Inter-Research > AME > v82 > n2 > p209-224  
AME
Aquatic Microbial Ecology

via Mailchimp

AME 82:209-224 (2018)  -  DOI: https://doi.org/10.3354/ame01893

Chlorovirus and myovirus diversity in permafrost thaw ponds

Alice V. Lévesque1,2,3, Warwick F. Vincent2,4, Jérôme Comte2,5, Connie Lovejoy3,4,6, Alexander I. Culley1,2,3,*

1Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
2Centre d’études nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
3Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
4Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada
5Centre - Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC G1K 9A9, Canada
6Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
*Corresponding author:

ABSTRACT: Permafrost thaw ponds occur in high abundance across the northern landscape of Canada and are sites of intense microbial activity, resulting in carbon dioxide and methane emissions to the atmosphere. In this study, we focused on viruses as largely unstudied agents of top-down control in these high-latitude microbial ecosystems. Specifically, we compared the diversity of myovirus, chlorovirus and host microbial communities in an organic soil palsa valley pond and a mineral soil lithalsa valley pond. These 2 subarctic permafrost landscapes are both common in northern Québec, Canada. Sequence analysis of ribosomal small subunit RNA genes showed that the community structure of bacteria and microbial eukaryotes differed significantly between the 2 ponds, which both differed from microbial communities in a rock-basin lake (whose formation was not related to permafrost thawing and which we used as a reference pond) in the same region. The viral assemblages included 439 OTUs in the uncultured Myoviridae category and 41 OTUs in the family Phycodnaviridae. Phylogenetic analysis of the latter based on an amino acid sequence alignment revealed a single large clade related to chloroviruses, consistent with the abundant presence of chlorophytes in these waters. As there was for the bacterial and eukaryotic communities, there were also significant differences in the community structure of these viral groups among the 3 ponds. These results suggest that host community composition is influenced by environmental filtering, which in turn contributes to driving viral diversity across landscape types.


KEY WORDS: Arctic · Biodiversity · Microbial ecology · Permafrost · Thaw ponds · Viral diversity


Full text in pdf format
Supplementary material
Correction 
Cite this article as: Lévesque AV, Vincent WF, Comte J, Lovejoy C, Culley AI (2018) Chlorovirus and myovirus diversity in permafrost thaw ponds. Aquat Microb Ecol 82:209-224. https://doi.org/10.3354/ame01893

Export citation
Mail this link - Contents Mailing Lists - RSS
Facebook - - linkedIn