spatial autocorrelation in the residuals (see Fig. S4 in
Supplement 5). Also, the Pearson χ2 goodness-of-fit
test revealed no evidence of significant lack of fit (χ2

= 212.29, p = 0.366, df = 206). Finally, the area under
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Fig. 2. Calonectris diomedea. Results of the spatial autocorre-
lation of vessel-based survey and tracking data within 15
distance lags (each lag increment corresponds to 5 n miles
[9.3 km]). No evidence of significant spatial autocorrelation 

was found for any values of either dataset

SSTG SST CHLG CHL BATG BAT COLONY COAST FRONT SHELF

Vessel-based survey data
SSTG – NS NS NS NS NS NS 0.01 NS 0.05
SST –0.080 – NS 0.001 NS NS 0.001 NS 0.05 NS
CHLG –0.056 –0.068 – 0.001 NS 0.001 0.001 NS NS NS
CHL 0.065 –0.261 0.385 – 0.001 0.001 0.001 NS NS 0.05
BATG –0.095 0.005 –0.071 –0.318 – NS 0.01 0.001 0.001 0.001
BAT 0.097 –0.069 –0.392 –0.288 –0.058 – NS 0.001 NS NS
COLONY 0.093 –0.494 0.356 0.586 –0.204 –0.022 – 0.001 0.001 NS
COAST 0.198 –0.135 –0.132 0.082 –0.480 0.580 0.303 – 0.05 NS
FRONT –0.041 0.161 –0.001 0.099 –0.290 0.030 –0.308 0.167 – NS
SHELF 0.153 –0.105 0.050 0.150 –0.493 –0.118 0.079 0.083 0.072 –

Tracking data
SSTG – 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
SST –0.377 – 0.001 0.001 0.010 0.010 0.001 0.001 0.001 0.001
CHLG 0.048 –0.310 – 0.001 0.001 0.001 0.001 0.001 0.010 0.001
CHL 0.348 –0.436 0.319 – 0.001 0.001 0.001 0.010 0.001 0.001
BATG –0.305 0.121 0.287 –0.290 – 0.001 0.001 0.001 0.001 0.001
BAT 0.227 –0.116 –0.534 –0.150 –0.564 – 0.001 0.001 0.001 0.001
COLONY 0.379 –0.492 0.281 0.769 –0.308 0.133 – 0.001 0.001 0.001
COAST 0.400 –0.242 –0.392 0.114 –0.744 0.830 0.193 – 0.001 0.001
FRONT –0.326 0.713 –0.097 –0.248 0.258 –0.251 –0.353 –0.332 – 0.001
SHELF 0.241 –0.156 –0.262 0.181 –0.788 0.582 0.143 0.667 –0.207 –

Table 2. Calonectris diomedea. Results of the cross-correlation analysis of environmental variables for tracking data and
vessel-based survey based on the Spearman-rank correlation coefficient rS (in bold |rS| > 0.5) and corresponding significant levels
(lower and upper diagonal, respectively). Significant level set at <0.05, <0.01 and <0.001; NS: not significant. See Table 1 for 

abbreviations

http://www.int-res.com/articles/suppl/m391p183_app.pdf
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the ROC curve was 0.714 ± 0.038, indicating moder-
ate discriminating ability. However, this model had
an Akaike weight of 0.133, indicating substantial
model uncertainty (66 models in the 95% confidence
set) and that a model averaging approach was appro-
priate.

All ‘non-correlated’ explanatory variables were
included within the 95% model set, and the relation-
ship between the response variable and predictors is
based on the sign of the averaged coefficients
(between brackets). The SST (–) showed the strongest
negative effect on shearwaters occurrence, whereas
the rest of predictors ranked from BATG (+) >
COLONY (–) > COAST (–) > CHLG (+) > FRONT (–) >
SHELF (–) > SSTG (+) (Fig. 3 and Table S2 in Supple-
ment 5). At the wider scale, foraging might occur in
cool waters characterised by high bathymetric vari-
ability close to the colonies and the coast. If within
these areas, high chlorophyll variability and the pres-
ence of frontal systems are expected to increase the
foraging probability of shearwaters both along the
Iberian Peninsula (from the Gulf of Lions to Cape
Palos) and around the Balearic Islands (Figs. 1 & 4,
Supplement 4).

The AUC value (±SD) of the vessel-based surveys
averaged model showed a moderate model perfor-
mance (0.745 ± 0.038). The cross-validation of the orig-
inal vessel-based survey data yielded moderate values
of AUC: 0.747 for the training dataset (CI 95%: 0.700 to
0.806) and 0.676 for the test dataset (CI 95%: 0.570 to

0.780). Similarly, cross-validation of the quasi-inde-
pendent dataset showed that our averaged model
failed to provide reasonable foraging predictions: AUC
of 0.684 for the training dataset (CI 95%: 0.627 to
0.746) and 0.600 for the test dataset (CI 95%: 0.510 to
0.710).

Modelling feeding probability

For the tracking data, the model with the lowest
AICc (AICc = 903.94) contained BAT and FRONT (see
Table S2 in Supplement 5). Based on the correlogram
analysis, we did not find any significant spatial auto-
correlation in the residuals (Fig. S4 in Supplement 5).
Also, the Pearson χ2 goodness-of-fit test revealed no
evidence of significant lack of fit (χ2 = 712.86, p =
0.473, df = 711). Finally, the area under the ROC
curve was 0.724 ± 0.019, indicating moderate dis-
criminating ability. However, this model has an
Akaike weight of 0.44, indicating substantial model
uncertainty, with 6 models in the 95% confidence
set. This indicates that a model-averaging approach
was appropriate.

All ‘non-correlated’ explanatory variables were
included within the 95% model set with BAT (–) hav-
ing the strongest negative effect on shearwaters feed-
ing probability and occurring in all models in the 95%
set (see Table S2 in Supplement 5). The relative impor-
tance of individual variables ranked additional vari-
ables as FRONT (–) > SSTG (–) > CHL (+). At the finer
scale, feeding might occur in relatively shallow waters,
close to frontal systems in areas of low fine-scale SST
variability and highly productive areas along the Iber-
ian Peninsula and around the Balearic Islands (Fig. 1,
Supplement 4). Within this oceanographic context,
tracking observations allowed us to identify 3 impor-
tant feeding hotspots along the continental shelf-slope
area of the Iberian Peninsula (Gulf of Lions, Cape
Creus–Barcelona–Ebro Delta, and Cape La Nao–
Cape Palos; from north to south), as well as the shelf-
slope areas around the Balearic Islands (Figs. 1 & 4).

The AUC value (±SD) of the tracking averaged
model showed a moderate model performance (0.700 ±
0.019). The cross-validation of the original tracking
data demonstrated that our averaged model showed a
moderate predictive performance: AUC of 0.701 for
training dataset (CI 95%: 0.674 to 0.730) and 0.700 for
test dataset (CI 95%: 0.640 to 0.748). However, the
cross-validation of the quasi-independent dataset
showed that our averaged model failed to provide rea-
sonable feeding predictions: AUC of 0.583 for the
training dataset (CI 95%: 0.548 to 0.615) and 0.561 for
the test dataset (CI 95%: 0.51 to 0.623), but still dis-
criminate between ‘feeding’ and ‘not feeding’
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based survey and (b) tracking data. If the difference between wi
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dictive value (Burnham & Anderson 2002). The sign within
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the probability of Cory’s shearwaters foraging and feeding (see
Table S2). See Table 1 for definition of variable abbreviation
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DISCUSSION

We undertook a hierarchical analysis of the oceano-
graphic features influencing the feeding and foraging
habitat of a vulnerable marine top predator, Cory’s
shearwater, in the complex and dynamic seascape of
the western Mediterranean by combining 2 disparate
and complementary data sets. Our results provided
new relevant insights for defining the oceanographic

habitat and for predicting the distri-
bution of shearwaters during the
breeding season. In the following
sections, we discuss the conserva-
tion implications of this integrated
habitat modelling approach and its
findings for identifying key areas for
marine birds.

The seascape of Cory’s shearwater:
identifying key areas

The integration of tracking and
vessel data provided a unique
opportunity for identifying key
marine areas for Cory’s shearwaters
by providing 2 distinct, yet comple-
mentary habitat perspectives that
reinforced each other. Our habitat
modelling analyses suggested that
shearwaters respond to complex
bio-physical coupling illustrated by
their association with frontal fea-
tures and elevated ocean productiv-
ity. Within a mesoscale perspective,
the foraging range of the species
comprised the continental and insu-
lar shelf-slope areas between the
Gulf of Lions to the north and Cape
Palos to the south. Within a coarser
perspective, the tracking data high-
lighted 3 important feeding hotspots
along this continental shelf-slope
area of the Iberian Peninsula (Gulf of
Lions, Cape Creus to Ebro Delta,
and Cape La Nao to Cape Palos).
Despite the more restricted spatial
coverage of the vessel-based sur-
veys, these data identified a further
important feeding hotspot (showing
densities >76 birds km–2) off Bar-
celona (Fig. 1a). All 4 feeding
hotspots might be influenced by the
Northern Current, which interacts
with different physical (e.g. subma-

rine canyons in the Cape Creus) and chemical features
(e.g. river run-off such as the Ebro) along its path, cre-
ating diverse meso- and coarse-scale oceanographic
processes along the shelf-slope region and transport-
ing rich nutrient waters from the Gulf of Lions south-
wards to the Cape Palos (Millot 1999). Our results
agree with previous studies, which have underscored
the shelf-slope distribution of Cory’s shearwater and its
tendency to occur along the Iberian continental shelf,
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mainly between the Ebro Delta and Cape La Nao
(Abelló et al. 2003). However, to our knowledge, this is
the first study to quantitatively assess Cory’s shearwa-
ters marine habitat use on the basis of both static and
dynamic habitat variables. Dynamic variables such as
coastal water masses and frontal systems within pro-
ductive continental shelves often delineate key feed-
ing habitats for breeding seabirds (Skov et al. 2008).
Contrary to the productive temperate and subpolar
continental shelf habitats, the Mediterranean is con-
sidered an oligotrophic Sea, although remotely-sensed
chlorophyll a values documented in the study area
were generally characteristic of a mesotrophic regime
(Louzao et al. 2006, present study).

Our tracking data also provided a larger ecological
context for the interpretation of these feeding hotspots,
by revealing that central-place foraging Cory’s shearwa-
ters repeatedly commuted between the less productive
waters around the breeding colonies (Balearic Islands)
and the highly productive waters of the shelf-slope areas
of the Iberian Peninsula, thus exploiting 2 distinct shelf-
slope foraging areas during the breeding period: conti-
nental (Iberian Peninsula) and insular (Balearic Islands).
Commuting seems to be a common behaviour of pelagic
birds within temperate and polar regions, and might
suggest that breeding seabirds ‘know’ where to find
food, probably from previous experience (Weimerskirch
2007). In fact, the predictability of marine resource dis-
persion is time-scale dependent, and likely varies across
marine habitats (Weimerskirch 2007). For instance, the
location of resources at large and intermediate scales ap-
pears reasonably predictable for seabirds over long time
periods (e.g. seasons). The association of Mediterranean
pelagic seabirds with the same mesoscale features along
the Iberian continental shelf year after year exemplifies
this long-term predictability (Arcos & Oro 2002, Louzao
et al. 2006). Within the coarse spatial scale, prey patches
are likely to be scattered within mesoscale features
(Weimerskirch 2007), which might vary both spatially
and temporally depending on the influence of physical
and biological drivers, including riverine discharge, the
timing and location of spawning stocks of small pelagic
fish, and spatio-temporal dynamics of fisheries in the
western Mediterranean (Lloret et al. 2004).

Habitat modelling approach and limitations

While the Information-Theoretic approach has been
widely applied to terrestrial ecosystems (Gray et al.
2007, McAlpine et al. 2008), it has not been used in the
more dynamic marine ecosystem as a robust model
selection strategy (but see Ribic et al. 2008). Within this
framework, competing models are evaluated by
assessing their relative support in relation to observed

data, rather than using the best single model approach
(Buckland et al. 1997, Burnham & Anderson 2002,
Johnson & Omland 2004). Furthermore, when models
have similar levels of support, model averaging can
be used to make robust predictions. Nevertheless,
Richards (2005) raised some concerns related to model
averaging with Akaike weights and stressed the need
for continued research on the effectiveness of model
averaging, as did Burnham & Anderson (2004). When
comparing different methods for ranking variable
importance, Murray & Conner (2009) found that sum-
ming the Akaike weights for all models containing xi

explanatory variables was not sufficiently sensitive to
correctly rank variable importance. Burnham & Ander-
son (2002) also acknowledged some limitations of the
summing of Akaike weights, since it cannot yield zero,
even if some of the explanatory variables xi have no
contextual predictive value at all. They suggest
(among others) a randomization method that we devel-
oped in the present study which might deserve further
research (see Supplement 5).

We used logistic regressions (GLMs and GLMMs) to
develop habitat suitability models using binary
response variables. GLMs and GLMMs are robust tools
for modelling species distributions and they allow the
generation of statistical functions that allow predic-
tions of potentially suitable habitat distribution for spe-
cies within a GIS framework (Guisan & Zimmermann
2000, Brotons et al. 2004, McAlpine et al. 2008). How-
ever, presence/absence data rely on the need to obtain
standardized absence data and the reliance on arbi-
trary criteria of the minimum amount of survey effort
required to ascertain the absence of the species of
interest in the sampling unit being considered (Red-
fern et al. 2006). Other methods, including envelope
models and presence-only models, have been widely
used in the literature to generate habitat suitability
maps without requiring standardized effort and pres-
ence data (Brotons et al. 2004). These novel modelling
approaches may be particularly suitable for tracking
data, due to the lack of standardized effort and
absence data (Skov et al. 2008).

Comparisons of these novel approaches with the
more established presence/absence models under-
score the disparity between models requiring high
quality presence/absence data (e.g. GLMs) and mod-
els where absences are inadequate or unavailable (e.g.
Ecological Niche Factor Analysis, ENFA; Brotons et al.
2004). Comparing the predictions of both methods
revealed that the presence/absence predictions were
more accurate than presence-only predictions, particu-
larly when species were using available habitats pro-
portionally to their suitability, thus making the absence
data reliable and useful to enhance model calibration
(Brotons et al. 2004). Because presence-only models
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are continuously being developed, newly available
approaches (e.g. boosted regression trees or maximum
entropy methods) have been shown to out-perform
more established methods, such as GLMs and gener-
alised additive models (GAMs) (Elith et al. 2006, S. J.
Phillips et al. 2006). Ultimately, the type and quality of
the data (e.g. presence/ absence or presence-only,
availability of standardized effort data), and the inher-
ent characteristics of the focal species (e.g. habitat
specificity, degree of aggregation) influences the
selection and performance of habitat modelling
approaches.

Also, species with less restricted ecological require-
ments and/or distribution ranges are modelled less
accurately than species with more restricted require-
ments/ranges (Segurado & Araújo 2004, but see Elith
et al. 2006), irrespective of the modelling methods
employed (Brotons et al. 2004). Our work revealed a
similar result in the western Mediterranean, where our
habitat suitability model developed for the critically
endangered Balearic shearwater performed better
(AUC ± SE: 0.8 ± 0.006) than for the more widespread
Cory’s shearwater (Louzao et al. 2006). The Balearic
shearwater is currently listed as Critically Endangered
on the IUCN Red List due to its restricted breeding
range (constrained to the Balearic Islands) and small
(ca. 2000 breeding pairs) and declining population
(7.4% decrease per year; BirdLife International 2008).
Despite the moderate predictive performance of our
models, their predictions matched the observed forag-
ing and feeding patterns. Moreover, the interpretation
of the modelling output was consistent with the
regional oceanography. The moderate discrimination
ability of the models might reflect the potential exclu-
sion of an important explanatory variable or the non-
linear relationship with a critical habitat variable
(McAlpine et al. 2008). Including different seasons and
years (when long-term data are available) will help to
overcome some of the habitat modelling limitations
by validating and refining current habitat suitability
models. Future research should also focus on obtaining
a mechanistic understanding of the small-scale inter-
actions between local oceanographic conditions, prey
distribution, and the aggregation patterns and behav-
iour of Cory’s shearwaters within the high-use feeding
hotspots identified in the present study.

Combining vessel-based surveys and tracking data:
conservation implications

This study demonstrates how the combination of ves-
sel-based surveys and tracking data provides a wider
understanding of the predictability of aggregation (i.e.
hotspots) and the key oceanographic habitats of far-

ranging seabirds at different spatial scales (Rodhouse
et al. 1996, BirdLife International 2004). While seabird
conservation initiatives have independently addressed
seascape patterns from either vessel-based surveys
(e.g. Louzao et al. 2006) or tracked individuals (e.g.
R. A. Phillips et al. 2006, González-Solís et al. 2007,
Skov et al. 2008), few studies have integrated these
distinct seascape and individual perspectives due to
both logistical limitations (e.g. lack of concurrent
tracking and survey data; but see Hyrenbach & Dotson
2003, Hyrenbach et al. 2006) and specific characteris-
tics of both disparate datasets. It is critical to acknowl-
edge the advantages and disadvantages of both
approaches in order to reinforce the lessons learnt
from these 2 perspectives and to reconcile potential
discrepancies.

Overall, vessel-based surveys provide a large-scale
(100s to 1000s of kilometres) perspective of the pop-
ulation level distribution and habitat associations,
although constrained, to a varying degree, by the ship-
following behaviour of certain species and the inability
to determine the origin, sex, and reproductive status of
observed individuals, as well as by the small survey
area covered by vessel-based surveys. On the other
hand, tracking data provide fine-scale (0.1s to 10s of
kilometres) and detailed information at the individual
level, due to the advent of GPS-loggers with small
positional errors (0.01s of kilometers) and a higher rate
of data acquisition (sampling intervals of seconds to
minutes), compared to satellite-linked platform trans-
mitter terminals (PTTs) (errors in the order of 100s of
metres to 10s of kilometres and a sampling interval of
hours) (Weimerskirch 2007). Nevertheless, the track-
ing perspective is often limited to small sample sizes
(few tagged individuals tracked over short time peri-
ods) due to the cost of both devices and fieldwork for
deployment/retrieval of tags. Therefore, these distrib-
ution data may not be representative of the population
as a whole, owing to variation in ranging behaviour
according to specific characteristics such as colony of
origin, age, sex, breeding status, and season (e.g.
BirdLife International 2004).

The commonly used variables for key marine area
identification include the overall number of birds in a
given area (i.e. density) and their behaviour (i.e. pro-
portion of foraging versus flying birds). While these
metrics are easier to infer from landscape-level vessel-
based surveys than from tracking studies of individual
foragers, when loggers of low positional error and high
rate of data acquisition are used, researchers can use
animal behaviour to infer finer-scale habitat use pat-
terns, such as migration corridors and feeding grounds
(Weimerskirch 2007). Other available methodologies,
such as land-based counts, are also key approaches for
monitoring migration flows, mostly through narrow cor-
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ridors defined by topographical features (e.g. the Strait
of Gibraltar), which concentrate large numbers of mi-
grating seabirds (del Hoyo et al. 1992). Yet, while these
methods provide information on the timing and magni-
tude of the flow through, they cannot provide seascape
level data on the distribution of these marine top preda-
tors (e.g. habitat associations, background densities).

Once the location and extent of key seabird habitat
areas are identified, the next step is to ensure their
legal protection. In the European Union, the Natura
2000 network provides the opportunity of effectively
protecting the identified marine IBAs through their
designation as Special Protection Areas (SPAs) within
the EC Bird Council Directive 79/409/EEC for the pro-
tection of wild birds. Beyond the identification and
designation process, further effort must be directed
towards the establishment of long-term monitoring
programmes for assessing significant threats affecting
seabirds and to develop the appropriate management
plans in the protected areas. Because some threats
faced by seabirds are to some extent diffuse and wide-
spread (e.g. oil spills), any spatially explicit conserva-
tion action (e.g. designation of SPAs) needs to be
framed within a larger conservation approach,
addressing the status and the threats to the species
through its range and life cycle. For instance, Cory’s
shearwaters are highly susceptible to longline fisheries
in the western Mediterranean (Belda & Sánchez 2001),
where the implementation of both an observer pro-
gramme and mitigation measures on the fishing ves-
sels are critical for the conservation of the species. Both
measures should be implemented within the whole
range of the species, controlling longlining to a greater
degree and intensifying the monitoring efforts within
the key marine areas for the species. Ultimately, we
believe that spatially explicit protective measures will
help to catalyze a comprehensive ecosystem-based
management approach to protect marine far-ranging
species of conservation concern.

Acknowledgements. We thank many people their help in the
development of this work: G. Peters and his team at Earth &
Ocean Technologies for GPS design; L. Gil de Sola, M. Gar-
cía, E. Massutí and P. Abelló for help and support during the
MEDITS cruise (Spanish Institute of Oceanography, IEO); R.
Escandell (SOM), D. Oro and J. M. Igual (IMEDEA), C. Viada,
D. Fernández, X. Larruy, A. Requejo, E. Miralles and J. Prieto
for their collaboration with the GPS-tracking (GPSs); and D.
Villero, L. Brotons and M. Plà (CTFC) for input on modelling.
The MODIS/Aqua SST data were obtained through the
online PO.DAAC Ocean ESIP Tool (POET) at the Physical
Oceanography Distributed Active Archive Center (PO.
DAAC), NASA Jet Propulsion Laboratory, Pasadena, CA and
CHL data were obtained from the NOAA CoastWatch, West
Coast Regional Node. Thanks also to J. Roberts (MGET) and
to L. Spence for GIS assessment. K. Laneri, A. Martínez-
Abraín, A. Goarant, C. Peron, M. Authier, P. Inchausti and D.

Pinaud provided valuable statistical advice. Fieldwork was
conducted within the framework of Project LIFE04NAT/ES/
000049, funded by the European Commission and the Span-
ish Ministry of Environment (MARM), and executed by
SEO/BirdLife. KDH was supported by a Pew fellowship in
marine conservation. ML was funded by a postdoctoral con-
tract of the Spanish Ministry of Education and Science (Ref.
EX-2007-1148) and a Marie Curie Individual Fellowship
(PIEF-GA-2008-220063).

LITERATURE CITED

Abelló P, Arcos JM, De Sola LG (2003) Geographical patterns
of seabird attendance to a research trawler along the Iber-
ian Mediterranean coast. Sci Mar 67:69–75 

Alpine JE, Hobday AJ (2007) Area requirements and pelagic
protected areas: Is size an impediment to implementation?
Mar Freshw Res 58:558–569 

Arcos JM, Oro D (2002) Significance of fisheries discards for a
threatened Mediterranean seabird, the Balearic shearwa-
ter Puffinus mauretanicus. Mar Ecol Prog Ser 239:209–220 

Arcos JM, Bécares J, Rodrígez B, Ruiz yA (2009) Áreas Impor-
tantes para la Conservación de las Aves marinas en
España. LIFE04NAT/ES/000049-Sociedad Española de
Ornitología (SEO/Bird-Life), Madrid

Belda EJ, Sánchez A (2001) Seabird mortality on longline fish-
eries in the western Mediterranean: factors affecting
bycatch and proposed mitigating measures. Biol Conserv
98:357–363 

Bertrand JA, Gil de Sola L, Papaconstantinou C, Relini G,
Souplet A (2002) The general specifications of the MED-
ITS surveys. Sci Mar 66:9–17

BirdLife International (2004) Tracking ocean wanderers: the
global distribution of albatrosses and petrels. Results from
the Global Procellariform Tracking Workshop, 1 to 5 Sep,
2003, Gordon’s bay, South Africa. BirdLife International,
Cambridge

BirdLife International (2008) Species factsheet: Puffinus mau-
retanicus. http://www.birdlife.org

Boyd IL, Wanless S, Camphuysen CJ (2006) Top predators in
marine ecosystems: their role in monitoring and manage-
ment. Cambridge University Press, Cambridge

Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence-
absence versus presence-only modelling methods for pre-
dicting bird habitat suitability. Ecography 27:437–448 

Buckland ST, Burnham KP, Augustin NH (1997) Model selec-
tion: an integral part of inference. Biometrics 53:603–618 

Burnham KP, Anderson DR (2002) Model selection and multi-
model inference: a practical Information-Theoretic
approach. Springer Verlag, New York

Burnham KP, Anderson DR (2004) Multimodel inference:
understanding AIC and BIC in model selection. Sociol
Methods Res 33:261–304 

Carboneras C (2004) Pardela Cenicienta Calonectris dio-
medea diomedea. In: Madroño A, González C, Atienza JC
(eds) Libro Rojo de loas Aves de España. Direccion Gen-
eral para la Biodiversidad-SEO/BirdLife, Madrid

Cayula JF, Cornillon P (1992) Edge detection algorithm for
SST images. J Atmos Ocean Technol 9:67–80 

Crawley MJ (1993) GLIM for ecologists. Blackwell Scientific,
Oxford

del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds
of the world. Lynx Edicions, Barcelona

Elith J, Graham CH, Anderson RP, Dudik M and others(2006)
Novel methods improve prediction of species’ distribu-
tions from occurrence data. Ecography 29:129–151

195



Mar Ecol Prog Ser 391: 183–197, 2009

Fielding AH, Bell JF (1997) A review of methods for the
assessment of prediction errors in conservation pres-
ence/absence models. Environ Conserv 24:38–49 

Franks PJS (1992) Sink or swim: accumulation of biomass at
fronts. Mar Ecol Prog Ser 82:1–12 

Freeman EA, Moisen GG (2008) A comparison of the perfor-
mance of threshold criteria for binary classification in
terms of predicted prevalence and kappa. Ecol Model 217:
48–58 

González-Solís J, Croxall JP, Oro D, Ruiz X (2007) Trans-
equatorial migration and mixing in the wintering areas of
a pelagic seabird. Front Ecol Environ 5:297–301 

Gray TNE, Chamnan H, Borey B, Collar J, Dolman PM (2007)
Habitat preferences of a globally threatened bustard pro-
vide support for community-based conservation in Cam-
bodia. Biol Conserv 138:341–350 

Guisan A, Zimmermann NE (2000) Predictive habitat distrib-
ution models in ecology. Ecol Model 135:147–186 

Hammer WH, Schneider DC (1986) Regularly spaced rows of
medusae in the Bering Sea: Role of Langmuir circulation.
Limnol Oceanogr 31:171–177

Hanley JA, McNeil BJ (1982) The meaning and use of the
area under a receiver operating characteristics (ROC)
curve. Radiology 143:29–36

Harris J, Haward M, Jabour J, Woehler EJ (2007) A new
approach to selecting Marine Protected Areas (MPAs) in
the Southern Ocean. Antarct Sci 19:189–194 

Haury LR, McGowan JA, Wiebe PH (1978) Patterns and pro-
cesses in the time-space scales of plankton distributions.
In: Steele JH (ed) Spatial patterns in plankton communi-
ties. Plenum Press, New York

Hooker SK, Gerber LR (2004) Marine reserves as a tool for
ecosystem-based management: the potential importance
of megafauna. Bioscience 54:27–39 

Hunt GL, Schneider DC (1987) Scale-dependent processes in
the physical and biological environment of marine birds.
In: Croxall JP (ed) The feeding ecology of seabird and
their role in marine ecosystems. Cambridge University
Press, Cambridge

Hunt GL, Mehlum F, Russell RW, Irons D, Decker MB, Becker
PH (1999) Physical processes, prey abundance, and the
foraging ecology of seabirds. Proc 22 Int Ornithol Cong 22:
2040–2056

Hurlbert SH (1984) Pseudoreplication and the design of eco-
logical field experiments. Ecol Monogr 54:187–211 

Hyrenbach KD, Dotson RC (2003) Assessing the susceptibility
of female black-footed albatross (Phoebastria nigripes) to
longline fisheries during their post-breeding dispersal: an
integrated approach. Biol Conserv 112:391–404 

Hyrenbach KD, Forney KA, Dayton PK (2000) Marine pro-
tected areas and ocean basin management. Aquat Con-
serv: Mar Freshwat Ecosyst 10:437–458 

Hyrenbach KD, Fernández P, Anderson DJ (2002) Oceano-
graphic habitats of two sympatric North Pacific albatrosses
during the breeding season. Mar Ecol Prog Ser 233:
283–301 

Hyrenbach KD, Keiper C, Allen SG, Ainley DG, Anderson
DJ (2006) Use of marine sanctuaries by far-ranging
predators: commuting flights to the California Current
System by breeding Hawaiian albatrosses. Fish
Oceanogr 15:95–103 

Igual JM, Forero MG, Tavecchia G, González-Solís J and oth-
ers (2005) Short-term effects of data-loggers on Cory’s
shearwater (Calonectris diomedea). Mar Biol 146:619–624 

Jenness J (2004) Nearest features (nearfeat. avx) extension
for ArcView 3.x, v. 3.8a. Available online at: www.jen-
nessent.com/arcview/nearest_features.htm

Johnson JB, Omland KS (2004) Model selection in ecology
and evolution. Trends Ecol Evol 19:101–108 

Johnston DW, Westgate AJ, Read AJ (2005) Effects of fine-
scale oceanographic features on the distribution and
movements of harbour porpoises Phocoena phocoena in
the Bay of Fundy. Mar Ecol Prog Ser 295:279–293 

Lloret J, Palomera I, Salat J, Sole I (2004) Impact of freshwater
input and wind on landings of anchovy (Engraulis encrasi-
colus) and sardine (Sardina pilchardus) in shelf waters
surrounding the Ebre (Ebro) River delta (north-western
Mediterranean). Fish Oceanogr 13:102–110 

Louzao M, Hyrenbach KD, Arcos JM, Abelló P, Gil de Sola L,
Oro D (2006) Oceanographic habitat of a critically endan-
gered mediterranean procellariiform: implications for the
design of marine protected areas. Ecol Appl 16:1683–1695 

McAlpine CA, Rhodes JR, Bowen ME, Lunney D, Callaghan
JG, Mitchell DL, Possingham HP (2008) Can multiscale
models of species’ distribution be generalized from region
to region? A case study of the koala. J Appl Ecol 45:
558–567 

Millot C (1999) Circulation in the Western Mediterranean
Sea. J Mar Syst 20:423–442 

Murray K, Conner MM (2009) Methods to quantify variable
importance: implications for the analysis of noisy ecologi-
cal data. Ecology 90:348–355 

Orians GH, Pearson NE (1979) On the theory of central place
foraging. In: Horn DJ, Stairs GR, Mitchell RD (eds) Analy-
sis of ecological systems. Ohio State Univerity Press,
Columbus, OH, p 155–177

Phillips RA, Xavier JC, Croxall JP (2003) Effects of satellite
transmitters on albatrosses and petrels. Auk 120:
1082–1090 

Phillips RA, Silk JRD, Croxall JP, Afanasyev V (2006) Year-
round distribution of white-chinned petrels from South
Georgia: relationships with oceanography and fisheries.
Biol Conserv 129:336–347

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum
entropy modeling of species geographic distributions.
Ecol Modell 190:231–259

Ramírez I, Geraldes P, Meirinho A, Amorim P, Paiva V (2008)
Àreas Marinhas Importantes para as Aves em Portugal.
Projecto LIFE04NAT/PT/000213-Sociedade Portuguesa
Para o Estudo das Aves, Lisboa

R Development Core Team (2008) R: A language and envi-
ronment for statistical computing. R Foundation for
Statistical Computing, Vienna. www.r-project.org

Redfern JV, Ferguson MC, Becker EA, Hyrenbach KD and
others (2006) Techniques for cetacean–habitat modelling.
Mar Ecol Prog Ser 310:271–295 

Ribic CA, Chapman E, Fraser WR, Lawson GL, Wiebe PH
(2008) Top predators in relation to bathymetry, ice and
krill during austral winter in Marguerite Bay, Antarctica.
Deep-Sea Res II 55:485–499 

Richards SA (2005) Testing ecological theory using the Infor-
mation-Theoretic approach: examples and cautionary
results. Ecology 86:2805–2814 

Rodhouse PG, Prince PA, Trathan PN, Hatfield EMC and
others (1996) Cephalopods and mesoscale oceanography
at the Antarctic Polar Front: satellite tracked predators
locate pelagic trophic interactions. Mar Ecol Prog Ser
136:37–50 

Sawada M (1999) ROOKCASE: an EXCEL 97/2000 VISUAL
BASIC (VB) add-in for exploring global and local spatial
autocorrelation. Bull Ecol Soc Am 80:231–234 

Segurado P, Araújo MB (2004) An evaluation of methods
for modelling species distributions. J Biogeogr 31:
1555–1568 

196



Louzao et al.: Combining complementary approaches to identify key seabird areas

Skov H, Humphreys E, Garthe S, Geitner K and others (2008)
Application of habitat suitability modelling to tracking
data of marine animals as a means of analyzing their feed-
ing habitats. Ecol Modell 212:504–512 

Sokal RR, Oden NL, Thomson BA (1998) Local spatial auto-
correlation in biological variables. Biol J Linn Soc 65:
41–62 

Swets JA (1988) Measuring the accuracy of diagnostic sys-
tems. Science 240:1285–1293 

Tasker ML, Jones PH, Dixon T, Blake BF (1984) Counting

seabirds at sea from ships: a review of methods employed
and a suggestion for a standardized approach. Auk 101:
567–577

Weimerskirch H (2007) Are seabirds foraging for unpre-
dictable resources? Deep-Sea Res II 54:211–223 

Whitmire AL, Boss E, Cowles TJ, Pegau WS (2007) Spectral
variability of the particulate backscattering ratio. Opt
Express 15:7019–7031

Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological
data. Springer, New York

197

Editorial responsibility: Jacob Gonzáles-Solís,
Barcelona, Spain

Submitted: November 17, 2008; Accepted: May 21, 2009
Proofs received from author(s): August 27, 2009


	cite3: 
	cite4: 
	cite5: 
	cite6: 
	cite7: 
	cite8: 
	cite9: 
	cite10: 
	cite12: 
	cite13: 
	cite14: 
	cite15: 
	cite16: 
	cite17: 
	cite18: 
	cite19: 
	cite20: 
	cite21: 
	cite22: 
	cite23: 
	cite24: 
	cite25: 
	cite26: 
	cite27: 
	cite28: 
	cite29: 
	cite30: 
	cite31: 
	cite32: 
	cite33: 
	cite34: 
	cite35: 
	cite36: 
	cite37: 
	cite38: 
	cite39: 
	cite40: 
	cite41: 
	cite42: 
	cite43: 
	cite44: 
	cite45: 
	cite46: 
	cite47: 
	cite48: 
	cite49: 
	cite50: 
	cite51: 


