Inter-Research > CR > v05 > n3 > p207-222  
CR
Climate Research


via Mailchimp

CR 05:207-222 (1995)  -  DOI: https://doi.org/10.3354/cr005207

Predicting the effects of climate change on water yield and forest production in the northeastern United States

Aber JD, Ollinger SV, Federer CA, Reich PB, Goulden ML, Kicklighter DW, Melillo JM, Lathrop RG Jr

Rapid and simultaneous changes in temperature, precipitation and the atmospheric concentration of CO2 are predicted to occur over the next century. Simple, well-validated models of ecosystem function are required to predict the effects of these changes. This paper describes an improved version of a forest carbon and water balance model (PnET-II) and the application of the model to predict stand- and regional-level effects of changes in temperature, precipitation and atmospheric CO2 concentration. PnET-II is a simple, generalized, monthly time-step model of water and carbon balances (gross and net) driven by nitrogen availability as expressed through foliar N concentration. Improvements from the original model include a complete carbon balance and improvements in the prediction of canopy phenology, as well as in the computation of canopy structure and photosynthesis. The model was parameterized and run for 4 forest/site combinations and validated against available data for water yield, gross and net carbon exchange and biomass production. The validation exercise suggests that the determination of actual water availability to stands and the occurrence or non-occurrence of soil-based water stress are critical to accurate modeling of forest net primary production (NPP) and net ecosystem production (NEP). The model was then run for the entire NewEngland/New York (USA) region using a 1 km resolution geographic information system. Predicted long-term NEP ranged from -85 to +275 g C m-2 yr-1 for the 4 forest/site combinations, and from -150 to 350 g C m-2 yr-1 for the region, with a regional average of 76 g C m-2 yr-1. A combination of increased temperature (+6*C), decreased precipitation (-15%) and increased water use efficiency (2x, due to doubling of CO2) resulted generally in increases in NPP and decreases in water yield over the region.


Foliar nitrogen · Photosynthesis · Respiration · Allocation · GIS · Regional analysis · Validation · Transpiration · Water balance


Full text in pdf format
 Previous article Next article