MEPS

Marine Ecology Progress Series

MEPS is a leading hybrid research journal on all aspects of marine, coastal and estuarine ecology. Priority is given to outstanding research that advances our ecological understanding.

Online: ISSN 1616-1599

Print: ISSN 0171-8630

DOI: https://doi.org/10.3354/meps

Impact Factor2.1 (JCR 2025 release)

Article Acceptance Rate52.2% (2024)

Average Time in Review216 days (2024)

Total Annual Downloads2.897.589 (2025)

Volume contents
Mar Ecol Prog Ser 161:155-163 (1997)

Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake

ABSTRACT: The ability to sustain growth at low availability of nitrogen (N) was examined in 6 species of macroalgae with different growth strategies by comparing substrate dependent growth kinetics. The N required to support optimal growth and the N uptake kineticsof 2 slow-growing algae, Fucus vesiculosus and Codium fragile, and 4 fast-growing species, Chaetomorpha linum, Cladophora serica, Ceramium rubrum and Ulva lactuca, were experimentally determined in summer when thealgae were N limited. The N required to support maximum growth varied 16-fold among species, with fast-growing algae having the highest N demands. The high N requirements of ephemeral algae were caused by up to 13-fold higher growth rates and 2- to 3-foldhigher N content at maximum growth. Also, the fast-growing species took up ammonium and nitrate 4 to 6 times faster per unit of biomass than slow-growing species at both low and high substrate concentrations, but the ratios of maximum N uptake torequirements were larger among the slow-growing algae. Thus, the fast-growing species tended to require relatively higher external concentrations of inorganic N to saturate their growth. Under N limited conditions, all 6 macroalgae were able to exploitpulses of high concentrations of ammonium by taking up ammonium at transiently enhanced rates (i.e. surge uptake). Uptake was, however, only marginally enhanced at low, and naturally occurring, concentrations of ammonium, suggesting that surge uptake isof minor ecological importance. Our results show that large, slow-growing macroalgae may be better able to meet their N requirements at low N availability than fast-growing species. This is consistent with the common observation that nutrient-poor coastalareas are dominated by slow-growing macroalgae rather than ephemeral species, although ephemeral species have higher N uptake capacities.

KEYWORDS

Morten Foldager Pedersen (Co-author)

Jens Borum (Co-author)