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INTRODUCTION

Ecosystem-based approaches have been promoted
as a way to improve fisheries assessment and man-
agement (Pikitch et al. 2004, US Commission on
Ocean Policy 2004, Link 2010). There are multiple
facets and goals of the ecosystem-based approach,
but a central feature is a holistic perspective on fish-
eries productivity that considers multiple controls

beyond fishing mortality and stock size (Walters &
Martell 2004, Hollowed et al. 2011). One potential
benefit of this approach is improved estimates of both
biological reference points (Overholtz et al. 2008,
Tyrrell et al. 2011) and of population trajectories
under various future management and climatic sce-
narios. For example, consideration of trophodynamic
interactions in both stock assessments and harvest
policies might improve assessment accuracy and
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theoretic framework. Across ecosystems, models including terms for biophysical covariates exhib-
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the numerical effects of covariates differed among systems and species. For example, surplus pro-
duction in several ecosystems was significantly affected by sea surface temperature, but to differ-
ing degrees (i.e. direction and magnitude of effect). Similarly, surplus production of cod was pos-
itively associated with herring biomass in 4 of the ecosystems examined, whereas negative
trophodynamic interactions alluded to complex cultivation-depensation food-web dynamics in 5
other systems. Importantly, no single covariate emerged as the most important predictor of surplus
production nor were biological reference points from models with covariates always more conser-
vative than those without covariates. This suggests that inclusion of tropho dynamic and biophys-
ical covariates in simple production models has the potential to increase model fit, but the relative
benefit will be stronger for systems and species where trophodynamic and biophysical processes
are tightly coupled to species productivity.
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identify trade-offs that emerge between fisheries that
target multiple species in a food web (Link 2010,
Constable 2011, Smith et al. 2011).

Although the importance of biophysical and tropho -
dynamic drivers of fisheries production dynamics
are widely acknowledged (e.g. Mantua et al. 1997,
Lehodey et al. 2006, Baum & Worm 2009), identifying
and ranking the relative influence of these drivers
on production rates is challenging. Often covariates
of fisheries production dynamics are determined
through a correlation analysis of data from multiple
time series. Yet, survey and biophysical time-series
data are frequently autocorrelated, so that spurious
relationships between production dynamics and en -
vironmental variables are not uncommon. For exam-
ple, Leggett et al. (1984) analyzed data from 1966 to
1978 for capelin Mallotus villosus and found a strong
correlation between recruitment, sea surface temper-
ature, and the frequency of onshore winds during
 larval emergence from spawning beaches. Yet, when
Carscadden et al. (2000) updated the original ana -
lysis with additional years of data, temperature was
no longer a useful predictor of recruitment. These
authors speculated that the original correlation was
spurious rather than causative. In a broad review of
such relationships, Myers (1998) noted that recruit-
ment correlations become particularly unreliable when
time series are short relative to generation times.
Other authors have since demonstrated additional
challenges inherent in using correlative approaches
to evaluate processes that may act synergistically to
regulate production dynamics (Hunt et al. 2002, Hunt
& McKinnell 2006).

The comparative approach has been identified as a
promising tool to provide ecosystem-scale scientific
advice for fisheries (Megrey et al. 2009, Murawski et
al. 2009). We suggest that the comparative approach
is also helpful in assessing the importance of ecolog-
ical covariates in predicting production of fisheries
stocks. By assessing covariates of fisheries produc-
tion across multiple ecosystems that have unique his-
tories of environmental forcing and food web dy -
namics, it may be possible to identify covariates that
consistently predict production levels and thereby
diminish the likelihood of drawing spurious correla-
tions. Indeed, Myers (1998) recommended a compar-
ative approach in his review of correlative studies of
environmental controls of recruitment. More gener-
ally, such analyses offer the potential to distinguish
covariates that regulate production in many different
ecosystems as opposed to the system-specific effect
of individual covariates. Additionally, a comparative
approach can also reveal how mean levels of produc-

tivity vary across ecosystems and thereby detect con-
trols of productivity that might be concealed in
analysis of data from a single ecosystem (Perry &
Schweigert 2008).

As a part of a larger collaborative project to com -
pare the dynamics of marine ecosystems (see Gaichas
et al. 2012, this Theme Section), we assembled time
series data on biomasses and harvest of multiple spe-
cies in 13 different northern temperate ecosystems
(see Fig. 2 in Link et al. 2012, this Theme Section). The
overall goal of the project was to quantify the  relative
importance of biophysical (environmental), tropho -
dynamic and ex ploitative processes on production. To
maximize the strength of the comparative approach,
we apply a simple production model to population
and harvest biomass data for cod and herring species,
which were present in most of the 13 northern eco -
systems. These 2 species groups have traditionally
supported culturally and economically important fish-
eries (Kurlansky 1997) and have also long been the
 focus of efforts to relate population dy namics to en -
vironmental conditions (e.g. Hjort 1914, Sinclair &
Tremblay 1984). As a result, there are ample data
sources from a diverse array of marine fishery eco -
systems on which to base comparative analyses. The
surplus production modeling framework was chosen
because the notion of surplus production is funda-
mental to both single species and ecosystem-based
approaches (Schnute & Richards 2002, Walters et al.
2008). Moreover, despite their simplicity, surplus pro-
duction models can outperform more complicated
age-structured models (NRC 1998). Here we use a sur-
plus production modeling framework to ask: (1) how
do average surplus production levels relate to eco -
system scale properties such as temperature, (2) do
particular biophysical or trophodynamic variables
consistently predict production dynamics across
ecosystems, and (3) are biological reference points
(e.g. maximum sustainable yield [MSY]) for each
 species group similar across ecosystems?

MATERIALS AND METHODS

We evaluated patterns in biomass and annual sur-
plus production for Atlantic and Pacific cod (Gadus
morhua and G. macrocephalus, respectively) and
Atlantic and Pacific herring (Clupea harengus and
C. pallasii, respectively) from 13 high-latitude eco -
systems that varied in size and ecosystem structure
(Table 1). Although we recognize that there are spe-
cific differences between the species pairs, we argue
that each occupy similar niches in the individual
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ecosystems in which they are found; both species of
herring are important forage fish prey for a myriad of
predators, including cod, which are in turn a domi-
nant component of the predatory groundfish guild in
each ecosystem.

Sources of population biomass (either survey-
based or stock assessment-based estimates) and
annual catches are provided by Bundy et al. (2012,
this Theme Section). Overall, data time series ranged
from 1946 to 2009, although time-ranges for specific
ecosystems varied based on available data for each
system. Annual biomass and catch of cod or herring
from surveys or assessments were standardized to
tons per square kilometer of each ecosystem prior
to analysis by dividing by ecosystem area. We note
that estimates of ecosystem area are not necessarily
indicative of habitable area, particularly for herring
that are more coastal (e.g. the entire eastern Bering
Sea is not inhabited by Pacific herring).

We used an annual surplus production modeling
approach to evaluate drivers of stock productivity.
This choice was based on the recognition that en -
vironmental and trophodynamic effects are most
directly manifest in stock productivity because this
metric integrates effects on growth, mortality and
recruitment. Moreover, the surplus production ap -
proach allowed us to conduct comparative analysis
across ecosystems using a common framework and
currency. The annual surplus production (ASPt) of a
species in year t was calculated as:

ASPt = Bt+1 – Bt + Ct (1)

where Ct is annual catch and Bt and Bt +1 are the
mean biomass estimates in years t and t + 1, respec-

tively. In some systems, biomass estimates from sur-
veys contained one or more positive outliers, typi-
cally caused by a single survey tow containing un -
usually high catches. These high catch events most
likely reflect differences in catchability or species
aggregation rather than true variation in annual
 production. Preliminary analyses indicated that the
inclusion of anomalously large biomass estimates led
to unrealistic rates of increase in population biomass
from time t to t + 1 and subsequently produced extra-
ordinarily high, then low, ASP values when esti-
mated survey biomass returned to levels that pre-
ceded the outlier. We therefore smoothed biomass
time series to account for this observation error
by using a Kalman filter (i.e. local level structural
time-series model, StructTS() function in R; R Devel-
opment Core Team 2010). This approach imple-
mented an autoregressive integrated moving average
(ARIMA[0,1,1]) model and appeared to have little
effect in most systems (particularly for biomass esti-
mated from stock assessments) but was able to
reduce noise and eliminate anomalous biomass esti-
mates for several ecosystems and species (Fig. 1).

To identify covariates that best predict inter-annual
variation in ASP for each species from each ecosys-
tem, we statistically fit multiple models, each con-
taining different combinations of covariates, and used
multi-model inference to identify the weight of evi-
dence in support of each covariate (Burnham &
Anderson 2002). In particular, we fit a null model
where ASP varied randomly around a mean value
(i.e. no relationship to biomass) and a Schaefer surplus
production model (Hilborn & Walters 1992) where
ASP exhibited a parabolic relationship with biomass
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Ecosystem Abbreviation Area Cod Herring Data source
(103 km2) n Years n Years

Baltic Sea BALT 211.1 34 1974−2007 34 1974−2007 Stock assessment
Barents Sea BS 525.3 63 1946−2008 59 1950−2008 Stock assessment
Eastern Bering Sea EBS 430.8 32 1977−2008 29 1978−2006 Stock assessment
Eastern Scotian Shelf ESS 113.7 38 1970−2007 q-corrected biomass
Georges Bank GB 42.2 44 1963−2006 41 1967−2007 q-corrected biomass
Gulf of Alaska GoA 238.4 32 1977−2008 29 1980−2008 Minimum swept area
Gulf of Maine GoM 76.5 44 1963−2006 41 1967−2007 q-corrected biomass
Hecate Strait HS 23.5 25 1984−2008 59 1951−2009 q-corrected biomass
Newfoundland and Labrador NL 388.2 27 1981−2007 Minimum swept area
North Sea NORT 609.7 44 1963−2006 44 1963−2006 Stock assessment
Norwegian Sea NS 728.3 59 1950−2008 Stock assessment
Southern Gulf of St. Lawrence sGoSL 74.1 38 1971−2008 38 1971−2008 q-corrected biomass
Western Scotian Shelf WSS 73.3 38 1970−2007 38 1970−2007 q-corrected biomass

Table 1. Ecosystem abbreviation and area, and the number (n) and range of years of cod and herring biomassdata included in 
each ecosystem- and species-specific analysis
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according to parameters r (maximum annual  per-
biomass rate of population increase) and K (equilib-
rium population biomass in the absence of fishing). To
this simple production model we added a number of
biological and environmental covariates (m) that mo -
di fied annual surplus production additively such that:

(2)

where Xi,t is the Z-score standardized value of covari-
ate i in year t, γ i describes the effect of covariate i,
and εt is an independently and normally distributed
random variable with variance σ (~N [0,σ2]).
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Fig. 1. Regional time series of observed biomass, Kalman-filtered (smoothed) biomass, and observed harvest (catch) for cod 
and herring in different ecosystems. See Table 1 for ecosystem abbreviations
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We selected covariates that indexed important
trophodynamic or ecosystem processes and were
broadly available for most of the systems in our study
(see Fu et al. 2012, this Theme Section). Our selected
biophysical covariates included mean sea surface
temperature (T) and wind speed (V) as well as 2
atmospheric indices of marine productivity depend-
ing on ocean basin: the Pacific Decadal Oscillation
(PDO) for Pacific ecosystems and the North Atlantic
Oscillation index (NAO) for Atlantic systems. We
hypothesized that ASP may vary as a function of prey
and/or predator abundance, so we also included her-
ring biomass as prey in the models for cod (lagged by
1 yr to reflect subsequent production), and cod bio-
mass within the same year as an index of predation in
herring models. In addition to the aforementioned
models with normally distributed errors, we addition-
ally fit both the null (i.e. random variation around the
mean) and simple production model (i.e. no covari-
ates) using autocorrelated residuals (i.e. εt = ϕ ·εt –1

+ vt) where ϕ represents the degree of temporal auto-
correlation and vt is an independently and normally
distributed random variable (i.e. vt ~N [0,σ2]).

We fit all models to the data by minimizing the neg-
ative log-likelihood using the optim() or lm() func-
tions of the R statistical system (R Development Core
Team 2010; www.r-project.org); a penalized likeli-
hood was used to constrain K (and subsequently
BMSY) within reasonable bounds (i.e. 0 < K < 40) for
models that failed to converge on biologically realis-
tic parameter estimates (e.g. Collie & DeLong 1999).
We then ranked candidate models using Akaike’s
information criterion corrected for small sample sizes
(AICc; Burnham & Anderson 2002). We expect that
most species will exhibit some degree of autocorrela-
tion in errors of surplus production. However, because
our objective is to use a comparative approach to
evaluate the rela tive effect of including environ -
mental covariates on emergent biological reference
points from surplus production models (rather than
find the best fitting model for each system per se), we
choose to only include models with independent
errors in model averaged parameter estimates. We
recognize that for systems where cod or herring
exhibit a high degree of autocorrelation, these
may not be the top selected models. For all models
with independent, normally distributed errors (i.e. not
autocorrelated), we used the Akaike weight (Wi) of
each model (i) to find a 95% confidence set of models
(i.e. the subset of top-ranked models whose Akaike
weights together comprise 95% of the total). Vari-
able weights (W+(j)), which measure the explanatory
power of each predictor variable (j), were calculated

by summing the normalized Akaike weights (Wi’) of
all models in the 95% subset in which that variable
appeared. We also calculated model averaged esti-
mates (

–̂βj) for each parameter across all models by
summing the product of the normalized model
Akaike weights and parameter coefficient values
(β̂i,j) for each model across all models (R) in the 95%
subset (Burnham & Anderson 2002) such that:

(3)

The weighted unconditional variance estimator for
the same model averaged parameter is then given
by:

(4)

where 
–̂βj is the averaged parameter estimate from

Eq. (3) and var(
–̂βi,j |gi) is the variance in 

–̂βj conditional
on model gi. We similarly calculated the model-aver-
aged mean response and unconditional variance of
the response variable by replacing β in Eqs. (3) & (4)
with estimated surplus production (ASPi) from each
model in the 95% subset. The unconditional variance
was used to construct 95% confidence intervals
around the model-averaged mean response assum-
ing that the variable was normally distributed. Lastly,
we calculated MSY and BMSY reference points for
ecosystem- and species-specific models using model
averaged parameter values for r and K as:

(5)

(6)

RESULTS

Biomass and catch time series displayed consider-
able variability within and across ecosystems for
each species (Fig. 1). In general, herring biomass was
higher and more variable than cod biomass; across
ecosystems, coefficients of variation (i.e. standard
deviation/mean; CV) for herring biomass before
Kalman filtering averaged 80.9% whereas cod CVs
were 63.5%. Similarly, overall regional mean herring
biomass across years ranged from 0.02 to 22.58 t
km−2, while average cod biomass ranged from 0.03 to
7.94 t km−2. In 5 of the 13 ecosystems we examined
(BALT, EBS, GoA, HS, and WSS; see Table 1 for ab -
breviations), herring and cod exhibited similar tem-
poral trends in biomass (mean Pearson’s correlation
coefficient of 0.76), whereas in the remaining eco -
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systems, patterns of cod and herring biomass were
decoupled, or in the case of GoM and NORT, nega-
tively correlated (correlation coefficients of −0.52 and
−0.70, respectively; Fig. 1).

ASP dynamics within ecosystems were also more
variable for herring than cod (mean CV values of
5.6 and 2.8, respectively), and exhibited a wider
range of average levels across ecosystems (ranges of

−1.47 to 5.69 and −0.56 to 2.56 t km−2, for herring
and cod, respectively; Fig. 2). Pacific cod exhibited
lower mean surplus production rates (0.2 ± 0.1 t km−2)
than Atlantic cod in the ecosystems we examined
(0.44 ± 0.11 t km−2), but there were no clear dif -
ferences in ASP for herring from Atlantic or Pacific
ecosystems (0.79 ± 0.15 and 0.37± 0.34 t km−2,
respectively).

236

Fig. 2. Observed annual surplus production values (ASP; points) for herring and cod from each ecosystem. Solid lines: model
averaged predicted values from top AICc selected models. Shading: 95% confidence intervals; numerical values: R2 values 

for model fits. See Table 1 for ecosystem abbreviations
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We were able to achieve credible fits to Schaefer
production models for 12 of the 13 ecosystems for her-
ring, and 9 of 13 ecosystems for cod; GB herring, and
NL and WSS cod production dynamics were not well
described by the Schaefer production model (Fig. 3).
Furthermore, parameter estimates for EBS cod surplus

production should be considered cautiously as the
 estimate for K was near the upper limit set by the pe-
nalized likelihood (i.e. ~40). Lastly, although the esti-
mate of K for cod from BALT was substantially below
the upper limit, it is still well outside the range of the
data and should also be considered cautiously.

237

Fig. 3. Observed annual surplus production (ASP) and biomass (t km−2) of herring and cod species from each ecosystem (gray
arrows; ‘ASP’); m: first year in each time series. Predicted ASP values from averaged parameter estimates of top AICc selected
models (thin black lines; ‘Mean + cov’), estimates of ASP curves from models without covariates (dashed ‘No cov.’), and ASP
curves from covariate models under mean environmental conditions (thick black lines; ‘Mean’) are also shown. See Table 1 for 

ecosystem abbreviations
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Although, temporal autocorrelation in surplus pro-
duction was strong for both species from most
ecosystems (ϕ > 0.2; Table 2), ecological covariates
appeared to explain a large portion of the observed
autocorrelation; in approximately 40% of the ecosys-
tems we analyzed, AICc selected one or more models
with ecological covariates above the simple Schaefer
model with autocorrelation (Table 3). That said, we
did not find overwhelming support for one specific
model with covariates; for most ecosystems there
were multiple models that equally explained surplus
production for cod or herring species (Table 3).
Model-averaged parameter weights and coefficient
values indicated that temperature was an important
predictor of ASP dynamics, especially for herring (i.e.
values were often non-zero; Tables 2 & 4), but the
direction of the effect was species- and system-
dependent (Fig. 4). For herring, positive anomalies in
sea surface temperature were positively correlated

with surplus production in WSS, NS, GoM and HS
ecosystems, whereas herring production was signifi-
cantly reduced during warm conditions in NORT and
BS (Fig. 4). For cod, positive anomalies in annual sea-
surface temperatures were associated with marginal
declines in ASP in most ecosystems; this was most
notable in GoA and GoM (Fig. 4). Average parameter
weights and coefficient values for terms representing
variability in wind and atmospheric indices indicated
that both were important predictors of ASP dynamics
(i.e. values were often non-zero; Table 4 & Fig. 4,
respectively), yet these factors had mixed effects on
herring and cod production, and confidence intervals
of mean parameter estimates frequently overlapped
zero (Table 2).

We found some evidence of bottom-up or facilita-
tive processes between herring and cod. In roughly a
third of the ecosystems we examined, mean parame-
ter weights for the effect of herring (lagged by 1 yr)
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(A) Herring
Ecosystem BMSY MSY T Wind speed PDO/NAO Cod ϕ r K

BALT 8.39 (3.59) 1.11 (0.07) 0.11 (0.06) NA 0.09 (0.05) 0.04 (0.04) 0.04 (0.08) 0.26 (0.04) 16.78 (7.18)0
BS 2.01 (1.76) 0.12 (0.06) –0.08 (0.04)0 –0.02 (0.02)0 0.02 (0.02) –0.02 (0.02)0 0.41 (0.08) 0.12 (0.07) 4.02 (3.52)
EBS 0.21 (0.23) 0.05 (0.03) 0 0 0 0.03 (0.02) 0.29 (0.08) 0.48 (0.26) 0.42 (0.46)
GB 20.0 (1.00) 2.56 (1.14) –0.04 (0.04)0 0 (0.01) 0.11 (0.06) 0.04 (0.04) 0.20 (0.08) 0.26 (2.28) 40.0 (2.00)
GoA 0.26 (0.21) 0.03 (0.01) 0 –0.02 (0.01)0 0 0.03 (0.01) 0.08 (0.11) 0.23 (0.10) 0.52 (0.42)
GoM 3.75 (2.04) 0.92 (0.07) 0.05 (0.04) 0 (0.01) 0.01 (0.02) 0.03 (0.03) 0.09 (0.07) 0.49 (0.07) 7.5 (4.08)
HS 8.44 (3.35) 1.44 (0.19) 0.04 (0.05) 0.05 (0.06) –0.19 (0.13)00 –0.24 (0.14)0 0.28 (0.07) 0.34 (0.11) 16.88 (6.70)0
NORT 3.32 (1.87) 1.15 (0.07) –0.12 (0.06)0 NA 0 (0.02) 0.02 (0.03) 0.44 (0.08) 0.69 (0.07) 6.64 (3.74)
NS 11.05 (8.28)0 1.28 (0.23) 0.16 (0.12) –0.06 (0.07)0 0.05 (0.06) NA 0.25 (0.07) 0.23 (0.06) 22.1 (16.56)
sGoSL 9.04 (5.89) 2.21 (0.11) 0.01 (0.02) 0.04 (0.04) –0.17 (0.07)0 0.01 (0.02) 0.31 (0.08) 0.49 (0.04) 18.08 (11.78)
WSS 10.86 (5.84)0 1.97 (0.22) 0.41 (0.20) 0.15 (0.12) –0.04 (0.06)0 0.18 (0.15) 0.43 (0.09) 0.36 (0.08) 21.72 (11.68)

(B) Cod
Ecosystem BMSY MSY T Wind speed PDO/NAO Herringt−1 ϕ r K

BALT 6.15 (1.74) 1.53 (0.09) 0 (0.01) NA −0.01 (0.02)0 0.02 (0.02) 0.41 (0.07) 0.5 (0.1) 12.3 (3.48)
BS 4.97 (2.60) 1.44 (0.07) 0.02 (0.02) 0.03 (0.03) 0 (0.01) 0.03 (0.03) 0.15 (0.06) 0.58 (0.05) 9.94 (5.20)
EBS 20.0 (1.00) 1.12 (1.08) −0.01 (0.01)0 0 (0.01) 0.01 (0.01) −0.29 (0.03)0 0.87 (0.23) 0.11 (2.16) 40.0 (2.00)
ESS 1.8 (0.98) 0.61 (0.07) −0.03 (0.03)0 0.02 (0.03) −0.03 (0.03)0 NA 0.24 (0.07) 0.68 (0.14) 3.60 (1.96)
GB 1.99 (1.19) 0.43 (0.04) 0 (0.01) −0.05 (0.02)0 0.04 (0.02) −0.01 (0.01)0 0.26 (0.07) 0.43 (0.07) 3.98 (2.38)
GoA 1.44 (1.00) 0.27 (0.06) −0.05 (0.02)0 −0.01 (0.01)0 −0.01 (0.01)0 −0.02 (0.02)0 0.99 (0.60) 0.38 (0.12) 2.88 (2.00)
GoM 0.92 (0.59) 0.23 (0.04) −0.05 (0.02)0 0 0 (0.01) −0.01 (0.01)0 0.28 (0.07) 0.50 (0.14) 1.84 (1.18)
HS 0.39 (0.64) 0.04 (0.06) −0.02 (0.02)0 0 (0.01) 0.01 (0.01) 0.03 (0.03) 0.21 (0.13) 0.21 (0.19) 0.78 (1.28)
NL 19.2 (3.29) 1.10 (2.28) 0.01 (0.01) 0.06 (0.04) −0.02 (0.02)0 NA 0.21 (0.09) 0.11 (1.39) 38.4 (6.58)
NORT 1.13 (0.39) 0.54 (0.03) −0.02 (0.02)0 NA 0 (0.01) −0.02 (0.02)0 0.31 (0.07) 0.96 (0.15) 2.26 (0.78)
sGoSL 3.71 (2.29) 0.66 (0.14) −0.03 (0.04)0 0.02 (0.03) −0.1 (0.07) −0.02 (0.03)0 0.23 (0.09) 0.36 (0.12) 7.42 (4.58)
WSS 19.86 (1.46)0 6.76 (1.47) 0 0 0 0.03 (0.01) 0.71 (0.1)0 0.68 (2.01) 39.72 (2.92)0

Table 2. Model-averaged parameter values for (A) herring and (B) cod from each ecosystem (excluding models with autocorrelation). Note
that values have not been standardized to mean biomass for each species from each ecosystem. Parentheses: unconditional standard error for
each average parameter value. Bold: significant para meter values (i.e. estimate interval does not overlap zero). Italics: ecosystems where sur-
plus models converged on the upper limit for K (40) and that should be considered cautiously. B: biomass; MSY: maximum sustainable yield;
T: sea surface temperature; PDO/NAO: Pacific Decadal Oscillation or North Atlantic Oscillation index, given as applicable; cod: biomass of
cod; herringt–1: biomass of herring in the previous year; ϕ: degree of temporal autocorrelation; r: maximum annual per-biomass rate of popula-
tion increase; K: equilibrium population biomass in the absence of fishing; NA: data not available. See Table 1 for ecosystem abbreviations
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on cod, or cod on herring (in the same year), were
greater than 0.5, indicating models with terms for
trophodynamic covariates comprised more than 50%
of the cumulative AICc model weights from each
ecosystem (Table 4). In BALT, BS, and HS, increased
biomass of herring was associated with slight in -
creases in cod ASP the following year, whereas in
EBS, GB, GoM, and sGoSL, and NORT, cod ASP was
negatively correlated with herring biomass in the
previous year (Fig. 4). However, in most ecosystems,
parameter estimates indicate a weak effect of herring
biomass in a previous year on cod ASP, since model
averaged parameter intervals often overlapped zero
(except for EBS and WSS, which should be consid-
ered cautiously; Table 2). In contrast, cod biomass
was an important predictor of herring surplus pro-
duction in the same year, especially in EBS, GoA, HS
and WSS (Table 2), but somewhat unexpectedly was
positivity correlated with ASP in most systems except
HS and BS (Fig. 4).

Across ecosystems, there were associations between
mean MSY corrected for biomass and biophysical
 attributes. Mean estimated MSY values for herring
were largest in the warmest systems in our study, but
colder systems on average exhibited slightly higher
estimates of MSY for cod (Fig. 5a). Mean MSY esti-
mates for both species were negatively correlated with
mean wind speed across systems, although the pattern
was considerably stronger for herring than for cod
(Fig. 5b). Finally, mean MSY estimates were differ-
ently correlated with the average biomass of preda-
tor or prey species; estimated herring MSY values
were lower in systems with high mean cod biomass,
whereas estimated cod MSY values were higher in
systems with higher mean herring biomass (Fig. 5c,d).

Model-averaged estimates of biological reference
points varied across ecosystems and species. MSY for
both species were always less than 2.5 t km−2, with
estimates generally higher for herring than for cod
(mean of 0.9 and 0.4 t km−2, respectively). MSY for
herring from EBS, BS, and GoA had low values of
MSY (0.03 to 0.07 t km−2) as compared to the remain-
ing ecosystems where MSY estimates were an order
of magnitude larger (0.92 to 2.2 t km−2), although
 differences were much smaller when values were
standardized by mean ecosystem biomass. MSY and
BMSY of cod ranged between 0.2 and 1.5 t km–2 and
0.5 and 6.2 t km−2, respectively, and were highest for
BALT and lowest for HS (Fig. 6). Similarly, BMSY was
lowest for EBS, BS, and GoA (1.4 to 2.2 t km−2) and
highest for sGoSL, and generally ranged between 3.3
and 10.9 t km−2. Maximum population growth rate (r)
ranged between 0.12 and 0.96 and was relatively
constant across ecosystems and species (mean =
0.44 ± 0.05; Fig. 6).

Estimated MSY was robust to changes in model
formulation; including physical or trophic covariates
in surplus production models either had little effect
on MSY or resulted in lower estimates of MSY than
those of models without covariates (Fig. 6). This may
be due to the mitigating effects of r, which were more
sensitive to inclusion of covariates and exhibited
regional and species-specific estimates of r (i.e. both
positive and negative deviations from no-covariate
models; Fig 6). Lastly, surplus production models
with biophysical or trophic covariates had different
effects on estimated BMSY. Inclusion of physical co -
variates sometimes resulted in less conservative,
slightly higher estimates of BMSY than models without
covariates. In contrast, surplus production models
containing trophic covariates generally resulted in
lower or unchanged estimates of BMSY values as com-
pared to models without covariates (Fig. 6).
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(A) Herring
Ecosystem r K T Wind PDO/NAO Cod

BALT 1.00 1.00 0.76 0.00 0.77 0.39
BS 0.93 0.93 0.72 0.37 0.28 0.34
EBS 0.78 0.78 0.16 0.18 0.14 0.56
GB 1.00 1.00 0.41 0.17 0.76 0.41
GoA 1.00 1.00 0.21 0.91 0.38 0.73
GoM 1.00 1.00 0.51 0.18 0.27 0.39
HS 1.00 1.00 0.29 0.32 0.63 0.73
NORT 1.00 1.00 0.80 0.00 0.22 0.29
NS 1.00 1.00 0.56 0.34 0.33 0.00
sGoSL 1.00 1.00 0.24 0.36 0.90 0.20
WSS 1.00 1.00 0.81 0.46 0.24 0.48
Mean 0.97 0.97 0.5 0.3 0.45 0.41

(B) Cod
Ecosystem r K T Wind PDO/NAO Herringt−1

BALT 1.00 1.00 0.19 0.00 0.32 0.31
BS 1.00 1.00 0.28 0.37 0.21 0.38
EBS 1.00 1.00 0.25 0.16 0.19 1.00
ESS 1.00 1.00 0.38 0.34 0.39 0.00
GB 1.00 1.00 0.24 0.77 0.66 0.38
GoA 1.00 1.00 0.80 0.32 0.35 0.46
GoM 0.94 0.94 0.88 0.19 0.19 0.42
HS 0.65 0.65 0.26 0.08 0.14 0.24
NL 0.96 0.96 0.19 0.49 0.29 0.00
NORT 1.00 1.00 0.50 0.00 0.25 0.55
sGoSL 0.98 0.98 0.29 0.27 0.58 0.23
WSS 1.00 1.00 0.19 0.19 0.21 0.85
Mean 0.96 0.96 0.37 0.26 0.32 0.4

Table 4. Average surplus production parameter AICc weights
for (A) herring and (B) cod. Bold: overall regional means.
 Italics: ecosystems where surplus models converged on the up-
per limit for K (40) and should be considered cautiously. Wind =
wind speed. See Table 1 for ecosystem abbreviations and Table 

2 for column heading abbreviations
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DISCUSSION

We conducted a cross-ecosystem comparative ana -
lyses to (1) identify whether inter-annual production
dynamics are consistently predicted by particular
biophysical variables, (2) relate mean production
 levels to ecosystem attributes, and (3) derive and

compare biological reference points. We suggest 2
findings of our ana lyses are of note. First, biophysical
and trophodynamic models commonly improved
model fits: production models with biophysical and
trophodynamic covariates were often preferred over
simple models in most ecosystems. Especially for her-
ring, inclusion of covariates partially accounted for
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Fig. 4. Ecosystem-specific mean parameter estimates from top AICc selected models for herring and cod. Data are staggered for
visual purposes and standardized to mean biomass for each species from each ecosystem. See Tables 1 & 2 for abbreviations
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annual variation in auto-correlated errors that typi-
fied ASP. Yet, despite considerable inter-annual vari-
ability in ASP, no biophysical variables were consis-
tently important in predicting production dynamics
across ecosystems. Often individual parameters had
different and even opposite effects on predicted ASP
for either species from various ecosystems.

Second, inclusion of covariates into production
models had species- and ecosystem-specific effects
on resultant biological reference points (i.e. MSY and
BMSY) that reflect regional influences of biophysical
or trophodynamic processes on species production.
Although BMSY and r estimates  varied between mod-
els with and without covariates, estimates of MSY
remained relatively unchanged. This is similar to
previous studies that found MSY to be robust to
changes in bottom-up drivers while biological refer-
ence points including MSY were lower if predation
was accounted for in production models (i.e. Collie &
Gislason 2001, Tyrrell et al. 2011). In contrast, inclu-
sion of covariates did not universally result in more
conservative estimates of r or BMSY, nor did they
always differ from parameters estimated from models
without biophysical covariates. That said, when dif-
ferences were observed in models for either species,

trophic covariates generally lowered BMSY,
whereas physical covariates slightly raised
BMSY from the baseline estimated from
 models with no covariates. Differences in
biological reference point estimates gener-
ally were larger when surplus production
rates were highly correlated with biophysi-
cal covariates. Thus, inclusion of covariates
should influence estimates of MSY and
BMSY accordingly for species in regions
where production is highly responsive and
tightly coupled to measured ecosystem pro-
cesses.

Surplus production models are simple,
computationally efficient methods to derive
key population dynamic parameters from
time series of population biomass indices
(Schnute & Richards 2002). Our surplus pro-
duction model fits were greatly improved
by application of a Kalman filter to the input
data prior to production modeling to smooth
out observation error in relative abundance.
Although not a common practice in many
stock assessments, our analyses suggest that
prior data smoothing can stabilize resultant
estimates. Similarly, Walters & Hilborn
(2005) used a simple smoother of relative
abundance to stabilize estimates of recruit-

ment and also recommend their use in assessment
more generally. However, such filtering is not a
panacea. For example, filtering the herring biomass
data for GB may have removed contrast in biomass
and ASP needed to parameterize the model. Kalman-
filtered biomass and surplus production values for
GB are restricted to the domain of the ascending limb
of the production function, which is consistent with
observations that the stock was heavily depressed
during much of the time series we analyzed (Melvin
& Stephenson 2007). Yet, specific additional outliers
need to be removed (requiring additional information
beyond the scope of this study), or further recovery of
the stock is needed in order to fit to the parabolic pro-
duction curve of the Schaefer model. Conversely,
non-stationarity in GB ecosystem processes driving
surplus production may render divergent biological
reference points for historical and contemporary
abundances, a feature that simple production models
with equilibrium assumptions are unable to capture
(Walters et al. 2008). Similarly, lack of contrast and
non-stationarity precluded our ability to fit produc-
tion models to 4 of 13 cod stocks (i.e. WSS, NL and
EBS, and to a lesser degree BALT). In particular, the
data time series of population production from EBS
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Fig. 5. Maximum sustainable yield (MSY) of cod (black) or herring (gray)
species from each ecosystem as a function of mean environmental and
 biological parameters: (a) sea-surface temperature (T), (b) wind speed, (c)
herring predator (cod biomass), and (d) cod prey (herring biomass). Val-
ues in brackets: adjusted R2 values of the lines (grey: herring, black: cod). 

See Table 1 for ecosystem abbreviations
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and NL were indicative of non-stationary production,
leading to clockwise cycles of production and bio-
mass that are not well explained by the Schaefer pro-
duction model with stationary model parameters
(Walters et al. 2008).

Even within the same ocean basin, variation in PDO
and NAO indices are often associated with regional
and species-specific changes in ecosystem structure.
For example, positive PDO values are often corre-
lated with below average ocean conditions (e.g. in -
creased predation risk, decreased upwelling, reduced
food supply; Emmett et al. 2006) in the northern Cali -

fornia current and above average conditions for
salmon in Alaska (Mantua et al. 1997). We also found
species- and ecosystem-specific associations between
ASP and atmospheric indices. Specifically, produc-
tion dynamics of herring were more frequently cou-
pled with atmospheric indices of ecosystem produc-
tion than those of cod; slight changes in PDO or NAO
indices were associated with measurable changes in
ASP of herring species from BALT, HS and sGoSL,
but only appreciably impacted estimated ASP of cod
from GB (i.e. GB was the only ecosystem where aver-
age parameter confidence limits for NAO did not
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Fig. 6. Estimated values for maximum sustainable yield (MSY), biomass at MSY (BMSY), and population growth rate (r) for
 herring (light gray) and cod (dark gray) species from 13 focal ecosystems. Shaded bars: estimated values from models without
covariates (±1 SE), symbols: individual model values from the top AICc selected models with physical (s) and/or trophic 

covariates (×). NA: data not available. See Table 1 for ecosystem abbreviations
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overlap zero). Similarly, biophysical covariates, par-
ticularly sea surface temperature and wind indices
were more influential in models for herring species
than cod species, as evidenced by mean parameter
values and weights. In part, this may result from
divergent life-history traits; herring are highly fe -
cund and shorter-lived than cod and experience
 fluctuations in biomass that can vary by orders of
magnitude with changes in environmental conditions
(Nash & Dickey-Collas 2005). In contrast, cod pro-
duction integrates long-term trends in regional con-
ditions and may lag one to many years behind
ecosystem changes (e.g. Brodziak & O’Brien 2005).

Our results also support efforts to include trophic
interactions in surplus production models (i.e. Collie
& DeLong 1999, Gamble & Link 2009); for most
ecosystems, models with covariates for cod or herring
biomass ranked highly with AICc, although the direc-
tion of species covariate effects was sometimes unex-
pected. We anticipated that cod production would be
positively correlated with herring production since
herring are often found in the diets of adult cod (Link
& Garrison 2002). Yet, while cod pro duction was
lower when herring biomass was also depressed in
some ecosystems (i.e. BALT, BS), in others, particu-
larly EBS, cod production was negatively correlated
with herring production in the previous year. This
may result from disparate juvenile cod and adult her-
ring survival responses to environmental conditions,
juvenile cod competition with herring for mutual
prey resources, increased mortality from aggregation
of mutual predators, or even direct predation mortal-
ity (Fauchald 2010).

Systems with strong negative correlations may also
represent cultivation-depensation processes (Walters
& Kitchell 2001). According to this hypothesis, domi-
nant predator fishes (i.e. cod) prey on forage fish spe-
cies (i.e. herring), which in turn compete with larval
and juvenile age classes of the predator, indirectly
increasing recruitment success in subsequent years.
If harvest reduces predator biomass below some crit-
ical threshold, depensation may occur as forage fish
populations are released from predatory control and
increasingly prey upon or compete with juvenile
predators for mutual resources. We find some evi-
dence of cultivation-depensation in 3 systems in par-
ticular (NORT, GoM, and sGoSL) and possibly GB
and EBS. In these systems, herring biomass and ASP
increased over time, coincident to low cod biomass
and ASP that persisted even after harvest pressure
on that species was reduced or eliminated. Addi-
tional analyses are needed to evaluate mechanisms
driving this potentially important relationship.

The 13 systems we examined spanned a wide
range of ecosystem properties from 2 ocean basins.
MSY estimates did not differ by ocean basin, nor
were they related to area, average depth or annual
average primary production. However, MSY esti-
mates (corrected for mean biomass for each species
from each ecosystem) were related to average sea
surface temperature for a number of systems, even
though parameter  values were not large. This sug-
gests that large-scale climatic events (i.e. regime
shifts, climate change) that induce significant warm-
ing of shallow surface waters will also be associated
with changes in production of these 2 species. Our
results suggest generally that herring production in
these ecosystems should increase as ecosystems
warm, whereas cod production should decline. Addi-
tionally, one might expect that as biophysical condi-
tions change, populations may shift their distribu-
tions to track centers of production (Nye et al. 2009),
potentially affecting spatial patterns of abundance
and estimates of surplus production.

Although we found consistent evidence for the im-
portance of including biophysical and tropho dynamic
covariates in production models, their inclusion did
not appear to result in a consistent effect on resultant
biological reference points. This finding has implica-
tions for management advice. Increasingly, analysts
are asked to provide estimates of the uncertainty
 associated with biological reference points. Typically,
biophysical and trophodynamic considerations are
viewed as factors that increase observation error in
input data. Our results suggest the contrary, namely
that biophysical and trophodynamic covariates can
be important sources of process error, and that failure
to incorporate their effects can lead to underestimates
of the uncertainty in biological reference points.

In summary, we found that inclusion of ecological
covariates can strengthen the fit of common produc-
tion models to surplus production data and help cap-
ture some of the dynamic error that is associated with
highly correlated production rates observed in some
ecosystems. Yet, despite similarities across the sys-
tems we examined, no single covariate was univer-
sally selected by AIC and the relative influence of an
ecological covariate was system dependent, even
when parameters were corrected for variability in
biomass. This suggests that the potential benefit of
including ecological covariates in surplus production
models is species- and system-dependent, and high-
lights the importance of selecting biophysical and
trophodynamic covariates for a region and species
that have strong mechanistic underpinnings and
reflect true variation in production rates.
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