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INTRODUCTION

Acidification of the world’s oceans by the absorption
of anthropogenic CO2 is causing so much concern that
it is gaining recognition alongside climate change as
‘the other CO2 problem’ (Doney et al. 2009). Global
atmospheric pCO2 levels have increased from 0.03 to
0.04 kPa since pre-industrial times and are predicted
to reach ~0.08 kPa by 2100 (‘business-as-usual’ CO2

emission scenario, Houghton et al. 2001). More than a
third of the atmospheric CO2 emitted into the atmo -
sphere since the beginning of the industrial revolution
has been absorbed by the oceans, resulting in an alter-
ation in the seawater carbonate system to give a 30%
increase in H+ concentrations (0.1 pH unit) and a 16%
reduction in carbonate ion concentrations (Feely et al.

2004, Fabry et al. 2008). As ocean acidification is hap-
pening at a rate that outstrips the neutralising action of
sedimentary antacids, it is predicted that the continued
release of fossil-fuel CO2 into the atmo sphere will re -
duce ocean pH levels from present day levels of 8.1 to
7.8–7.7 by the end of the century (Orr et al. 2005), and
to pH 7.4 by 2300 if atmospheric CO2 reaches 0.20 kPa
(Caldeira & Wickett 2003). Critically, pH levels will be
lower than those experienced for the past 25 million yr
(Royal Society Report 2005, Widdicombe & Spicer
2008).

The biological effects of ocean acidification are still
far from clear, although interest in this area has inten-
sified considerably over the past 7 yr (Pörtner et al.
2004, Fabry et al. 2008, Pörtner 2008, Przeslawski et al.
2008, Doney et al. 2009). Over this time period, there
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has been a tendency to concentrate on marine taxa
considered to be the most vulnerable to ocean acidifi-
cation, such as cnidarians, echinoderms and molluscs.
These taxonomic groups have received the most atten-
tion because calcification of the external shells and
skeletons is influenced by the changes in seawater
pCO2, pH and [CO3

2–] associated with ocean acidifica-
tion. In extreme cases, for instance, elevated seawater
CO2 can cause dissolution of the calcified skeleton
and reduce calcification rates (e.g. Gattuso et al. 1998,
Langdon et al. 2000, Kleypas et al. 2006, Gazeau et
al. 2007). Physiological studies have also revealed that
echinoderms and bivalve molluscs are likely to be the
most vulnerable to ocean acidification because they
are poor iono-regulators and show little ability to
buffer the acidifying effects of elevated CO2 in their
body compartments (Fabry et al. 2008, Widdicombe &
Spicer 2008, Doney et al. 2009, Melzner et al. 2009,
Dupont et al. 2010). The resulting consequences can
be far reaching as acidification of body compartments
can lead to metabolic depression (Michaelidis et al.
2005, Miles et al. 2007, Rosa & Seibel 2008), a reduc-
tion in energy stores (Langenbuch & Pörtner 2002,
2003) and a reduction in growth rate (Michaelidis et al.
2005, Beniash et al. 2010). Physiological studies can
therefore be used to explain species-related differ-
ences in sensitivity, which, in turn, can be used to pre-
dict changes in individual performance and survival.
Consequently, physiological changes have been used
in the recent past to inform on the ecological effects of
ocean acidification (Fabry et al. 2008, Guinotte & Fabry
2008, Widdicombe & Spicer 2008, Dupont et al. 2010).
Over the past 7 yr there has been a concerted effort to
switch attention from short-term acute exposures
(hours to days) to extremely high pCO2 levels (hyper-
capnia) to more  relevant pCO2 over longer time inter-
vals, such as medium-term (weeks) to long-term expo-
sure (months) (Fabry et al. 2008, Widdicombe & Spicer
2008, Doney et al. 2009). There has also been a move
towards studies based on community mesocosms in
order to examine changes in biodiversity and commu-
nity structure (Widdicombe et al. 2009, Hale et al.
2011). In addition, there is a growing realisation that
concomitant changes in other environmental variables,
such as  temperature, salinity and oxygen, may also
modify responses to ocean acidification and further
decrease chances of survival (Fabry et al. 2008, Widdi-
combe & Spicer 2008, Findlay et al. 2010a,b). Finally,
there has been an increasing interest in the survival of
early developmental and reproductive stages, which
are likely to be the most vulnerable to ocean acidifica-
tion (Dupont et al. 2008, 2010, Kurihara 2008).

Collectively, these approaches have demonstrated
that the ability to tolerate ocean acidification is species
specific and varies within phyla and between closely

related species (Doney et al. 2009, Melzner et al. 2009,
Hale et al. 2011). As we learn more about the long-
term effects of ocean acidification on the physiology
and ecology of marine invertebrates, it is becoming
apparent that even those species generally tolerant of
ocean acidification are under threat. Medium- to long-
term compensation for projected ocean acidification
conditions could prove to be energetically costly.
Examples already exist in the literature to indicate that
energy can be diverted away from key biological pro-
cesses such as growth and reproduction towards com-
pensatory responses (e.g. Wood et al. 2008, Beniash et
al. 2010). On the other hand, certain species may be
more resilient than once thought because they can
acclimatise or adapt to the changes. Clearly, we need
to examine the effects of ocean acidification on a wider
range of species from different taxa to get a better idea
of the possible effects of the projected climate change
conditions on marine species, communities and ecosys-
tems. Valuable lessons could be learned from taxa that
have been largely overlooked, especially those that are
considered to be tolerant of ocean acidification, such
as crustaceans.

The effects of oceanic acidification on marine crus-
taceans have received some attention, however, the
studies are disparate and have been conducted on
widely divergent species for varying lengths of time at
different pCO2 levels. Our general lack of knowledge
on the potential effects of ocean acidification on marine
crustaceans is surprising because most crustaceans are
characterised by a mineralised chitinous exoskeleton,
which could be affected by changes in seawater car-
bonate chemistry. Crustaceans are also ecologically
and economically important. In addition, there is a
wealth of background physiological information that
can be used to explain differing sensitivities to ocean
acidification. If crustacean species are adversely af fec -
ted by ocean acidification, then this could have far-
reaching ecological consequences, as crustaceans are
primary and secondary consumers and an important
food source for higher trophic levels. For instance,
crustacean species form the bulk of the zooplankton
and can be present in vast numbers, either as pelagic
larvae or as adults. Total biomass can reach impressive
levels, as shown in the Southern Ocean where Antarc-
tic krill Euphausia superba reach a total biomass of 133
million tonnes at any one time (Atkinson et al. 2009).
Any adverse effects could also have an impact on the
shellfish industry, as several decapod species (lobsters,
crabs, prawns and shrimps) can be cultured or har-
vested for food or bait. Shellfish culture, which in -
cludes both crustaceans and bivalves, has increased in
importance in recent years, reaching 20% of the global
seafood production (T. Pickerell, Shellfish Association
of Great Britain, pers. comm.).
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Most of the 68 000 extant species of Crustacea
described to date are marine (Martin & Davis 2001,
2006). While some groups are exclusively marine (e.g.
cirripeds, euphausiids, stomapods) and occupy every
available niche in the ocean, others are primarily marine,
but have brackish, freshwater and  semi-terrestrial/
terrestrial representatives (e.g. ostracods, cope pods,
iso pods, amphipods, decapods). Subsequently, crus-
taceans occupy a range of aquatic habitats that experi-
ence differing degrees of environmental variability.
Those occupying deep oceans and high latitudes come
from relatively stable environments where physical
factors show little variation over temporal and spatial
scales. Other environments, such as the intertidal zone
and estuaries, can experience wide and rapidly chang-
ing fluctuations in physical factors in response to diur-
nal changes in tidal height. In estuarine environments,
seasonal changes in physical variables are affected by
changes in the inputs of freshwater and nutrients. Con-
sequently, crustaceans are unusual when compared
with other marine taxa. This is because they show a
wide variety of responses to salinity change, from those
that can regulate against external changes to those
that simply conform. Studies on crustaceans can there-
fore provide researchers with an ideal opportunity to
examine the relationship between environmental vari-
ability and the capacity to tolerate ocean acidification,
which has recently been debated in the literature
(Fabry et al. 2008, Widdicombe & Spicer 2008).

The purpose of the current review is to bring
together, for the first time, all of the ocean acidification
studies that have been carried out on crustaceans to
date. The review will follow the development of the
field from early physiological studies on the effects of
hypercapnia to the effects of long-term exposure to
more relevant pCO2 levels on individual performance
and fitness. The physiological data will be used to
investigate the presence of any emerging patterns or
trends that may explain why certain groups of crus-
taceans are more vulnerable to ocean acidification
than others. The subsequent ecological repercussions
will be reviewed by summarising our current under-
standing of the following: the possible energetic impli-
cations of medium-term exposure to relevant pCO2

levels, the potential impacts on calcification rates and
growth in crustaceans, as well as a summary of the lat-
est observations on the effects of ocean acidification on
development rates and larval survival. As such, the
current review will use physiological and ecologically
relevant responses to give an overall view on the bio-
logical effects of ocean acidification on crustaceans.
This information will be used to identify areas for
future research so that we can make a more informed
assessment on the future prospects for marine crus-
taceans in a high CO2 world.

PHYSIOLOGICAL RESPONSES TO OCEAN
 ACIDIFICATION

The most immediate responses to ocean acidification
in marine crustaceans are best described at the indi-
vidual level by physiological adjustments to changes
in seawater carbonate chemistry. As the majority of
crustaceans are committed water-breathers, they are
in close contact with their external environment via the
gills or equivalent structures, which are specialised for
respiratory gas and ion exchange (Taylor & Taylor 1992).
When carbonate chemistry of the seawater changes
during ocean acidification, CO2 excretion across the
gills is compromised, causing an increase in CO2 in the
haemolymph (extracellular compartment). Subsequent
changes in haemo lymph pH are buffered to various
extents by the  mechanisms described in the following
subsection. Such adjustments are important because
they maintain the acid–base equilibria of the body flu-
ids within the limits needed for protein function. This is
particularly true for the intracellular compartment,
where changes in pH are tightly controlled. A rise in
intracellular [H+] can disrupt key biological processes
such as metabolism, protein synthesis, iono-regulation
and cell volume control (Gaillard & Malan 1983,
Wheatly & Henry 1992, Whiteley 1999). Although pH
disruptions can be tolerated in the haemo lymph or
extracellular compartment to some extent for short
periods (hours), haemo lymph pH  regulation is impor-
tant to maintain oxygen supply. Increasing [H+] will
decrease the oxygen affinity of the respiratory pig-
ment, reducing oxygen delivery to the tissues (Taylor &
Whiteley 1989, Whiteley & Taylor 1992). Disruptions to
extra- and intracellular acid– base balance can, there-
fore, have far-reaching consequences by compromis-
ing survival and adversely effecting ecologically rele-
vant factors such as metabolism and growth.

Short-term acute exposure to hypercapnia

Most of what we currently understand about the
physiological mechanisms involved in the compensa-
tion of acid–base imbalances comes from laboratory-
based studies on decapod crustaceans (prawns, lob-
sters, portunid and xanthid crabs) exposed to acute
elevations in pCO2 (hypercapnia). Although the CO2

levels investigated during short-term hypercapnia are
much higher then the levels projected for future cli-
mate change scenarios, these studies are invaluable
because they provide a mechanistic basis for under-
standing differences in the sensitivity of marine inver-
tebrate taxa to ocean acidification (Fabry et al. 2008,
Pörtner 2008, Widdicombe & Spicer 2008, Melzner et
al. 2009, Hale et al. 2011). Most importantly, the short-
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term exposure of crabs to either hypercapnia or exter-
nal changes in salinity has demonstrated that acid–
base balance is closely associated with iono-regulation
because both homeostatic processes share the same
mechanisms (Truchot 1975, 1981, 1992, Cameron 1978,
Henry & Cameron 1982, Cameron & Iwama 1987,
Whiteley 1999, Whiteley et al. 2001). Closer inspection
of the mechanisms involved has revealed that pH ad -
justments in the haemolymph are buffered by haemo -
lymph proteins (mainly haemocyanin) and bicarbonate
ions. However, pH adjustments are dominated by elec-
troneutral ion exchange across the gill epithelia, as the
majority of buffer HCO3

– comes from the external

 seawater (93%) and the remainder (7%) comes from
internal stores (Cameron 1985). Moreover, crustacean
species that are more tolerant to hypercapnia maintain
a higher haemolymph HCO3

– (Pörtner et al. 2004,
Melzner et al. 2009), although HCO3

– levels do not
generally exceed values >50 mmol l–1 (Cameron &
Iwama 1987). During electroneutral ion exchange,
inward HCO3

– from the seawater is exchanged for
Cl– after the catalysed hydration of CO2 by carbonic
anhydrase, and outward H+ is exchanged for Na+

 (Taylor & Taylor 1992, Wheatly & Henry 1992, White-
ley 1999). These ion exchanges are driven by a baso-
lateral Na+/K+-ATPase (Towle & Kays 1986, Taylor
& Taylor 1992) and, possibly, an apical H+-ATPase
(Onken & Putzenlechner 1995, Freire et al. 2008). Con-
sequently, environmental disruption of haemolymph
acid–base status is more likely to be compensated in
strong iono- and osmoregulators, where ion exchange
mechanisms are well developed. This relationship
could well explain why freshwater crustaceans, which
are strong iono- and osmoregulators, can survive con-
siderable acidification of their freshwater habits (Abra-
hamsson 1972, McMahon & Stuart 1989, Felten et al.
2008, Weber & Pirow 2009). Likewise, strong iono- and
osmoregulators are likely to be less vulnerable to
ocean acidification, because they possess the mecha-
nisms that enable them to compensate for haemo -
lymph acid–base disturbances, at least in the shorter
term.

Medium-term exposure to relevant CO2 levels

Exposure to smaller increases in seawater CO2 (i.e.
0.10 to 0.20 kPa) over longer time intervals of weeks to
months is more relevant to the potential changes that
could occur as a result of ocean acidification. To date
medium-term laboratory-based physiological studies
in adult crustaceans have concentrated on alterations
in compensatory capacities over time. The information
available, however, is limited and can be traced back
to a handful of studies that have either examined

acid–base adjustments or calcification rates. Overall, it
appears that medium-term exposure to pCO2 levels
more representative of ocean acidification has the
potential to adversely affect growth and reproduction
by diverting energy towards the maintenance of effec-
tive compensatory responses.

Acid–base compensation and energetic repercussions

Only 3 studies have examined the ability of crus-
taceans to adjust internal acid–base imbalances dur-
ing medium-term exposure to projected pCO2  levels.
In the strong iono-regulating prawn species Palaemon
elegans and P. serratus, complete compen sation for a
pCO2 of 0.30 kPa was observed after 30 d of exposure
(Dissanayake et al. 2010). However, ion homeostasis
was maintained at the expense of acid–base balance.
Two species of crabs, Necora puber and Cancer magis-
ter, which are relatively poor iono-regulators, were
also able to compensate haemo lymph acid–base dis-
turbances within 24 h when exposed to CO2 at 0.10 to
0.20 kPa (Pane & Barry 2007, Spicer et al. 2007). Com-
pensation in all 4 species was achieved by an elevation
in haemolymph [HCO3

–]. Continued exposure to the
same pCO2 level in N. puber had a detrimental effect,
as bicarbonate buffering started to fail after 16 d when
[HCO3

–] reached 27 mmol l–1 (Spicer et al. 2007). How-
ever, haemolymph [HCO3

–] was found to be much
lower after 30 d at the same pCO2 in a separate study
(Small et al. 2010). Exposure to an even higher pCO2

level of 2 kPa (pH of 6.05) limited survival to between
4 and 5 d, because haemo lymph pH fell despite a huge
increase in haemolymph buffer base up to 55 mmol l–1

(Spicer et al. 2007). This bicarbonate value is similar
to the maximum value obtained by Cameron & Iwama
(1987) for the blue crab Callinectes sapidus during
hypercapnia. Both observations support the existence
of a threshold [HCO3

–] in the haemolymph of approxi-
mately 50 mmol l–1. The inability to increase [HCO3

–]
beyond this level is thought to be a compromise be -
tween acid–base balance and iono-regulation, al -
though it is also possible that the medium-term adjust-
ments are metabolically expensive as suggested by
Pörtner et al. (2004) for other invertebrate species.

Acid–base adjustments made by crustaceans are
likely to be metabolically expensive over weeks to
months, due to the dependence on HCO3

– uptake from
the seawater via electroneutral ion exchange. Elec-
troneutral ex change of HCO3

– for Cl– and H+ for Na+ is,
in turn, dependent on the presence of ion gradients
across transport epithelia that are maintained by active
ion-transporting pumps, Na+/K+- and H+-ATPases
(Cameron & Iwama 1987, Pörtner et al. 2004, Santos et
al. 2007). The actual costs associated with active ion
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transport are unclear, but estimates of Na+/K+-ATPase
activity range from 2.8 to 40% of total energy expendi-
ture, indicating a considerable cost to the individual
(Pannevis & Houlihan 1992, Leong & Manahan 1997).
If the costs associated with the acid–base balance are
in deed significant, then crustaceans that are good
compensators could be adversely affected during
ocean acidification. Either the costs will be limiting
and re strict homeostatic processes or energy will be
diverted away from other energy-demanding pro-
cesses. In both situations, individual performance will
be affected. Even though the energetic consequences
of ocean acidification are unknown, some indication of
the possible effects on performance can be obtained
from experiments in which crustaceans are acclimated
to various salinities. For instance, it is well known that
the maintenance of ion gradients between the extra-
cellular fluid and the external medium is energetically
costly, especially during hypo- and hyper-osmoregula-
tion (Gilles 1983, Moreira et al. 1983, McNamara &
Moreira 1987, Pé queux 1995, Freire et al. 2008). The
increase in energetic costs associated with iono-regu-
lation has recently been used to explain differences in
protein synthesis rates in the tropical prawn Macro-
brachium rosenbergii (Intanai et al. 2009). In M. rosen-
bergii whole animal fractional rates of protein synthe-
sis were highest at an iso-osmotic salinity of 14 psu,
when the prawns were expending the minimal amount
of energy on iono- and osmoregulation (Wang et al.
2004, Intanai et al. 2009). As protein synthesis rates are
a major determinant of growth, these observations
suggest that growth was compromised during hypo-
and hyper-osmoregulation. Whether ocean acidifica-
tion would have a similar effect on protein synthesis
rates is not yet known.

Given that the energetic costs of acid–base regula-
tion could be fairly substantial, it is also possible that
the associated costs themselves could decrease during
ocean acidification to reduce ATP demand. Such a
response has been observed in the musculature of the
intertidal polychaete Sipunculus nudus during hyper-
capnia (Pörtner et al. 2000). In this species, intracellu-
lar pH is protected during an extracellular acidosis
by an increase in the importance of Na+-dependent
Cl–/HCO3

– exchange for H+ transport over Na+/H+,
Na+/K+-ATPase, and possibly H+-ATPase activity. The
benefit here is the shift in ion-transporting mecha-
nisms from those with higher to lower ATP demands.
An extracellular acidosis in S. nudus was accompanied
by a decrease in metabolic rate, suggesting that a
decrease in the energetic demands of acid–base regu-
lation has an effective energy-saving role (Pörtner et
al. 1998, 2000). Whether this strategy exists in crus-
taceans exposed to more moderate increases in pCO2

is not known.

Calcification rates

Currently it is relatively unclear whether the net cal-
cification rate (balance between rates of calcification
and dissolution) of the chitinous-mineralised crusta -
cean exoskeleton will be adversely affected by ocean
acidification. Calcification processes in crustaceans are
likely to be less vulnerable to ocean acidification than
those present in echinoderms or molluscs, because
exoskeletal CaCO3 is mostly in the more stable form of
calcite rather than the more soluble aragonite (Boßel-
mann et al. 2007, Neues et al. 2007). In addition, cal -
cification processes are well removed from external
changes in seawater carbonate chemistry and are
known to depend on HCO3

– rather than on CO3
2–

(Cameron 1985). The crustacean exoskeleton also con-
tains amorphous calcium carbonate, which is highly
soluble and acts as a transient source of Ca2+ (Boßel-
mann et al. 2007, Neues et al. 2007). It is tempting to
speculate that amorphous CaCO3 may also act as a
source of HCO3

– for acid–base homeostasis. Interest-
ingly, the proportion of amorphous calcium salts in the
exoskeleton varies between species and depends on
lifestyle (Neues et al. 2007). It may therefore influence
compensatory capacities by providing a labile source
of HCO3

–. Currently, it is not known how these various
forms of CaCO3 are affected by ocean acidification.
However, the formation of CaCO3 in the crustacean
exoskeleton is thought to depend on the maintenance
of an alkaline pH in the exoskeletal compartment,
which is reported to be 0.3 pH units higher than that in
the haemolymph (Wood & Cameron 1985).

Despite the lack of information on calcification pro-
cesses in crustaceans, ocean acidification has the po -
tential to influence calcification rates in 2 ways. First,
ocean acidification could influence precipitation of
CaCO3 in the exoskeleton by reducing the alkaline
pH in the exoskeletal compartment (Wood & Cameron
1985). Second, ocean acidification could interfere with
post-moult calcification of the new exoskeleton, which
is dependent on a large uptake of Ca2+ and HCO3

–

across the gills from the surrounding seawater (Neu-
field & Cameron 1992, Wheatly 1997). The influx of
Ca2+ and HCO3

– is particularly sensitive to an increase
in external [H+] as it reduces branchial HCO3

– uptake
(Cameron 1985, Cameron & Wood 1985). This suggests
that the reductions in seawater pH associated with
ocean acidification could potentially interfere with
post-moult calcification. A similar response has been
observed in the blue crab Callinectes sapidus during
hypercapnia. In this species, post-moult calcification,
which normally takes 14 d, took twice as long, as the
HCO3

– necessary for calcification was obtained from
metabolic CO2 (Cameron 1985). Any delay in the post-
moult calcification process could be fatal, as crus-
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taceans are particularly vulnerable to predation during
this period. Their exoskeletons are soft, and the newly
moulted crustaceans are unable to move or defend
themselves. As a consequence, ocean acidification has
the potential to increase mortality rates indirectly by
delaying the calcification process during moulting.

Despite the potential for adverse effects on calcifica-
tion rates, medium-term exposure to moderate eleva-
tions in seawater CO2 indicates that the calcified struc-
tures in crustaceans (exoskeleton and the barnacle
shell wall plates) are well protected from ocean acidifi-
cation. In all crustacean species studied to date, calcifi-
cation rates either remain the same or increase after
a period of CO2 exposure (Wickins 1984, Findlay et
al. 2009, McDonald et al. 2009, Ries et al. 2009). An
increase in calcium content was first observed in the
exoskeleton of Penaeus monodon after 36 d of expo-
sure to a decrease in seawater pH of 7.9 to 6.4 pH units
(Wickins 1984). A similar response was observed in the
blue crab Callinectes sapidus, the king prawn Penaeus
plebejus and the lobster Homarus americanus (Ries et
al. 2009). All 3 species were exposed to seawater equi-
librated with pCO2 levels that were 2, 3 and 10 times
higher than pre-industrial levels (0.06 ± 0.01, 0.09 ±
0.01 and 0.29 ± 0.05 kPa, respectively) for 60 d, which
is nearly twice the exposure period experienced by
P. monodon in the earlier study by Wickins (1984).
Such a response may reflect the ability to effectively
maintain elevated pH levels at the site of calcification.
It may also demonstrate that the outer organic layer, or
epicuticle, acts as an effective barrier between the
mineralised exoskeleton and the seawater (Ries et al.
2009). In contrast, long-term exposure to a pCO2 of
0.01 kPa for 30 wk resulted in morphological damage
in the marine shrimp P. pacificus, due to shortening of
the second antennae (Kurihara et al. 2008). The authors
attributed this damage to the dissolution of CaCO3

stores by the ensuing disruptions to acid–base homeo -
stasis, which are more likely to occur in the long term.

Recent studies on 2 species of intertidal barnacles
have revealed differences in net calcification rates dur-
ing elevated pCO2. In the tropical barnacle Amphibal-
anus amphitrite, an increase in the calcification rate
was implied by the observed increase in basal shell
diameter after 11 wk at pH 7.4, which required greater
force to cause shell breakage (McDonald et al. 2009).
Compensatory responses, however, were localised, as
the central wall plates succumbed to dissolution at
pH 7.4 and were weaker than individuals held at
pH 8.1. This observation suggested that individuals
held at pH 7.4 would be more vulnerable to predation.
In contrast, the maintenance of mineral content in the
shells of the cold-temperate/boreal barnacle species
Semibalanus balanoides after 20 d at pH 7.3 indicated
an ability to compensate for shell dissolution in sea -

water saturated with aragonite and calcite, but an
inability to enhance calcification rates (Findlay et al.
2010b). Given that the growth rates of S. balanoides
were slower at pH 7.3 than at pH 8.1, Findlay et al.
(2010b) concluded that calcification of the shell under
acidifying conditions was energetically demanding,
resulting in the reallocation of resources, which com-
promised individual fitness. Clearly, crustaceans show
some ability to compensate net calcification rates for
medium-term exposure at relevant pCO2. However, a
few detrimental effects were observed due to reduc-
tions in the strength of calcified protective plates and
reductions in growth rates.

EMERGING PATTERNS OF VULNERABILITY: 
THE PHYSIOLOGICAL EVIDENCE

Some generalisations about the crustacean groups
most likely to be affected by ocean acidification can be
made by combining physiological responses from ear-
lier studies on hypercapnia with those from recent
experiments on long-term exposures to more moderate
levels of pCO2 (Pane & Barry 2007, Spicer et al. 2007,
Widdicombe & Spicer 2008). To date, it appears that
vulnerability to ocean acidification may be related to
differences in lifestyle and to differences in the ability
to compensate for environmental change. As stated
previously, it is predicted that strong iono- and osmo -
regulating species are likely to be the most tolerant to
ocean acidification, simply because they have the com-
pensatory mechanisms to respond to acid–base dis-
ruptions. These species tend to inhabit shallow coastal
environments under freshwater influence, where they
experience natural variations in seawater pCO2, pO2,
salinity and temperature. For instance, when left be -
hind in rock pools during the night, crabs can experi-
ence increased pCO2 and decreased pH levels and
pO2 in the seawater (Truchot & Duhamel-Jouve 1980,
Morris & Taylor 1983). Marine crustaceans can also be
exposed to increased pCO2 in deep-sea vent systems
and in the surface waters of the open ocean where they
also experience vertical gradients in pH and pO2

(Fabry et al. 2008). Early physiological studies have
demonstrated that the ability to compensate acid–base
disturbances in the face of environmental change is
highly variable among species. This is true among
those species that have a subtidal distribution and
experience stable conditions in their natural environ-
ment. For instance, aerial exposure and subsequent
elevation of haemolymph CO2 is fully compensated by
the European lobster Homarus gammarus, is partially
compensated by the edible crab Cancer pagurus and
remains uncompensated in the swimming crab Necora
puber and the spider crab Maja squinado (Taylor &
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Whiteley 1989, Whiteley 1999). Moreover, physiologi-
cal studies have shown that some species of intertidal
crabs do not compensate for the effects of aerial expo-
sure when exposed at low tide (Burnett & McMahon
1987). Instead they undergo metabolic depression and
wait until the tide returns. Despite these differences in
compensatory capacities, N. puber and C. magister are
able to survive exposure to pCO2 levels more relevant
to ocean acidification, at least in the medium-term, i.e.
up to 60 d (Pane & Barry 2007, Spicer et al. 2007, Small
et al. 2010). Consequently, it remains unclear whether
the ability of crustaceans to compensate for highly
variable environments in creases their tolerance to
ocean acidification. However, this may have more to
do with the limited data set collected to date and less
to do with existing patterns of vulnerability. Clearly,
there is a need to investigate the physiological re -
sponses in crustacean species from a broader range of
marine habitats during exposure to relevant ocean
acidification conditions for longer periods of time.

The ability to compensate for the effects of ocean
acidification can also vary with lifestyle. Decapod crus-
taceans with high rates of activity have a greater ca -
pacity for passive compensation of haemolymph acid–
base disturbances (i.e. buffering by non-bicarbonate
buffers) than slow-moving, relatively inactive species
due to species-related differences in respiratory vari-
ables. Relatively fast-moving species, such as the
swimming crab Necora puber, have higher circulating
levels of haemocyanin than slow-moving, relatively in -
active crabs, such as Maja squinado (Watt et al. 1999).
Higher haemocyanin levels lead to higher  oxygen-
carrying and non-bicarbonate-buffering capa cities, in
keeping with the higher aerobic requirements and
higher rates of metabolic CO2 production. The lower
haemocyanin levels characteristic of slow-moving spe-
cies are associated with relatively low rates of  oxygen
uptake and relatively high levels of circulating lactate
levels, showing some reliance on anaerobic metabo-
lism (Watt et al. 1999). Similar characteristics may
 contribute to the inability of the deep-sea tanner crab
Chionoecetes tanneri to buffer an accumulating haemo -
lymph acidosis when exposed to short-term hypercap-
nia (1% CO2, ~1.28 kPa, for 24 h) (Pane & Barry 2007).
For example, haemolymph protein levels were sig -
nificantly lower in C. tanneri than those determined in
a shallow-water species, Cancer magister, under the
same conditions. The reduction in buffering capacity in
C. tanneri was compounded by a failure to raise HCO3

–

levels beyond 3 mmol l–1 (Pane & Barry 2007). The lack
of compensatory ability could be explained by the low
temperatures at which the measurements were taken
(3°C) or by the fact that deep-sea crabs have low meta-
bolic rates, in keeping with their habitation of a stable,
harsh and resource-limited environment.

By inference, these observations suggest that other
species living in similarly low-energy environments
will be susceptible to ocean acidification. This is par -
ticularly pertinent at polar latitudes, where marine
invertebrates are stenothermal, have poor thermal tol-
erances and are characterised by relatively low meta-
bolic rates (Peck 2002, Pörtner et al. 2007). Acid–base
characteristics have only been determined in 1 species
of polar marine crustaceans, the giant Antarctic isopod
Glyptonotus antarcticus. This species has relatively
low circulating levels of protein, resulting in low
haemocyanin oxygen-carrying and protein-buffering
capacities (Whiteley et al. 1997). The latter is 2.5- to
7.5-fold lower than the range of values estimated in
other aquatic crustaceans (Taylor & Taylor 1992). Not
only is the lower buffering capacity a problem in terms
of compensating for the effects of ocean acidification,
the oxygen affinity of G. antarcticus haemocyanin is
highly sensitive to a reduction in pH (Jokumsen et al.
1981). Both characteristics decrease the involvement of
the respiratory pigment in the transport of oxygen from
the gills to the tissues. It appears that G. antarcticus,
just like the deep-sea crab Chionoecetes tanneri, will
be unable to compensate for the effects of ocean acidi-
fication. As a result, both species will be more vulnera-
ble to the associated changes in seawater chemistry.

POTENTIAL ECOLOGICAL EFFECTS OF OCEAN
ACIDIFICATION

Very little information is available on the potential
impacts of ocean acidification on the ecology of crus-
taceans. There is some evidence to show that ocean
acidification may affect crustacean species at the pop-
ulation level by influencing the growth or reproductive
performance of adults. In addition, there is a growing
interest in the potential effects of ocean acidification
on early life-cycle stages in benthic and pelagic crus-
tacean species. Collectively, it appears that sensitivi-
ties to ocean acidification vary among species and with
ontogeny. However, the lack of data makes it difficult
to observe any emerging trends, and it is impossible to
discuss the available information without resorting to
individual studies.

Effects of ocean acidification on growth rate

The only evidence to date of the effects of elevated
pCO2/reduced pH on growth rates in adult crustaceans
comes from 1 species of marine shrimp and 2 species of
penaeid prawns (Wickins 1984, Kurihara et al. 2008).
Growth rates in all 3 species were affected by elevated
CO2, but the marine shrimp Palaemon pacificus was
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more sensitive than Penaeus occidentalis or P. mon-
odon (Table 1). Not surprisingly, CO2 had more of an
effect when levels were increased and seawater pH
was reduced to 7.6 pH units or lower. For example,
when adult P. pacificus were held at a pCO2 of
0.10 kPa (pH = 7.89 ± 0.05) there was no change in
growth rate for 30 wk and then only in females (Kuri-
hara et al. 2008). At the higher pCO2 level of 0.20 kPa
(pH = 7.64 ± 0.09), both growth rate and moult fre-
quency decreased after 7 wk, and no animals survived
beyond 15 wk. In penaeids, the growth rate declined
when seawater pH fell below 7.4 due to a decrease in
moulting frequency and an increase in intermoult
period from 5 to 6–9 d (Wickins 1984).

Effects of ocean acidification on reproduction and
development

Our understanding of the reproductive effects of
ocean acidification in crustaceans is restricted to a
small number of observations on egg production, and

rates of embryonic and larval development (Table 1).
Changes in egg production were observed in Palae-
mon pacificus held at a pCO2 of 0.10 kPa (Kurihara et
al. 2008). Higher levels of pCO2 (0.20 kPa), however,
had no effect on egg production in the copepods Acar-
tia tsuensis and A. steueri after 27 d of exposure (Kuri-
hara et al. 2004a,b, Kurihara & Ishimatsu 2008) or in
the barnacle Amphibalanus amphitrite held at pH 7.4
(McDonald et al. 2009). The influence of elevated CO2

on embryonic development has only been investigated
in 1 barnacle species, Semibalanus balanoides. In this
intertidal species, a pCO2 of 0.09 kPa reduced rates of
embryonic development in isolated egg masses and
delayed time to hatching by 19 d (Findlay et al. 2009).

In contrast, there is little evidence to show that ocean
acidification is detrimental to larval and juvenile
stages (Table 1). Currently, data on larval development
under relevant levels of pCO2 are available for 4 crus-
tacean species: the copepod Acartia tsuensis (Kurihara
& Ishimatsu 2008), the barnacle Amphibalanus amphi -
trite (McDonald et al. 2009), the lobster Homarus gam-
marus (Arnold et al. 2009) and the spider crab Hyas
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Table 1. Effects of elevated seawater CO2 on indices of growth and reproductive capacity in a variety of crustacean species. pCO2: par-
tial pressure of CO2 calculated from values published as ppm (mole fraction) assuming a barometric pressure of 101.35 kPa. Dashes 

represent absence of available data

Species pCO2 (kPa) pH Time Effect Source

Adults
Acartia tsuensis 0.20 7.4 27 d No effect on survival, body size, Kurihara & Ishimatsu 

development rate, or egg production (2008)
Calanus finmarchicus 0.8 6.85 72 h No effect on adult growth, decrease Mayor et al. (2007)

in egg production
Acartia steueri 0.20–1.0 7.4–6.8 8 d Decreased egg production at <pH 6.8 Kurihara et al. (2004a,b)
Acartia erythraea 0.51–1.0 7.0–6.8 8 d Decreased egg production at <pH 6.8 Kurihara et al. (2004a,b)
Amphibalanus amphitrite – 7.4 8–11 wk No effect on growth or egg production McDonald et al. (2009)
Semibalanus balanoides 0.09 7.7 104 d Decreased survival Findlay et al. (2009)
Penaeus occidentalis – 7.6 & 7.3 56 d Decreased growth rates Wickins (1984)
Penaeus monodon – 7.9–6.4 36 d Decreased growth rates Wickins (1984)
Palaemon pacificus 1.0 7.9 30 wk No effect on growth Kurihara et al. (2008)

0.20 7.6 15 wk Decreased growth and egg production Kurihara et al. (2008)

Eggs/larvae
Acartia erythraea 0.20–1.0 7.4–6.8 2d Increase in nauplius mortality rates and Kurihara et al. (2004a,b)

hatching rate
Acartia tsuensis 0.20 7.4 27 d No effect on development rate or Kurihara & Ishimatsu 

hatching success (2008)
Calanus finmarchicus 0.81 6.95 72 h Decreased hatching success Mayor et al. (2007)
Euphausia superba 1.0–2.0 7.7/7.4 26 d Decreased hatching success Kurihara et al. (2008)
Amphibalanus amphitrite – 7.4 8–11 wk No effect on larval condition, cyprid size McDonald et al. (2009)

and attachment, or metamorphosis
Semibalanus balanoides 0.09 7.7 104 d Decreased rates of embryonic develop- Findlay et al. 

ment, hatching and post-larval growth (2009, 2010b)
Echinogammarus marinus 0.20 7.5 18–20 d No effect on rates of embryonic develop- Egilsdottir et al. (2009)

ment or hatchling number
Gammarus locusta 0.10 7.6 – No effect on growth rates to maturity Hauton et al. (2009)
Palaemon pacificus 0.20 7.6 – Decreased body size in settling juveniles Kurihara et al. (2008)
Homarus gammarus 0.12 – – No effect on hatchling number or rate of Arnold et al. (2009)

development



Whiteley: Ocean acidification and crustaceans

araneus (Walther et al. 2010). In all 4 species, elevation
in pCO2 to <0.02 kPa had no effect on rates of larval
survival or development (Table 1). In addition, ele-
vated pCO2 had no effect on larval condition and
cyprid size, attachment, or metamorphosis in A. amphi -
trite (McDonald et al. 2009). In H. gammarus, this may
be due to the fact that the exoskeletons of planktonic
decapod larvae (zoeae) are unmineralised, while those
of megalopae and benthic juveniles are only partially
calcified (Anger 2001). This is likely to reduce the
potential negative effects of ocean acidification on
 calcification rates during larval moults. Hatching suc-
cess in the copepods Acartia erythraea and Calanus
finmarchicus was negatively affected, but at pCO2

 levels of 0.50 to 0.80 kPa, which far exceed the values
predicted for the year 2300 (Kurihara et al. 2004a,b,
Mayor et al. 2007). In addition, the growth rates of
early life stages of Semibalanus balanoides from the
metamorphosing cyprids to early juveniles were signif-
icantly reduced by a decrease in seawater pH from 8.1
to 7.3 (~0.04 to 0.30 kPa) (Findlay et al. 2010b). A simi-
lar drop in pH (8.2 to 7.4), however, had no effect on
juvenile to adult growth rates in the tropical barnacle
A. amphitrite (McDonald et al. 2009). In addition, re -
ductions in pH down to 7.8 (0.06 kPa) and 7.6 (0.10 kPa)
had no effect on the growth rates of juveniles to
 adolescence or to sexual maturity in the amphipod
Gammarus locusta (Hauton et al. 2009).

COMBINED EFFECTS OF OCEAN ACIDIFICATION
AND OTHER ENVIRONMENTAL VARIABLES

Apart from some early work, the interactive effects
of multiple stressors on the survival of marine crus-
taceans has been poorly studied, despite the fact that
ocean acidification is occurring simultaneously with
changes in temperature, salinity and oxygen. Early
physiological studies on the effects of diurnal changes
in temperature, pCO2 and pO2 that occur naturally in
rock pools demonstrated that acid–base changes in the
haemolymph of the shore crab Carcinus maenas were
less than those induced by exposure to a single factor
(Truchot 1986). The combined effects of hypoxia and
hypercapnia at night and the reverse situation during
the day had opposing effects on acid–base balance
and acted to minimise physiological disturbances.
Moreover, the environmental changes happened so
rapidly that HCO3

– did not have time to accumulate in
the haemolymph. Instead, an increase in haemolymph
pH was brought about by hypoxia-induced hyperven-
tilation. In contrast, the simultaneous exposure of
decapod crustaceans to hypoxia and hypercapnia in
the laboratory resulted in the accumulation of haemo -
lymph HCO3

–, which fully compensated the haemo -

lymph acidosis (Truchot 1984, Burnett 1997). In Calli -
nectes sapidus, for example, haemolymph pH remained
unchanged during hypoxia at a pCO2 of 0.35 kPa, and
even increased at a pCO2 of 0.49 kPa (Burnett 1997).
The increase in haemolymph pH or alkalosis was
 beneficial to the crabs, especially during hypoxia, as it
served to increase haemocyanin oxygen affinity and
hence oxygen loading at the gills (Burnett 1997). A
small increase in L-lactate levels in the haemolymph
during hypoxia would have had the same effect (Tru-
chot 1980, Burnett 1997). In contrast to C. sapidus, the
deep-sea crab Chionoecetes tanneri, which has a rela-
tively poor capacity for acid–base compensation, was
unable to buffer the haemolymph acidosis induced by
exposure to both hypoxia and hypercapnia (Pane &
Barry 2007).

Of the few studies that have been carried out to date,
most have focused on the combined effects of ocean
acidification and temperature. Attention has either
been given to the physiological responses of adults or
to the survival rates of larvae. In adult crustaceans, the
physiological consequences of ocean acidification and
temperature have been restricted to 2 species of subti-
dal crabs, Cancer pagurus and Hyas araneus (Metzger
et al. 2007, Walther et al. 2009), and to a species of
 nektonic shallow-water prawn, Metapenaeus joyneri
(Dissanayake & Ishimatsu 2011). In C. pagurus, expo-
sure to 1% CO2 (~1.0 kPa) and either a progressive
decrease or increase in temperature reduced upper
thermal limits and increased mortality rates (Metzger
et al. 2007). A similar response was observed in the
 spider crab H. araneus, when exposed to more rele-
vant pCO2 levels of 0.07 and 0.30 kPa (Walther et al.
2009). An elevation in pCO2 in H. araneus not only
lowered the upper thermal tolerance limit, it also in -
creased the heart rate and reduced haemolymph pO2

levels when temperatures rose above 10°C. Collec-
tively, these data suggest that thermal tolerances are
reduced in crabs under high CO2 conditions, due to a
limitation in oxygen supply as described in teleost
fishes by Pörtner & Farrell (2008). Elevated pCO2 and
temperature can also affect swimming performance, as
exposure of M. joyneri to a pCO2 of 1.0 kPa at 3 accli-
mation temperatures (10, 15 and 25°C) for 10 d signifi-
cantly reduced critical swimming speeds (Dissanayake
& Ishimatsu 2011). However, elevated pCO2 had more
of an effect on swimming performance than tempera-
ture, even though acclimation to the highest tem -
perature (25°C) decreased aerobic scope (difference
between standard and active metabolic rates). The
authors attributed this observation to the fact that the
prawns were held at temperatures outside their normal
thermal optima (Dissanayake & Ishimatsu 2011). As a
consequence, oxygen supply was restricted and aero-
bic performance was reduced. Given that reductions in
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thermal tol erance windows have been linked to reduc-
tions in growth performance and reproductive activity,
as well as reductions in biogeographical ranges and
shifts in community composition, the combined effects
of ocean acidification and temperature could have
wide-ranging ecological implications (Pörtner 2002,
2010, Somero 2002, Pörtner & Farrell 2008).

Ecological studies have concentrated on the effects
of elevated pCO2 and temperature on the growth and
survival of post-larvae from 2 species of barnacles
(Findlay et al. 2010a,b) and from the spider crab Hyas
araneus (Walther et al. 2010). Even though both barna-
cle species were collected from similar intertidal habits
on the southwestern coast of England, differences in
growth and shell development were observed be -
tween the cold-water species Semibalanus balanoides
and the warm-water species Elminius modestus (Find-
lay et al. 2010a). Exposure to pCO2 levels of 0.04 and
0.10 kPa at 2 temperatures (14 and 18°C) had no effect
on post-larval growth rates in S. balanoides, but the
higher pCO2 and temperature treatment significantly
reduced growth rates in E. modestus. In contrast, the
shell calcium content in S. balanoides was reduced by
CO2 and by temperature, but neither factor had any
effect on the calcification rates in E. modestus. In sum-
mary, it appears that S. balanoides post-larvae are able
to maintain growth, but at the expense of shell calcifi-
cation. On the other hand, E. modestus post-larvae are
able to maintain the integrity of their calcified shells,
but at the expense of growth. The ability to maintain
mineralised shell plates during elevated pCO2 and
temperature exposure was attributed to differences in
thermal tolerance brought about by sampling popula-
tions from different parts of their geographic distribu-
tion (Findlay et al. 2010a). Interestingly, a sub-arctic
population of the cold-water species S. balanoides was
observed to be more sensitive to CO2 than the popula-
tion in southwestern England, at the southern limit of
its distribution range (Findlay et al. 2010a,b). Growth
and development of post-larval S. balanoides from
Kongsfjorden, Svalbard, at 79°N, was negatively im -
pacted by elevated CO2, but surprisingly an increase
in temperature of +4°C had no effect (Findlay et al.
2010b). In contrast to the southern population, the
northern population of S. balanoides also managed to
maintain net calcification of their shells during ele-
vated CO2, suggesting that resources were reallocated
from 1 energy-demanding process to another as dis-
cussed in greater detail by Findlay et al. (2010b). Com-
parisons between populations of H. araneus from simi-
lar latitudes (temperate and sub-arctic) revealed that
development time was slower in the northern com-
pared with the southern population under present day
pCO2 conditions (0.04 kPa) (Walther et al. 2010). An
elevation in pCO2 to 0.30 kPa delayed rates of develop-

ment and reduced growth rates and overall fitness of
larvae from both populations. An increase in pCO2 to
0.07 kPa, however, had no effect. The megalopa
emerged as the most vulnerable stage of development
in H. araneus, as it was the most sensitive to tempera-
ture in the north and the most sensitive to CO2 levels in
the south. The authors attributed the increase in sen -
sitivity in the megalopa to reductions in thermal toler-
ance (Walther et al. 2010). They also predicted that
both ocean acidification and global warming would
affect the recruitment of the benthic juvenile stages in
this species. A decrease in the abundance of H. ara-
neus has already been observed in the North Sea
around Helgoland, where temperatures have increased
by 1.1°C over the last 40 yr (Walther et al. 2010).

Finally, the specific effects of elevated pCO2 and
temperature on marine community diversity and struc-
ture have recently been addressed by using artificial
substrate units planted on the shore at extreme low
tide (Hale et al. 2011). After the establishment of
marine invertebrate communities, the artificial sub-
strate units were removed and exposed to 8 different
treatments (4 pH levels at 2 different temperatures).
After 60 d of exposure, the combination of low pH (7.3
and 6.7) and elevated temperature (16°C) significantly
changed community structure and lowered diversity.
However, at the higher pH levels (8.0 and 7.7) and ele-
vated temperature, species abundance and diversity
increased. Relevant to the present review was the fact
that while molluscs and echinoderms were the most
affected, and annelids the least, crustaceans showed
an intermediate response. More specifically, gammari -
dean amphipods showed a marked decrease in abun-
dance at low pH and elevated temperatures, but
increased in abundance along with an isopod species
at pH 7.7 and 7.3. Furthermore, the loss of the skeleton
shrimp Caprella acanthifera from the higher tempera-
ture treatments contributed to changes in species rich-
ness. Overall this community-based mesocosm study
revealed that the ecological impacts of the 2 environ-
mental variables were greater than either factor in
 isolation. In addition, the study concluded that the
changes in community structure were due to species-
specific differences in tolerances (Hale et al. 2011).
However, the authors stipulated that ecosystem-level
responses to ocean acidification and global warming
could not simply be explained by a reduction in indi-
vidual performances. They also attributed the ob -
served responses in species diversity to changes in
community interactions, their argument being that the
loss of the more vulnerable species provided opportu-
nities for more tolerant species.

The dependence of community-led changes in marine
ecosystems during ocean acidification on  species-
specific physiological tolerances has parallels to the
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selective survivorship associated with the  Permo-
Triassic mass extinction, which occurred around 250
million yr ago (Pörtner et al. 2005, Knoll et al. 2007).
This extinction event resulted in the loss of up to 54%
of late Permian marine families, 68% of the genera and
92% of the species, resulting in a major re-organisation
of the marine ecosystem. It has been argued that these
ancient extinctions can be explained in terms of the
physiological responses of marine invertebrates to the
combined effects of environmental hypoxia, hypercap-
nia, sulphide toxicity and rising temperatures that pre-
vailed at the time (Pörtner et al. 2005, Knoll et al. 2007).
Moreover, the ability to compensate for hypercapnia is
thought to be a key to survival. Interestingly, those
groups that were more vulnerable to hypercapnia
experienced significantly higher rates of extinction,
although survival rates were also related to the pres-
ence or absence of a calcified exoskeleton and its rela-
tive proportion to soft tissues (Knoll et al. 2007).
Arthropods were described by Knoll et al. (2007) as
possessing a calcium carbonate skeleton of moderate
mass with respect to supportive tissue and body fluids
that were relatively well buffered. Although not the
most vulnerable grouping, this group lost around 54%
of its genera during the end-Permian mass extinction.

In summary, it appears that, in adult crustaceans, an
increase in pCO2 to 1.0 kPa during an increase in
 temperature causes physiological disruption and has a
synergistic effect on an individual’s performance. An
increase in mortality rates was also observed in the
subtidal crab Cancer pagurus (Metzger et al. 2007)
and in the shallow-water prawn Metapenaeus joyneri
 during moulting (Dissanayake & Ishimatsu 2011).
However, the sensitivity to multiple stressors varies
among species, with differential effects on individual
fitness and survival leading to changes in community
structure and interactions in an intertidal marine com-
munity (Hale et al. 2011). Such differences could also
explain selective survival during the end-Permian
mass extinction when there was a diversity collapse in
the marine environment (Knoll et al. 2007). Overall the
combination of CO2 and temperature levels relevant to
ocean acidification and global warming have little
effect on the performance of post-larvae, at least in 2
species of barnacles (Findlay et al. 2010a,b). However,
sensitivity does appear to change with life-cycle stage,
as shown in Hyas araneus, where one particular stage
of development was identified as being the most vul-
nerable (Walther et al. 2010). Moreover, sensitivity of
early life stages to a single environmental variable can
change within species according to geographical dis-
tribution (Findlay et al. 2010b, Walther et al. 2010).
One population can be more sensitive to pCO2, while
the other is more sensitive to temperature (Walther et
al. 2010). Although investigations into the combined

effects of elevated pCO2 and temperature in crus-
taceans are few and far between, there has only been
1 study on the effects of elevated pCO2 and reduced
salinity. This is surprising given the role of ion and
acid–base homeostasis in the determination of a spe-
cies’ sensitivity to ocean acidification. In this particular
study, the exposure of the intertidal amphipod Echino -
gammarus marinus to elevated CO2 (0.20 kPa) at 3
salinities (10, 22 and 35 psu) had little effect on hatch-
ing success and developmental rate (Egilsdottir et al.
2009). Overall, reductions in salinity were found to be
more important than elevations in CO2.

CONCLUSIONS AND FUTURE DIRECTIONS

The main purpose of the present review was to sum-
marise our current understanding of the potential bio-
logical effects of ocean acidification on marine crus-
taceans and to identify and characterise those species
or groups most at risk. The study of marine crustaceans
can make a valuable contribution to ocean acidifica-
tion research because crustaceans occupy a wide vari-
ety of aquatic habitats and show a range of tolerances
to environmental change. As a result they demonstrate
a range of responses that can be used to increase our
understanding of the mechanisms that determine tol-
erances to ocean acidification, as well as clarify the
subsequent long-term effects on performance and sur-
vival. The physiological studies carried out to date sug-
gest that the most vulnerable groups are those that are
unable to compensate for the changes imposed by ele-
vated pCO2 and reduced pH levels. These species tend
to be poor iono- and osmoregulators, living in low-
energy environments with low metabolic rates and low
routine levels of activity, such as deep-sea and polar
environments. From the limited data set, it appears
that these species are characterised by low buffering
capacities and a general inability to mobilise HCO3

–

ions from the seawater or from the exoskeleton to
buffer the acid–base disturbances caused by ocean
acidification. Moreover, they are highly specialised for
living at low and stable temperatures and may be
metabolically limited with respect to further change.
Consequently the more vulnerable species are less
likely to succeed in overcoming the combined effects
of ocean acidification and increasing temperature or
reduced salinity and pO2 levels resulting from climate
change. In addition, they are less likely to be able to
compete with warm-water invasive species that will be
more adaptable and better able to exploit available
resources. Crustacean species likely to be more toler-
ant of ocean acidification are those currently inhabit-
ing fluctuating environments, such as estuaries and
shallow coastal regions. These species are less likely to

267



Mar Ecol Prog Ser 430: 257–271, 2011

suffer long-term reductions in fitness because they
have the capacity to compensate acid–base distur-
bances via ion exchange mechanisms. The excep-
tions are slow-moving crabs with poor haemolymph-
buffering capacities. The latter may be more vulnera-
ble to ocean acidification due to their limited capacity
to adjust their acid–base physiology. Overall, we still
have little idea of how these various species will cope
during prolonged exposure to elevated pCO2 on a
scale of months to years, or how multiple stressors
will affect individual fitness. However, the indication is
that concomitant changes in temperature, salinity and
 oxygen can have important synergistic effects.

Given the close association between physiological
capacities and the ability to cope with ocean acidi -
fication, there is a continuing need to examine the
mechanisms responsible for these compensatory re -
sponses. The relationship between ion regulation and
acid–base balance is still far from clear. Even less is
known about the mechanisms underlying calcification
processes in crustaceans. All 3 physiological processes,
i.e. iono-regulation, acid–base balance and calcifica-
tion, could be linked via the mobilisation of Ca2+ and
HCO3

– from the exoskeleton (Whiteley 1999). In addi-
tion, it is unclear whether those species that can tol -
erate ocean acidification will be able to maintain
 compensatory responses over time, and whether less
tolerant species will be able to acclimatise or even
adapt to the changes in seawater carbonate chemistry.
Future studies are needed to examine physiological
and ecological responses to ocean acidification in crus-
tacean species with differing tolerances to environ-
mental change over longer time intervals at relevant
pCO2 levels and in combination with changes in tem-
perature, salinity, or oxygen levels. The resulting data
can then be used to inform on the groups of crus-
taceans most likely to be adversely affected by ocean
acidification and climate change. It can also be used to
explain patterns of vulnerability in other marine taxa.
In addition, it is vital that we increase our understand-
ing of the capacity of marine crustaceans to adapt to
the effects of ocean acidification. Such information
will help towards forecasting the potential long-term
effects of ocean acidification and climate change on
marine ecosystems (Kurihara 2008). Even though a few
multi-generation experiments have been conducted to
date (Kurihara & Ishimatsu 2008), many more are
needed in order to examine the potential for adaption
under future ocean acidification scenarios.

Currently, there is little evidence to suggest that
early life stages are more vulnerable to ocean acidifi-
cation than adults, but the data set is extremely
 limited. Recent work suggests that survival rates are
affected and subtle changes in the ability to calcify the
exoskeleton during growth by moulting may have

long-term repercussions for survival and recruitment.
From the 2 barnacle species studied to date, it appears
that ocean acidification and climate change will not
affect post-larval survival (Findlay et al. 2010a,b),
but sensitivities can vary with stage of development
(Walther et al. 2010). In addition, it has been shown
that ocean acidification can affect growth rates and
moulting frequencies in crustaceans (Kurihara et al.
2008, Dissanayake & Ishimatsu 2011). Further work is
needed to determine whether this is a general effect or
whether it is species specific. If moulting frequencies
and mortality rates in crustaceans are more generally
affected by ocean acidification, this could have a pro-
found effect on species survival, distribution and abun-
dance. Overall, future studies are needed to identify
any potential bottlenecks during development and to
examine the combined effects of ocean acidification
and other environmental variables on the survival of
early life stages from crustacean species with differing
tolerances to environmental change. Although marine
crustaceans are currently considered to be broadly tol-
erant of ocean acidification, closer examination reveals
that certain species and developmental stages could be
adversely affected. It is important that the scientific
community considers the impacts of ocean acidifica-
tion and climate change on representatives from all
marine invertebrate phyla in order to truly appreciate
the resulting effects on species richness, community
structure and function, and ecosystem processes.
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