Inter-Research > AME > v79 > n3 > p209-219  
AME
Aquatic Microbial Ecology


via Mailchimp

AME 79:209-219 (2017)  -  DOI: https://doi.org/10.3354/ame01829

Diversity and abundance of sulfate-reducing microorganisms in a Mediterranean lagoonal complex (Amvrakikos Gulf, Ionian Sea) derived from dsrB gene

Christina Pavloudi1,2,3,*, Anastasis Oulas1, Katerina Vasileiadou1, Georgios Kotoulas1, Marleen De Troch3, Michael W. Friedrich2, Christos Arvanitidis1

1Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, PO Box 2214, 71003 Heraklion, Greece
2Microbial Ecophysiology Group, Faculty of Biology/Chemistry and MARUM, University of Bremen, 28359 Bremen, Germany
3Marine Biology Research Group, Department of Biology, Faculty of Sciences, University of Ghent, 9000 Ghent, Belgium
*Corresponding author:

ABSTRACT: Sulfate-reducing microorganisms (SRMs) are a phylogenetically and physiologically diverse group of microorganisms, responsible for the dissimilatory reduction of sulfate. SRMs thrive under anaerobic conditions with high availability of organic matter. Such conditions characterize lagoonal ecosystems which experience regular dystrophic crises. The aim of the present study was to explore the biodiversity patterns of SRMs and to examine the extent to which these patterns are associated with biogeographic and environmental factors. Sediment samples were collected from 5 lagoons in the Amvrakikos Gulf (Ionian Sea, western Greece). DNA was extracted from the sediment and was further processed through pyrosequencing of a region of the dissimilatory sulfite reductase β-subunit (dsrB). The results of this exploratory study show that the majority of the observed operational taxonomic units (OTUs) belong to the Deltaproteobacteria supercluster and more specifically, to the Desulfobacteraceae family. Salinity and ammonium ions are the environmental factors that best correlated with the SRM community pattern. Furthermore, the SRM community of the brackish lagoons is differentiated from that of the brackish-marine lagoons and the studied lagoons have distinct SRM communities.


KEY WORDS: dsrB gene · Amvrakikos Gulf · Lagoon · Pyrosequencing · Sediment · Sulfate-reducing microorganisms


Full text in pdf format
Supplement 1
Supplement 2
Supplement 3
Cite this article as: Pavloudi C, Oulas A, Vasileiadou K, Kotoulas G, De Troch M, Friedrich MW, Arvanitidis C (2017) Diversity and abundance of sulfate-reducing microorganisms in a Mediterranean lagoonal complex (Amvrakikos Gulf, Ionian Sea) derived from dsrB gene. Aquat Microb Ecol 79:209-219. https://doi.org/10.3354/ame01829

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article