AB

Aquatic Biology

Aquatic Biology is a gold Open Access journal and a multidisciplinary forum for research on the biology of organisms in marine, brackish and fresh waters. SEDAO (Sexuality and Early Development in Aquatic Organisms), an international journal that covered all aspects of reproduction and early development in marine, brackish and freshwater organisms, was incorporated into AB in late 2015.

Online: ISSN 1864-7790

Print: ISSN 1864-7782

DOI: https://doi.org/10.3354/ab

Impact Factor0.8 (JCR 2025 release)

Article Acceptance Rate35% (2024)

Average Time in Review157 days

Total Annual Downloads151.089 (2025)

Volume contents
Aquat Biol 28:67-77 (2019)

Microplastics of different characteristics are incorporated into the larval cases of the freshwater caddisfly Lepidostoma basale

ABSTRACT: Plastic pollution is present in aquatic systems worldwide. While numerous studies have investigated microplastic interactions with marine organisms, microplastic effects on freshwater organisms, especially insects, have been rarely studied. Previous studies have mainly focused on dietary uptake of microplastics, but the presence of microplastics in animal constructions is largely unknown. To date, microplastics have only been observed in the tubes of a marine polychaete species. In freshwater systems, common caddisfly (Trichoptera) larvae build cases by using larval silk and mineral grains from benthic sediments, which are known microplastic sinks. Therefore, we examined caddisfly cases for microplastic presence. We collected caddisfly Lepidostoma basale cases in the field, disintegrated them using hydrogen peroxide, and determined microplastic polymer type through micro-Fourier-transform infrared spectroscopy. We found primary and secondary microplastics of different shapes, colors, sizes and chemical compositions (e.g. polypropylene, polyethylene, polyvinyl chloride). Thus, this is the first study to show that microplastics are present in the biological construction of a freshwater organism. Larval stages are usually more vulnerable than adult individuals, and microplastics can transport persistent organic pollutants and emit toxic leachates. In the caddisfly larval case, those substances are in close proximity to the sensitive larval body, which may be harmful for the larva and may eventually impede its development. We discuss the potential of caddisfly larval cases to act as microplastic bioindicators in freshwater habitats.

KEYWORDS

Sonja M. Ehlers (Corresponding Author)

  • Department of Animal Ecology, Federal Institute of Hydrology, 56068 Koblenz, Germany
  • Institute for Integrated Natural Sciences, University of Koblenz-Landau, 56070 Koblenz, Germany
sehlers@uni-koblenz.de

Werner Manz (Co-author)

  • Institute for Integrated Natural Sciences, University of Koblenz-Landau, 56070 Koblenz, Germany

Jochen H. E. Koop (Co-author)

  • Department of Animal Ecology, Federal Institute of Hydrology, 56068 Koblenz, Germany