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INTRODUCTION

Indo-Pacific lionfishes, Pterois volitans/miles com-
plex (hereafter ‘lionfish’), have exhibited an exten-
sive and rapid invasion in the western Atlantic
Ocean, thus earning the species the distinction of
being the most successful marine fish invader to date
(Whitfield et al. 2002, Morris & Akins 2009, Albins
2013). Lionfish are so abundant and broadly distrib-
uted in their invaded range that their eradication is
thought to be un achievable (Côté et al. 2013). At the

time of this writing, lionfish have established an
invaded range of over 7 million km2, in diverse habi-
tat types beyond their native coral reefs across tropi-
cal and sub-tropical western Atlantic Ocean waters,
including the Caribbean Sea and Gulf of Mexico
(GOM) (Schofield 2009, Côté et al. 2013, Schofield
et al. 2014).

The GOM is the most recently invaded basin,
where lionfish were first reported in 2009 off the
northern Yucatan Peninsula, Mexico (Aguilar-Perera
& Tuz-Sulub 2010), in the Florida Keys, USA (Rutten-
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ABSTRACT: Substantial declines in reef fishes were observed at northern Gulf of Mexico artificial
reef sites between 2009−2010 and 2011−2012, a period that bracketed the appearance of invasive
lionfish in this ecosystem. Small demersal reef fishes, the predominant prey of lionfish in other sys-
tems, displayed the greatest declines. However, a confounding factor during this time was the
Deepwater Horizon Oil Spill (DWH) in summer 2010. In some areas, targeted lionfish removals
have been demonstrated to mitigate negative effects on native fishes. Therefore, we conducted a
2 yr experiment to examine the effectiveness and ecological benefits of targeted lionfish removals
at artificial reefs (n = 27) off northwest Florida, USA, where lionfish densities reached the highest
recorded in the western Atlantic by 2013. All lionfish were removed via spearfishing from 17 reefs
in December 2013, 9 of which were periodically re-cleared of lionfish through May 2015. Remain-
ing sites served as uncleared controls. Both juvenile and adult lionfish quickly recruited to cleared
reefs, with lionfish reaching pre-clearance densities in <1 yr on reefs cleared only once. Removal
treatment significantly affected reef fish community structure at experimental reefs, but removal
effort was insufficient to achieve substantial gains for most taxa, and declines in several taxa were
observed throughout, regardless of treatment. It is unclear whether chronic effects of the DWH or
regionally high lionfish densities were more important factors in explaining trends observed in
reef fish communities, but small-scale targeted lionfish removal efforts had few positive impacts
overall on native reef fish communities in this study.
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berg et al. 2012), and along the west Florida shelf
(Schofield 2010). By late 2010, lionfish had been
observed in eastern, northern and western regions of
the GOM (Schofield 2010, Fogg et al. 2013, Dahl &
Patterson 2014, Nuttall et al. 2014). In the short span
of time since initial observations, lionfish populations
in the northern GOM (nGOM) have increased expo-
nentially and have reached high densities (>20 fish
100 m−2) on artificial reefs, yet their densities on nat-
ural reefs remain 2 orders of magnitude lower (Dahl
& Patterson 2014).

The first sightings of lionfish in the nGOM coin-
cided with another significant event in the region:
the Deepwater Horizon Oil Spill (DWH). The spill
released more than 200 million gallons (~7.6 × 108 l)
of oil over several months beginning in April 2010.
Effects of the DWH on various biological communi-
ties have been documented, yet it is unclear how
resilient the nGOM ecosystem will be to this large-
scale disturbance (Graham et al. 2010, DeLaune &
Wright 2011, Williams et al. 2011, Whitehead et al.
2012). Among reef fishes, reported DWH impacts
include changes in diet and trophic position (Tar-
necki & Patterson 2015, Norberg 2015), and shifts in
community structure (NOAA-NRDA 2015) following
exposure to toxic petroleum compounds (Murawski
et al. 2014). Recent ecosystem modeling simulations
have indicated that depleted reef fish stocks in the
region could have contributed to the rapid increase
in lionfish density and biomass (Chagaris et al. 2015).
While the DWH may not be the singular factor initiat-
ing fish declines, the negative effects of disturbance
on native reef fish communities may have similarly in -
creased the system’s vulnerability to lionfish invasion.

While the full extent of chronic impacts of the DWH
on reef fishes in the nGOM remains unclear, the liter-
ature on invasive lionfish in the western Atlantic sug-
gests they pose a clear long-term threat to nGOM
reef fishes. Lionfish impacts on native communities
have been reported from invaded regions, with a
consensus that lionfish alter reef fish community and
trophic structure in regions where they have become
abundant (Lesser & Slattery 2011, Albins & Hixon
2013, Albins 2015). Lionfish are novel predators that
consume a broad range of fish and invertebrate prey
(Albins & Hixon 2008, Morris & Akins 2009, Muñoz et
al. 2011), including the juvenile stages of ecologically
and economically important fishes (Lesser & Slattery
2011, Dahl & Patterson 2014). Lionfish predation has
caused substantial declines in the abundances of
small adult reef fishes, as well as juvenile recruits of
larger reef fish species (Albins & Hixon 2008, Green
et al. 2012, Albins 2015, Benkwitt 2015). Further-

more, lionfish have caused significant and rapid de -
clines in prey fish biomass (Green et al. 2012) and
species richness (Albins 2013) following their arrival
on both continuous reefs and patch reefs. Native
predator−prey dynamics may also be destabilized in
the presence of lionfish (Ingeman & Webster 2015),
where the invaders can cause nearly 3-fold greater
prey mortality when compared with native meso-
predators (Albins 2013). Larger native reef fish spe-
cies may also be affected via indirect processes such
as competition for resources. Dietary overlap of lion-
fish with native mesopredators, or even apex preda-
tors, may lead to decreases in the abundances of
those species (Layman & Allgeier 2012). Predation by
and lack of predation on lionfish ultimately results in
the diversion of resources from higher trophic levels
to an energetic dead end. Additionally, lionfish may
alter the behavior of native reef fish and inverte-
brates via competition for space and shelter (Curtis-
Quick et al. 2014, Raymond et al. 2015).

The speed of the lionfish invasion coupled with neg-
ative impacts to recipient ecosystems has motivated
researchers to work towards developing best man-
agement practices to mitigate impacts to native com-
munities. There is consensus among researchers and
managers that lionfish control is desirable to miti -
gate their negative effects on marine ecosystems and
economies, given that lionfish are now considered to
be permanent members of western Atlantic fish com-
munities (Morris & Whitfield 2009, Arias-González et
al. 2011). However, the potential benefits as well as
the costs of targeted lionfish removal programs
remain unclear. All lionfish management strategies
hinge on the goal of a reduction of lionfish populations
and thus their corresponding impacts. Targeted re-
movals of lionfish have gained considerable attention
in recent years and in some cases have reduced both
the numbers and mean size of indi viduals (Frazer et
al. 2012, de León et al. 2013).  However, lionfish popu-
lations have shown an ability to recover quickly from
removal efforts, requiring repeated and substantial
harvesting effort to maintain low abundances (Arias-
González et al. 2011, Barbour et al. 2011). Partial
culling has been effective in some cases for stopping
the loss of native prey fish biomass with lower effort
than would be required for complete lionfish removal
(Green et al. 2014). However, other cases have re-
ported that all lionfish must be removed to see sub-
stantial conservation gains (Benkwitt 2015). Promotion
of the species as a food fish is also gaining popularity
and could be a way to increase the geographical scale
of lionfish removals (Ferguson & Akins 2010, Morris
et al. 2011b, Côté et al. 2013).
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Here, we report results of a lionfish removal exper-
iment conducted at artificial reef sites in the nGOM.
The objectives of the study were to evaluate the
effectiveness of targeted lionfish removals as a means
to control lionfish densities, as well as to evaluate the
effectiveness of lionfish removal for native reef fish
community recovery. Pre-invasion community struc-
ture data enabled us to examine shifts in native reef
fish communities that occurred after lionfish were
observed on study reefs in 2010, and then to examine
whether lionfish removal efforts facilitated recovery
of native fishes. However, the occurrence of the DWH
in 2010 presented a confounding factor for initial
changes in reef fish communities, and also patterns
seen in reef fish communities following lionfish
removals. Therefore, we interpret study results with
respect to experimental treatments, as well as within
the context of potential effects of the DWH on nGOM
reef fishes.

MATERIALS AND METHODS

Study region and experimental reefs

Study sites consisted of 27 artificial reefs within the
Escambia East-Large Area Artificial Reef Site (EE-
LAARS; 260 km2), which is located approximately
32 km south of Pensacola, FL, USA (Fig. 1). The same
reefs were used for both the observational and the
experimental component of this study. Reefs were

originally deployed on the seabed (depth range
27−41 m) by the Florida Fish and Wildlife Conserva-
tion Commission in 2003 and consist of 3 different
design types: single pyramid, paired tetrahedrons,
and paired cylinders with rounded tops (Dance et al.
2011). The composition of all reefs was principally
concrete, although pyramid reefs had sides com-
posed of steel rebar in a lattice configuration. Reef
volume ranged from 4.09 to 5.68 m3.

Three reefs of each design type were randomly se -
lected for inclusion in one of 2 lionfish removal treat-
ments or a control group during the removal experi-
ment. Nine reefs were selected for a single lionfish
removal event (clear-once treatment) in early 2014,
and 9 additional reefs were selected to be repeatedly
cleared of lionfish via triannual removal events
(maintain-clear treatment) through May 2015. The
remaining 9 sites were selected for a control treat-
ment with no lionfish removed over the study. How-
ever, one of the clear-once reefs was mistakenly not
cleared of lionfish in winter 2014; thus, there was one
more control reef (n = 10), and one less clear-once
site (n = 8), than originally planned.

ROV video sampling and analysis

We sampled study reefs with a VideoRay Pro4
remotely operated vehicle (ROV) to estimate reef fish
community structure for both components of the
study, albeit on different time scales. Video sampling
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Fig. 1. Map of the northern Gulf of Mexico indicating the locations of the Escambia East-Large Area Artificial Reef Site
(EE-LAARS) and the 27 experimental reefs examined in the current study. Experimental reefs were located in the northeast
quadrant of the 260 km2 area. Symbols denote different reef types: triangles (paired cylinders with rounded tops), circles 

(paired tetrahedrons) and  squares (single pyramid)
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was conducted quarterly in 2009−2010, which pro-
vided baseline data on reef fish community structure
prior to lionfish being observed in the nGOM, and
again in 2011−2012, the year following the start of
the lionfish invasion. During the removal experi-
ment, we conducted triannual (i.e. approx. every
4 mo) video sampling from December 2013 through
August 2015. Specifically, ROV sampling for the re -
moval experiment was performed in December 2013
(fall 2013), March 2014 (spring 2014), July 2014
 (summer 2014), December 2014 (fall 2014), May 2015
(spring 2015), and August 2015 (summer 2015).

The VideoRay Pro4 ROV (dimensions: 36 cm long,
28 cm tall, 22 cm wide; mass = 4.8 kg) has a depth
 rating of 170 m, a 570-line color camera with wide-
angle (116°) lens, and is equipped with a red laser
scaler to estimate fish size. The laser scaler consists of
two 5 mW , 635 nm (red) class IIIa lasers mounted in
a fixed position 75 mm apart, allowing for estimation
of fish size using the ratio of the distance between
lasers to the distance between snout and fork length
of fishes observed onscreen (Patterson et al. 2009,
Dance et al. 2011). The ROV was tethered to the
 surface and controlled by a pilot via an integrated
control box that contains a 38 cm video monitor to
observe and capture the digital video feed from
the ROV’s camera. Additionally, a GoPro Hero4 high
definition (1080p at 120 fps) digital camera was
mounted to the forward view of the ROV to provide
high definition video for reef fish community surveys.

The ROV-based point-count sampling method de -
scribed by Patterson et al. (2009) was employed to
estimate reef fish community structure in a 15 m wide
cylinder with reefs at the center of the cylinder’s
base. High definition video samples were viewed in a
darkroom on a Sony LMD-2110W high-resolution
LCD monitor to enumerate and identify reef fishes to
the lowest taxonomic level possible. A second video
reader independently analyzed randomly selected
video samples (n = 16) to estimate reader agreement.
Differences between reader estimates were evalu-
ated by computing the average percent error (APE)
for each taxon in a given sample, following Beamish
& McFarlane (1983). The mean of site-specific APEs
across all taxa was computed to produce an overall
APE between readers.

Total length (TL) was estimated for lionfish struck
by the laser scaler if lionfish orientation was esti-
mated to be less than 20° from perpendicular to lasers
in order to minimize measurement error (Patterson et
al. 2009). Fish size was estimated by first multiplying
the length of a fish measured in a video frame by the
known distance between lasers (75 mm), and then

dividing that product by the distance measured
between lasers in the frame. Patterson et al. (2009)
estimated a mean negative bias of 3% (SD = 0.6) from
this method; thus, our estimated lionfish TL was bias-
corrected based on a random probability draw and
normally distributed bias with a mean equal to 3%
and a SD of 0.6%. Total length distributions of lion-
fish on control sites were gathered from ROV esti-
mates of TL. A 1-factor ANOVA was computed to test
whether estimates of mean lionfish length estimated
with the ROV laser scaler were  different among
removal treatments at the start of the study in the fall
of 2013.

Targeted removals of lionfish

Divers removed lionfish from study reefs via spear -
fishing. Divers were able to capture and remove all
lionfish present from reef structure and surrounding
seabed during removal events. Initial removals on
clear-once and maintain-clear sites were performed
in January and February 2014, and then repeated on
maintain-clear sites in July and August 2014, and in
February and May 2015. Poor weather conditions
prevented February and May 2015 removal events
from occurring closer in time. Lionfish were speared
immediately posterior to the skull-spinal column
juncture and then placed in a saltwater ice slurry to
euthanize. Each lionfish removed was weighed to the
nearest 0.1 g and measured to nearest mm TL. The
growth function reported by Barbour et al. (2011) for
lionfish in USA waters was then solved for age and
used to predict age distributions from the TL data
obtained from culled fish. A linear regression was
computed between lionfish counts from the ROV
video samples and lionfish subsequently removed by
divers at clear-once or maintain-clear reefs to test for
bias in the ROV-derived lionfish counts.

Data analysis

Pre-removal experiment

Permutational analysis of variance (PERMANOVA)
models were computed with the Primer statistical
package (ver. 6; Anderson et al. 2008) to test for
 differences in reef fish community structure. Taxa-
specific fish densities (fish 100 m−2) were the de -
pendent variables in PERMANOVA models, which
were computed with standardized (by total sample
abundance) untransformed fish density data, using
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Bray-Curtis dissimilarities with 10 000 permutations.
 Models tested whether the pattern in the similarity
matrices between levels of factors was significantly
different from random. Single-factor PERMANOVA
models were computed to test for differences in reef
fish community structure between samples collected
in 2009−2010 versus 2011−2012 for all fishes, as well
as separately for exploited species (e.g. snappers,
groupers, porgies, triggerfish and jacks; Table S1 in
the Supplement at www.int-res.com/articles/suppl/
m558 p207_supp.pdf) and small demersal reef fishes
(e.g. damselfishes, cardinalfishes, blennies, wrasses,
gobies; Table S1 in the Supplement). In the model,
reef surveys were nested within reefs across time to
account for repeated sampling of individual reefs
over time. This partitioning of variance accounted for
differences within individual reefs and resulted in a
residual error term inappropriate to test the effect of
differences among individual reefs (Zar 1999, Hinkle
et al. 2003), nor was this effect of primary interest to
the study. Thus, F-ratios and p-values were not inter-
preted for effects of individual reefs in all repeated
measures analyses.

Species-specific contrasts were performed for the
25 most abundant species with single-factor permu-
tational ANOVA models computed in Primer (ver. 6;
Anderson et al. 2008) to test for differences in fish
density between 2009−2010 and 2011−2012 time
periods. In the models, reef surveys were nested
within reefs across time to account for repeated
 sampling of individual reefs over time. One-factor
repeated measures ANOVAs also were computed to
test the effect of time on reef fish diversity indices of
species richness (number of species present), diver-
sity (Shannon-Wiener H ’), and evenness (Pielou’s J ’),
as well as number of individuals (individuals from all
species). For all ANOVA models, assumptions of nor-
mality and equal variances were assessed with
Shapiro-Wilks (stats package) and Levene’s (Fox &
Weisberg 2011, ‘car’ package) tests, respectively,
within R (version 3.1.1; R Core Team 2015). Data met
the assumption of equal variances in all models, but
normality was occasionally violated. Given ANOVA
is robust to minor departures from normality
(Schmider et al. 2010), models were computed with
untransformed data.

Removal experiment

A single-factor PERMANOVA model was com-
puted to test for differences in reef fish community
structure between treatments among 27 reefs at the

beginning of the removal experiment. Two-factor
PERMANOVA models were computed to test the
effect of removal treatment, sample timing, and
their interaction on reef fish community structure
among all fishes, as well separately for exploited
species (Table S1 in the Supplement) and small
demersal reef fishes (Table S1). Reef sites were
nested within treatment to account for repeated
sampling of reefs over time. Given only one sample
(reef survey) oc curred at each site during each time
period, the highest order interaction, ‘site(treatment)
× time’, was excluded from the model (Anderson et
al. 2008). For any significant main effect (at α =
0.05), post-hoc pair wise tests were computed with
10 000 permutations.

Two-factor repeated measures ANOVAs were
computed to test the effect of removal treatment,
sample timing, and their interaction on reef fish
diversity indices of species richness (number of spe-
cies present), H ’ and J ’, as well as number of indi -
viduals (individuals from all species) and lionfish
density. Pairwise multiple comparison procedures
(Tukey’s tests) were used to test which levels were
different when a main effect was detected.  One-
factor repeated measures ANOVAs also were com-
puted to test whether reef fish diversity indices
 (species richness, H ’ and J ’) and the number of indi-
viduals (individuals from all species) were different
among all time periods (2009−2010, 2011−2012, and
2013− 2014). The 2013−2014 time period included
data from all reefs prior to removals and only control
sites  following removals.

Video samples collected with ROV at clear-once
reefs following lionfish removal in January and Feb-
ruary 2014 enabled the estimation of lionfish re -
colonization rate over the remainder of the study. A
linear mixed-effects regression was fit using re -
stricted maximum likelihood to estimate the rela-
tionship between lionfish density and time since
removal (Pinheiro et al. 2016, ‘nlme’ package). In
the model, estimated lionfish density was the
response variable, with days since removal as a
fixed effect and reef site as a random effect to
account for non-independence among repeat sam-
ples of the same reefs. The model formula in R is
therefore: estimated lionfish density ~ days since
removal + (1 | reef), where ‘1’ assumes different
intercepts for each reef (i.e. multiple responses
dependent on reef). R2 was calculated to describe
the proportion of variance explained by both fixed
and random factors (Nakagawa & Schielzeth 2013).
Confidence intervals (95%) were calculated for
model estimates of intercept and slope.
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RESULTS

We collected a total of 299 video samples at study
reefs, with 221 965 fish observed among 109 taxa
(96.0% identified to species). Of these samples, 137
were collected in 2009−2010 and 2011−2012 (83 967
fish among 85 taxa), and 162 were collected during
the removal experiment (137 998 fish among 80 taxa).
Fish counts were compared between readers for 16
samples, which produced 191 taxa-specific paired
comparisons. The overall APE between readers was
5.7% among these 16 video samples.

Pre-removal experiment

No lionfish were observed in
2009−2010 video samples, but lionfish
wereobservedwhensamplingre sumed
followingtheDWHevent.Thus, lionfish
first appeared on study reefs sometime
between winter 2010 and fall 2011.
There was a significant difference in
reef fish community  structure between
2009− 2010 and 2011−2012 (PER M -
ANOVA, p = 0.015) (Table 1). There also
were differences in community struc-
ture of fishery species (PER M ANOVA,
p = 0.042) (Table 1) and small demersal
species (PERMANO VA, p < 0.001)
(Table 1) between 2009−2010 and
2011− 2012, as well as in species
richness and diversity (ANOVA,
p ≤  0.002;(Table2,TableS2inthe
Supplement). Higher diversity,
as well as approximately 50%
more  species, were observed at
study reefs in 2009− 2010 than in
2011−2012; however, there was
a general increase in number of
individuals across all taxa in the
latter time period (Fig. 2). The
general increase in the mean
number of individuals observed
during 2011−2012 is mostly at-
tributed to increases in small
(<150 mm TL) pelagic plankti-
vores (e.g. mackerel scad Deca -
pterus macarellus) and tomtate
Hae mu lon aurolineatum (Tables
2 & 3, Fig. S1 in the Supple ment).
Declines ob served in species
richness and diversity between

2009−2010 and 2011− 2012 were beginning to stabilize
relative to pre-invasion values by 2013−2014, but
trends were not statistically significant for richness
(Fig. 2, Table S2). General trends were declines in
mean density, which were observed for 19 of the 25
most abundant reef fish species from 2009−2010 to
2011−2012 (Table 3). Out of these, statistically signifi-
cant declines were observed in vermilion snapper
Rhomboplites aurorubens (p = 0.026), twospot cardi-
nalfish Apogon pseudomaculatus (p = 0.001), blue
runner Caranx crysos (p = 0.007), red porgy Pagrus
pagrus (p = 0.001), slippery dick Halichoeres bivitta-
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Model Source df Type III SS MS pseudo-F p

All fishes Time 1 21114 21114 3.46 0.015
Site (Time) 34 2.13 × 105 6257
Residual 101 1.86 × 105 1838
Total 136 4.20 × 105

Exploited Time 1 14049 14049 2.42 0.042
reef fishes Site (Time) 34 2.01 × 105 5927

Residual 101 2.50 × 105 2479
Total 136 4.67 × 105

Small demersal Time 1 27318 27318 4.37 <0.001
reef fishes Site (Time) 34 2.17 × 105 6393

Residual 101 2.63 × 105 2604
Total 136 5.09 × 105

Table 1. PERMANOVA results of the model computed to test for differences in
reef fish community structure (species composition and relative abundance)
between samples collected in 2009–2010 versus 2011–2012 estimated from
video samples collected with a remotely operated vehicle at study reefs. 

Significant (α < 0.05) p-values are in bold

Index Source df Type III SS MS F p

Species Between subjects 17 154.91 9.11
richness Between treatments 1 130.34 130.34 65.10 <0.001

Residual 17 30.04 2.00
Total 35 319.29

Shannon- Between subjects 17 3.414 0.201
Wiener Between treatments 1 0.766 0.766 13.462 0.002
diversity, H ’ Residual 17 0.967 0.056

Total 35 5.148

Pielou’s Between subjects 17 0.339 0.020
evenness, J ’ Between treatments 1 0.019 0.019 1.284 0.168

Residual 17 0.158 0.009
Total 35 0.517

No. of ind. Between subjects 17 3.29 × 106 1.94 × 105

(across taxa) Between treatments 1 7.75 × 104 7.75 × 104 1.267 0.276
Residual 17 1.04 × 106 6.12 × 104

Total 35 4.41 × 106

Table 2. One-way repeated measures ANOVA results for models computed to test
the effect of timing, 2009–2010 versus 2011–2012, on reef fish diversity indices and 

number of individuals. Significant (α < 0.05) p-values are in bold
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tus (p = 0.001), seaweed blenny Parablennius marmo -
reus (p = 0.001), yellowtail reef fish Chromis enchry-
sura (p = 0.001), scaled sardine Harengula jaguana
(p = 0.018), gulf flounder Para lichthys albi gutta (p =
0.006), and lesser amberjack Seriola fasciata (p = 0.001)
(Table 3). While declines were observed for some
larger predatory reef fishes (e.g. snappers, jacks, trig-
gerfish) during 2011−2012, the biggest declines were
seen in small (<100 mm) demersal planktivores and
 invertivores (Table S1, e.g. blennies, damselfishes,
wrasses). The density of many of these small demersal
species declined by >90% between the 2009−2010
and 2011−2012timeperiods(Table3,Fig.S1).

Removal experiment

Six triannual ROV sampling events were con-
ducted at study reefs from fall 2013 to summer 2015
for the lionfish removal experiment. A linear regres-

sion relating numbers of lionfish removed and lion-
fish numbers counted in ROV samples was statisti-
cally significant (F1,34 = 283.4, p < 0.001, R2 = 0.90,
lionfish removed = 1.47 + 1.29 × lionfish count). The
slope of 1.29 indicates that on average 29% more
lionfish were removed from study reefs during re -
moval events than had been estimated to exist on
those reefs from ROV video samples. Therefore,
ROV-based lionfish counts were scaled upward by a
factor of 1.29 to account for incomplete detectability
in ROV samples.

Unscaled lionfish counts in video samples ranged
from 1 to 184 during the study, which translates to a
density range of 0.7 to 103 fish 100 m−2. Estimated
initial mean ± SE lionfish density was not different
among control, clear-once, and maintain-clear reefs
and ranged from 28.9 ± 12.3 to 31.8 ± 5.7 fish (Fig. 3
& Table 4). Divers removed 1575 individual lionfish
from clear-once and maintain-clear study reefs, in -
cluding 564 fish during the 2 follow-up removals at
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Fig. 2. Species diversity in-
dices and number of indi -
vidual fish across taxa on
study reef sites during spring
2009− winter 2010, fall 2011−
summer 2012, and then com-
puted during the  lionfish re-
moval experiment from fall
2013−summer 2015. Values
are means ± SE. The diver-
sity index H ’ is Shannon-
Wiener diversity, and the
evenness index J ’ is Pielou’s
evenness. Removals occurred
between fall 2013 and spring
2014 (maintain-clear and
clear-once), summer 2014
and fall 2014 (maintain-clear),
and fall 2014 and spring 2015 

(maintain-clear)
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maintain-clear reefs. There was a significant inter -
action between the effects of removal treatment
and sample timing on lionfish density (ANOVA; p <
0.001) (Table 4 & Fig. 3). Densities of lionfish on
 control reefs significantly increased over the study
period from 31.1 ± 5.7 fish 100 m−2 in fall 2013 to
49.2 ± 7.9 fish 100 m−2 in summer 2015 (p = 0.042)
(Table 4) despite a brief decline in abundance in
December 2014 (Fig. 3). Across all sample periods,
control reefs held higher densities of lionfish than
maintain-clear (p ≤ 0.027) (Table 4) reefs following
the initial removal event. Control reefs held higher
densities than clear-once sites for only 2  surveys
immediately following lionfish removal (p ≤ 0.004)
(Fig. 3 & Table 4). On maintain-clear reefs, lionfish
density was only significantly different be tween
December 2013 and March 2014, the sampling peri-
ods immediately prior to and following removal (p =
0.003) (Fig. 3 & Table 4), and May 2015 (p = 0.020).
Following their removal from clear-once and main-
tain-clear sites in January and February 2014, lion-
fish densities increased to 4.1 ± 2.0 fish 100 m−2 at
maintain-clear and 5.2 ± 1.6) fish 100 m−2 at clear-
once reefs by March 2014 (Fig. 3). Estimates of lion-

fish density on maintain-clear sites averaged 9.7 ±
1.5 fish 100 m−2 among all ROV sampling events that
on average occurred 2.3 mo after lionfish removal
events (Fig. 3). Lionfish density steadily increased in
the year following the single removal event on clear-
once reefs, and densities recovered to pre-removal
levels by July 2014 (p = 0.153) (Fig. 3 & Table 4). The
initial, pre-removal mean lionfish density on clear-
once reefs was surpassed by the end of the study
(Fig. 3).

There was no difference among treatments in the
initial fall 2013 estimates of mean lionfish size esti-
mated with the ROV laser scaler (ANOVA, F2,18 =
2.77, p = 0.089), which ranged from 207 mm on
maintain-clear reefs to 242 mm on control reefs.
Estimated TL of lionfish (n = 222) on control reefs
over the study period ranged from 134 to 456 mm
(Fig. S2 in the Supplement), but the size distribution
of fish mostly fell between 150 and 350 mm TL.
Length frequency distributions from removal events
at clear-once and maintain-clear treatments were
computed from the 1575 culled individual lionfish.
Among all sites, total lengths of removed lionfish
ranged from 74 to 376 mm (Fig. S3 in the Supple-
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Species Common name 2009–2010 2011–2012 % Change
Mean density SE Mean density SE

Decapterus macarellus Mackerel scad 82.1 33.8 236.9 69.7 188.7
Haemulon aurolineatum Tomtate 82.1 20.3 102.9 29.6 25.4
Lutjanus campechanus Red snapper 21.1 3.1 15.7 2.6 −25.8
Rhomboplites aurorubens* Vermilion snapper 19.2 5.6 10.2 3.7 −46.8
Apogon pseudomaculatus* Twospot cardinalfish 11.1 6.2 0.2 0.1 −98.5
Caranx crysos* Blue runner 7.8 4.1 0.1 0.1 −99.2
Centropristis ocyurus Bank sea bass 7.4 1.9 2.8 0.8 −62.4
Pagrus pagrus* Red porgy 7.0 1.4 0.5 0.2 −93.3
Halichoeres bivittatus* Slippery dick 6.9 1.9 0.5 0.2 −92.6
Seriola dumerili Greater amberjack 5.0 0.9 6.8 2.1 36.3
Balistes capriscus Gray triggerfish 5.0 0.9 3.4 0.6 −31.4
Parablennius marmoreus* Seaweed blenny 3.7 0.9 0.1 − −97.7
Lutjanus griseus Gray snapper 3.3 0.7 3.3 1.0 1.8
Lutjanus synagris Lane snapper 3.3 1.0 0.5 0.2 −84.6
Rypticus maculatus Whitespotted soapfish 2.8 0.8 1.3 0.2 −53.8
Chromis enchrysura* Yellowtail reeffish 2.0 0.4 0.0 − −99.6
Equetus lanceolatus Jacknife fish 1.7 0.5 1.2 0.3 −30.0
Apogon sp. Unidentified cardinalfishes 0.8 0.6 0.0 − −100.0
Harengula jaguana* Scaled sardine 0.7 0.4 0.0 − −100.0
Canthigaster rostrata Sharpnose puffer 0.5 0.1 0.8 0.2 62.0
Paralichthys albigutta* Gulf flounder 0.5 0.2 0.0 − −100.0
Seriola fasciata* Lesser amberjack 0.4 0.1 0.0 − −100.0
Mycteroperca phenax* Scamp 0.4 0.1 0.8 0.1 88.8
Chaetodon ocellatus Spotfin butterflyfish 0.4 0.1 0.3 0.1 −15.8
Epinephelus morio Red grouper 0.3 0.1 0.2 − −42.4

Table 3. Mean density (fish 100 m−2) and percent change in the 25 most abundant fishes observed at study artificial reef sites
in 2009–2010 prior to lionfish presence versus in 2011–2012 after lionfish presence was confirmed. Significant (α < 0.05) 

p-values in mean density between the time periods indicated with an asterisk (*)
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ment). Length distri butions for clear-once and main-
tain-clear reefs from the initial removal event were
similar and skewed toward larger-sized lionfish
(>200 mm TL; Fig. S3A,B). Age distributions esti-
mated with the growth function reported by Barbour
et al. (2011) indicated the majority of lionfish from
both treatments were 1 and 2 yr old fish (Fig.
S3F,G). The size distribution of lionfish removed
from maintain-clear reefs in July 2014 had 2 distinct
modes, with the predominant mode centered on 150
mm TL (Fig. S3C). Therefore, fish that re cruited to
cleared reefs following the initial removal events in
January and February 2014 likely consisted of a
large percentage of age-0 fish, as well as indi -
viduals as old as 4 yr (Fig. S3G). The final removal
events conducted at maintain-clear reefs in Febru-
ary−May 2015 had fewer small (<200 mm TL) fish

than the previous removal event, but more than
were originally removed in early 2014 (Fig. S3E).

Reef fish communities were not different between
treatments at the beginning of the experiment prior
to removals. Removal treatment had significant effects
on reef fish community structure. For the PERM-
ANOVA model containing all reef fish taxa, both
treatment (p = 0.021) and sample timing (p = 0.001)
were significant, but their interaction was not (p =
0.254, Table 5). Reef fish communities on control
reefs were significantly different from both removal
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Fig. 3. Mean (±SE) lionfish density estimated from counts
made with a remotely operated vehicle (ROV) and then scaled
(×1.29) to correct for incomplete detectability. Arrows indi-
cate timing of lionfish removal efforts between ROV samples

Source df Type III SS MS F p

Treat 2 22586 11293 7.71 0.003
Site(Treat) 24 35154 1465
Timing 5 4727 945 5.05 <0.001
Treat × Timing 10 7034 703 3.75 <0.001
Residual 120 22484 187
Total 161 91494

Sample timing
Test Dec 13 Mar 14 Jul 14 Dec 14 May 15 Aug 15

Control vs. 0.970 0.001 0.001 0.027 <0.001 <0.001
maintain-clear
Control vs. 0.997 0.002 0.004 0.412 0.528 0.285
clear-once
Clear-once vs. 0.953 0.994 0.958 0.419 0.031 0.076
maintain-clear

Timing Dec 13 Mar 14 Jul 14 Dec 14 May 15

Control
Mar 14 0.815
Jul 14 0.110 0.763
Dec 14 0.982 0.994 0.420
May 15 0.316 0.964 0.995 0.752
Aug 15 0.042 0.525 0.999 0.220 0.946

Clear-once
Mar 14 0.002
Jul 14 0.153 0.693
Dec 14 0.811 0.096 0.843
May 15 1.000 0.001 0.089 0.673
Aug 15 0.998 <0.001 0.056 0.553 1.000

Maintain-clear
Mar 14 0.003
Jul 14 0.116 0.793
Dec 14 0.067 0.898 1.000
May 15 0.020 0.989 0.986 0.998
Aug 15 0.149 0.729 1.000 0.999 0.971

Table 4. Two-factor repeated measures ANOVA results for
model computed to test the effects of lionfish removal treat-
ment (Treat: control, clear-once, maintain-clear) and sample
timing on lionfish density (fish × 100 m−2) estimates at study
artificial reefs. Post hoc pairwise multiple comparisons
(Tukey) for significant main test results follow. Significant 

(α < 0.05) p-values are in bold
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treatments (PERMANOVA, p ≤ 0.034),
but removal treatments were not sig-
nificantly different from each other
(PERMANOVA, p = 0.333) (Table S3
in the Supplement). Models computed
for exploited species and small demer-
sal fishes produced different results
wherein the effect of sample timing
was significant, but treatment and the
interaction between the main effects
were not (Table 5). Substantial gains
in abundance were not ob served for
most taxa regardless of lionfish
removal effort (Fig. S1 in the Supple-
ment). Modest increases in mean
 density were seen for bank sea bass
Centropristis ocyurus, pelagic plankti-
vores (e.g. scads, sardines), small
demersal fishes (e.g. damsel fishes,
cardinalfishes) and slippery dick Hali-
choeres bivittatus from targeted lion-
fish removals (Fig. S1). Removal treat-
ment did not affect any of the reef fish
diversity indices measured (Table 6,
Fig. 2). The effect of sample timing
was significant for  species richness,
but not for diversity or evenness
(Table 6, Table S4 in the Supplement,
Fig. 2). Differences in numbers of indi-
viduals across taxa stemmed from low
numbers in spring and summer 2014
compared to in creases in numbers in
summer 2015 (Fig. 2, Table S4). There
were no significant interactions be -
tween removal treatment and sample
timing on any reef fish diversity index
(Table 6).

The linear mixed model regression
fit to lionfish density versus experi-
ment day for clear-once reefs was
 significant with a slope (±95% CI)
of 0.063 ± 0.011 lionfish 100 m−2 d−1

(Fig. 4). Therefore, the density of lion-
fish on cleared reefs was estimated to
increase by 1 fish 100 m−2 approxi-
mately every 16 d.

DISCUSSION

Extensive baseline data on reef fish
community structure at both natural
and artificial reefs in the nGOM (e.g.
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Model Source df Type III SS MS pseudo-F p

All fishes Treat 2 51242 25621 2.70 0.021
Timing 5 16587 3317 2.24 0.001
Site(Treat) 24 2.27 × 105 9474
Treat × Timing 10 16770 1677 1.13 0.254
Residual 120 1.77 × 105 1482
Total 161 4.90 × 105

Exploited Treat 2 10677 5338 0.71 0.641
reef fishes Timing 5 27020 5404 4.42 0.001

Site(Treat) 24 1.83 × 105 7621
Treat × Timing 10 13149 1315 1.07 0.356
Residual 116 1.42 × 105 1224
Total 157 3.76 × 105

Small Treat 2 19348 9674 0.88 0.489
demersal Timing 5 20130 4026 3.37 0.001
reef fishes Site(Treat) 24 2.62 × 105 10948

Treat × Timing 10 9874 987 0.83 0.805
Residual 119 1.42 × 105 1195
Total 160 4.54 × 105

Table 5. PERMANOVA results for models computed to test the effects of lion-
fish removal treatment (Treat: control, clear-once, maintain-clear) and sample
timing on reef fish community structure (species composition and relative
abundance) estimated from video samples collected with a remotely operated 

vehicle at study reefs. Significant (α < 0.05) p-values are in bold

Index Source df Type III SS MS F p

Species Treat 2 8.34 4.17 0.214 0.809
richness Site(Treat) 24 468.44 19.52

Timing 5 149.33 29.87 7.252 <0.001
Treat × Timing 10 26.83 2.68 0.652 0.767
Residual 120 494.17 4.12
Total 161 1147.61

Shannon- Treat 2 1.35 0.68 0.877 0.429
Wiener Site(Treat) 24 18.50 0.77
diversity H ’ Timing 5 1.64 0.33 2.015 0.081

Treat × Timing 10 1.56 0.16 0.962 0.481
Residual 120 19.50 0.16
Total 161 42.41

Pielou’s Treat 2 0.31 0.16 1.36 0.275
Evenness J ’ Site(Treat) 24 2.77 0.12

Timing 5 0.28 0.06 1.911 0.097
Treat × Timing 10 0.28 0.03 0.951 0.490
Residual 120 3.52 0.03
Total 161 7.13

No. of ind. Treat 2 2.38 × 106 1.19 × 106 0.399 0.676
(across taxa) Site(Treat) 2 7.15 × 107 2.98 × 106

Timing 5 1.54 × 107 3.09 × 106 3.216 0.009
Treat  Timing 10 6.29 × 106 6.29 × 105 0.655 0.764
Residual 120 1.15 × 108 1.30 × 106

Total 161 2.11 × 108

Table 6. Two-way repeated measures ANOVA results for models computed to
test the effects of lionfish removal treatment (Treat: control, clear-once, main-
tain-clear) and sample timing on reef fish diversity indices and number of 

individuals. Significant (α < 0.05) p-values are in bold
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Dance et al. 2011, Patterson et al. 2014) have enabled
us to track the lionfish invasion in this region (Dahl
& Patterson 2014). Results presented here for artifi-
cial reef study sites off northwest Florida clearly
demonstrate that shifts in reef fish community struc-
ture occurred between 2009− 2010 and 2011−2012,
time periods which bracket the appearance of lion-
fish in the nGOM region (Dahl & Patterson 2014).
Taxa-specific differences were most pronounced for
small demersal reef fishes, such as damselfishes,
 cardinalfishes, wrasses, and blennies, which have
been documented as predominant prey of lionfish
(Albins & Hixon 2008, Morris & Akins 2009, Dahl &
Patterson 2014). In fact, local depletion or extirpation
of these taxa due to lionfish predation has been
reported in other systems (Green et al. 2012, Albins
2015). Lionfish densities on nGOM artificial reefs
were among the highest in the western Atlantic by
fall 2013 (Dahl & Patterson 2014), and mean density
had already reached nearly 10 fish 100 m−2 on our
study reefs by fall 2012. This is significant in that
such densities are above threshold values where
 ecological impacts have been predicted to occur on
Caribbean reefs (Green et al. 2014, Benkwitt 2015).

Observed shifts in reef fish community structure
following the arrival of lionfish in the nGOM seem
like compelling evidence of lionfish effects, espe-
cially given similar declines attributed to lionfish in
other parts of their invaded range. However, the
occurrence of the DWH in summer 2010 is a con-

founding factor in drawing inference about potential
ecological impacts of lionfish in this region. Estimates
of the spatial extent of DWH surface oil extended
over our study area periodically from April to August
2010 (Goni et al. 2015). There is clear evidence that
some nGOM reef fishes were exposed to toxic petro-
leum compounds released during the spill (Murawski
et al. 2014), with documented impacts on fishes in -
cluding genetic effects, shifts in trophic position,
declines in size at age, and changes in community
structure (Whitehead et al. 2012, Norberg 2015,
NOAA-NRDA 2015, Tarnecki & Patterson 2015).
Therefore, it is possible that reef fish declines
observed at study reefs in 2011−2012 were initially
driven by the DWH.  Declines observed in larger spe-
cies, such as snappers and gray triggerfish, during
2011−2012 versus 2009−2010 could have resulted
from mortality due to the spill or emigration from
spill-affected areas. Few of these species settle
directly on reefs, but instead recruit to reefs follow-
ing months to years in intermediate nursery habitats,
such as Sargassum wracks, seagrass beds, or shell
rubble reefs. Therefore, it is unlikely that lionfish
directly consumed these groups on our study reefs, a
conclusion supported by diet data (Dahl & Patterson
2014). Small demersal fishes, such as damselfishes,
cardinalfishes, wrasses, blennies, and gobies, are
obligate reef residents, settle directly from the plank-
ton onto reef habitat, and are much more site-
attached than the larger taxa described above.
Therefore,  localized effects of lionfish were more
likely to have affected small demersal fishes directly
as opposed to larger and more mobile species.

Our inability to definitely state that reef fish com-
munity shifts predated lionfish becoming  well-
established on study reefs partly stems from the fact
that no data on fish community structure were col-
lected at the study reefs during the year immediately
following the DWH when mean lionfish density
(~5 fish 100 m−2) was less than predicted threshold
values from the Caribbean (Dahl & Patterson 2014,
Green et al. 2014). However, declines in the number
of species and lower species diversity observed in
2011−2012 relative to 2009−2010 showed signs of
stabilizing by 2013, with the possibility of a reversing
trend. This occurred while mean lionfish density on
study reefs increased to over 30 fish 100 m−2, and
mean mass of individuals had nearly doubled over
what was observed in fall 2011 (Dahl & Patterson
2014). Therefore, despite an increasing lionfish pop-
ulation in the region, and specifically on our study
reefs, fish communities had somewhat stabilized
from declines observed following 2009−2010. One
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Fig. 4. Scatterplot of estimated lionfish density (scaled up-
ward by a factor of 1.29 for incomplete detectability) versus
days after lionfish removal for clear-once experimental arti-
ficial reef sites and the line fit to the significant fixed effect of
days after removal. The intercept (±95% CI) is the average
of coefficients from individual reefs in the model. The slope
(±95% CI) is the recolonization rate of lionfish to all cleared 

reefs, taking individual reef variation into account
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group that did not experience density or diversity
increases during 2013, however, was small demersal
fishes. Given these taxa are the predominant prey
of lionfish in this and other systems, exponentially
increasing lionfish populations after 2012 may have
then suppressed any resiliency these groups may
have otherwise shown in recovery from the DWH
event or limited lionfish presence.

Regardless of the ultimate cause(s) of reef fish com-
munity structure shifts observed between 2009−2010
and 2011−2012, a central goal of this study was to
conduct lionfish removal events to examine what
level of effort would be required to facilitate recovery
in affected communities. Targeted removals from
nGOM artificial reefs did significantly reduce lion-
fish density. However, reductions were short-lived
as juvenile and adult lionfish rapidly recruited to
cleared reefs. Lionfish were observed on cleared
reefs as early as a week after removing all lionfish,
and more than 500 individuals were removed from
maintain-clear reefs during follow-up removal events
during the year following initial culling. One year
after lionfish removal, clear-once sites had lionfish
densities comparable to those of control reefs, and
mean lionfish density on clear-once reefs eventually
surpassed the levels initially observed in fall 2013.
When accounting for incomplete detectability, our
estimates of lionfish density illustrate the extent to
which the nGOM region is invaded. Mean densities
from our control sites throughout the study, and
clear-once sites at the conclusion of the study, were
8- to 10-fold higher than the mean density (4.4 fish
100 m−2) reported by Hackerott et al. (2013) in a
meta-analysis of lionfish densities on Caribbean reefs.
This may explain why we failed to see lasting lionfish
reductions in both population numbers and size.
Indeed, results reported here are consistent with
models that predict sustained removal efforts are
required to control lionfish populations (Arias-
González et al. 2011, Barbour et al. 2011, Morris et al.
2011a), perhaps at intensities greater than has been
performed elsewhere in the invaded range (Frazer et
al. 2012, de León et al. 2013, Benkwitt 2015).

A reduction in the mean size of lionfish present in
the system would be a desirable management out-
come as it could reduce cumulative predation on vul-
nerable reef fishes given that lionfish diet shifts with
ontogeny and proportionally more fish are consumed
at larger sizes (Morris & Akins 2009, Dahl & Patterson
2014). Larger, mature individuals also have higher
energetic demands and consume prey at higher rates
than smaller sized fish (Cerino et al. 2013). Recruit-
ment and settlement of juvenile lionfish onto previ-

ously cleared reefs was high following the first
removal event in early 2014, effectively lowering the
mean size of individuals at both maintain-clear and
clear-once reefs. However, the size distribution of
lionfish present at maintain-clear reefs from the final
removals in February and May 2015 had shifted back
toward larger adults, thus mostly negating early
reductions in mean size of lionfish.

The early life history and recruitment dynamics of
invasive lionfish are not well understood. Therefore,
little information exists to evaluate whether juveniles
that recruited to cleared reefs were more likely to
have local or distant sources. Adult lionfish also
quickly recruited to cleared reefs, which means they
had to swim long (>300 m) distances over open sub-
strate to study reefs that were isolated from any nat-
ural reef habitat (>5 km) and located between 300 m
and 1 km from adjacent artificial reefs. This in -
ference contrasts with reports of limited adult or
post-settlement movement in estuarine (Jud & Lay-
man 2012), southeast Atlantic natural hardbottom
(Bacheler et al. 2015), and Caribbean patch and con-
tinuous coral reef ecosystems (Akins et al. 2014),
where site fidelity of lionfish has been reported to be
high, and may explain the higher degree of success
of targeted removal efforts in such areas (Frazer et al.
2012). Our findings support recent work that indi-
cates that lionfish display lower site fidelity under
high-density conditions (Tamburello & Côté 2015).
Lionfish densities observed on control reefs through-
out our study represent the highest values reported
across their invaded range; thus, intraspecific com-
petition for prey resources may be prompting move-
ment on greater scales than has been reported previ-
ously (Tamburello & Côté 2015). Consistent with that
hypothesis is the fact that non-reef benthic fishes
(e.g. lizardfishes, flounders, sea robins) and inverte-
brates constituted significantly greater proportions of
lionfish diet at nGOM artificial reefs  versus lionfish
recovered from natural reefs (Dahl & Patterson 2014).
Therefore, lionfish associated with artificial reefs are
clearly spending time away from reefs foraging on
non-reef associated prey. The extent of these move-
ments and the area over which lionfish are utilizing
prey resources is currently unknown, but conventional
or acoustic tagging ap proaches could be employed to
examine those questions.

The rapid recolonization rate of juvenile lionfish
settling from the plankton and/or adults immigrat-
ing from nearby habitat onto cleared reefs resulted
in lionfish densities that were rarely below thresh-
olds proposed by others to mitigate ecological
impacts to native fishes despite substantial removal
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effort (Green et al. 2014, Benkwitt 2015). This may
be why our lionfish removals did not translate into
significant gains for most fish taxa, though previous
studies were mostly focused on small fishes likely to
be consumed by lionfish. For larger species included
in our analyses, the effects of lionfish were not
apparent but may have been undetectable on the
timescale studied, especially if impacts are indirect,
competitive trophic interactions resulting in reduced
growth or reproduction (Albins 2015). Additionally,
this study differs from other removal experiments in
that small demersal reef fishes (e.g. damselfishes,
cardinalfishes, wrasses, blennies), which constitute
high proportions of lionfish diet in systems or habi-
tats where they are abundant, were already nearly
absent from study reefs at the start of the experi-
ment. While these species did increase somewhat
following lionfish re movals in this study, their densi-
ties remained less than 25% of the values observed
in 2009−2010, or those reported by Dance et al.
(2011) for even earlier time periods. Benkwitt (2015)
reported that even single lionfish were able to
negate substantial gains in lionfish prey species on
small (1 m3) patch reefs in The Bahamas, and Green
et al. (2014) reported that approximately 90% lion-
fish removal was required to foster ecological
resiliency for native prey fish communities on larger
(100−150 m2) Bahamian patch reefs. No such esti-
mate yet exists for the nGOM region of a threshold
lionfish density necessary to mitigate lionfish effects
and foster ecosystem resi liency, but recolonization
rates of lionfish following experimental removals at
study reefs could be used hereafter to predict the
level of harvesting effort that would be required to
keep lionfish densities suppressed below some
threshold. Indeed, our results predict that to main-
tain lionfish densities <5 fish 100 m−2, all lionfish
must be harvested from reefs approximately every
2 mo, about twice the frequency performed in this
study.

The extraordinary and continued success of inva-
sive lionfish in the nGOM may be attributable to
mechanisms of decreased biotic resistance or resili-
ence. Disturbed ecosystems, regardless of causation,
have been shown to be more vulnerable to invasion
(Stachowicz et al. 2002). Indeed, recent trophic dy -
namic ecosystem simulations computed with an Eco-
path with Ecosim model of the west Florida Shelf
ecosystem indicate that depleted biomass of top
predators (e.g. groupers, snappers) can influence the
relative invasion success of lionfish (Chagaris et al.
2015). Evidence of native western Atlantic species
preying on lionfish is rare; thus, top predators in the

Chagaris et al. (2015) model were assumed not to
prey upon lionfish. The model also assumed no lion-
fish cannibalism; thus, no direct lionfish control was
present in the model. Despite this, their results sug-
gest that lionfish invasion success can be influenced
through competitive trophic interactions. Historic
overexploitation (i.e. overfishing) of top predators in
the nGOM region, coupled with declines following
the DWH, may have compromised ecosystem resist-
ance to the initial invasion success of lionfish and
contributed thereafter to their exponential increases
in abundance and biomass.

Localized lionfish removal efforts in this study did
not result in substantial gains in native reef fish
abundance, but sustained removal efforts were
somewhat effective at limiting lionfish densities to
relatively low levels on nGOM artificial reefs. Un -
fortunately, regionally high lionfish densities may
require more frequent removal efforts than we at -
tempted, or on much larger spatial scales, to effect
meaningful reductions in lionfish density and bio-
mass. If expansive lionfish culling efforts could be
accomplished on the shallow (<40 m depth) shelf,
lionfish populations associated with mesophotic reefs
on the outer shelf and upper continental slope (i.e.
below traditional recreational diving limits, 40 m), or
other areas that receive little to no control efforts,
might still serve as constant sources of new lionfish
recruits. Efforts to reduce lionfish biomass at those
depths will be logistically challenging and expen-
sive. Therefore, to see beneficial effects on local reef
fish communities, lionfish removals going forward
will require an effort high enough to offset recolo-
nization from difficult to reach source populations.
Ongoing ecosystem modeling efforts that are aimed
at evaluating the ecological impacts of lionfish in the
nGOM should be coupled with economic models
to estimate the expense and feasibility of lionfish
removal or harvesting efforts that will be required to
accomplish the goal of minimizing lionfish impacts in
the northern Gulf of Mexico.
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