Inter-Research > ESR > v53 > p167-180  
Endangered Species Research

via Mailchimp

ESR 53:167-180 (2024)  -  DOI:

Intraspecific variability in flatback turtle habitat use: δ15N as an indicator of foraging locations

K. Abrantes1,2,3,*, N. Wildermann4, I. B. Miller2,5, M. Hamann2, C. J. Limpus6, C. A. Madden Hof7,8, I. Bell9, M. Sheaves2,3, A. Barnett1,2,3

1Biopixel Oceans Foundation, Cairns, QLD 4878, Australia
2College of Science and Engineering, James Cook University, Cairns, QLD 4878, Australia
3Marine Data Technology Hub, James Cook University, Townsville, QLD 4811, Australia
4Texas Sea Grant at Texas A&M University, College Station, TX 77843-4115, USA
5Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven 26382, Germany
6Department of Environment and Science, Brisbane, QLD 4800, Australia
7Coral Triangle Programme, World Wide Fund for Nature, Brisbane, QLD 4000, Australia
8The University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
9Department of Environment and Science, Townsville, QLD 4810, Australia
*Corresponding author:

ABSTRACT: Identifying migration routes and key habitats is critical for the management and conservation of migratory species. Tracking and stable isotope analysis (SIA), particularly of carbon (δ13C) and nitrogen (δ15N), are often used to study animal movements, with SIA particularly useful when animals move through isotopic gradients. Marine turtles are typically highly migratory, moving between nesting and foraging grounds often located 100s-1000s km apart. The flatback turtle Natator depressus is endemic to the Australian continental shelf. Satellite tracking (n = 44) and SIA (n = 33) of females nesting in eastern Queensland, Australia, were used to identify main foraging areas, describe intraspecific variation in the location of foraging areas, and determine if δ13C and/or δ15N values can be used to identify foraging regions. Although foraging grounds were widely dispersed, tracking identified 3 main foraging regions. SIA agreed with tracking, indicating foraging site fidelity. Generalized linear models and linear discriminant analysis (LDA) were used to estimate how well δ13C/δ15N and nesting sites can perform as indicators of broad foraging regions and to predict foraging regions for turtles with no tracking data. δ15N was a strong predictor of the foraging region. LDA correctly classified the foraging region of 94% of individuals and was suitable to predict foraging regions of untracked individuals. A strong negative linear relationship between turtle δ15N and foraging latitude indicates the presence of a δ15N isoscape along the eastern Queensland coast. This is the first demonstration of an isoscape for the region, which should be useful for studying and monitoring the habitat use of flatback turtles and other migratory species.

KEY WORDS: Flatback turtles · Foraging areas · Habitat use · Isoscape · Satellite tracking · Stable isotope analysis · Telemetry · Turtles

Full text in pdf format
Supplementary material
Cite this article as: Abrantes K, Wildermann N, Miller IB, Hamann M and others (2024) Intraspecific variability in flatback turtle habitat use: δ15N as an indicator of foraging locations. Endang Species Res 53:167-180.

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article