ABSTRACT: A comparison between the northwestern Hawaiian islands (NWHI), a large, remote, and lightly fished area, and the main Hawaiian islands (MHI), an urbanized, heavily fished area, revealed dramatic differences in the numerical density, size, and biomass of the shallow reef fish assemblages. Grand mean fish standing stock in the NWHI was more than 260% greater than in the MHI. The most striking difference was the abundance and size of large apex predators (primarily sharks and jacks) in the NWHI compared to the MHI. More than 54% of the total fish biomass in the NWHI consisted of apex predators, whereas this trophic level accounted for less than 3% of the fish biomass in the MHI. In contrast, fish biomass in the MHI was dominated by herbivores (55%) and small-bodied lower-level carnivores (42%). Most of the dominant species by weight in the NWHI were either rare or absent in the MHI and the target species that were present, regardless of trophic level, were nearly always larger in the NWHI. These differences represent both near-extirpation of apex predators and heavy exploitation of lower trophic levels in the MHI compared to the largely unfished NWHI. The reefs in the NWHI are among the few remaining large-scale, intact, predator-dominated reef ecosystems left in the world and offer an opportunity to understand how unaltered ecosystems are structured, how they function, and how they can most effectively be preserved. The differences in fish assemblage structure in this study are evidence of the high level of exploitation in the MHI and the pressing need for ecosystem-level management of reef systems in the MHI as well as the NWHI.
KEY WORDS: Apex predators · Overfishing · Hawaiian archipelago · Fish assemblage structure
Full text in pdf format |
Previous article Next article |