Inter-Research > MEPS > v289 > p53-61  
Marine Ecology Progress Series

via Mailchimp

MEPS 289:53-61 (2005)  -  doi:10.3354/meps289053

Assembly and maintenance of subtidal habitat heterogeneity: synergistic effects of light penetration and sedimentation

Sean D. Connell*

Southern Seas Ecology Laboratories, DP418, School of Earth and Environmental Sciences, The University of Adelaide, South Australia 5005, Australia

ABSTRACT: I experimentally separated the positive and negative effects of light penetration and sedimentation on the assembly and maintenance of 3 subtidal habitats whose heterogeneity characterizes much of the world’s temperate coastline; encrusting (non-geniculate) coralline algae, articulated (geniculate) coralline algae and filamentous, turf-forming algae. The ability of encrusting corallines to monopolize and retain space without overgrowth depended on the presence of shade (positive effect) if sediment deposition was below that observed on coast characterized by high rates of sedimentation (negative effect). In contrast, the growth and persistence of articulated corallines depended on the absence of shade (negative effect) and high levels of sediment accumulation observed on human-dominated coast (positive effect). The recruitment of filamentous-turfs was facilitated by full light, but was not strongly affected by sedimentation. Instead, filamentous-turfs tolerated heavy sediment accumulation, a factor thought to explain the concomitant increase in spatial dominance of algal-turfs and loss of canopy-forming algae on reefs with heavy sedimentation. Importantly, different habitats will assemble or be maintained to match the environmental conditions in which they are most extensive, demonstrating the key role of physical factors associated with habitat-formers (kelp forests) and human-dominated coast (heavy sedimentation). These results also demonstrate that an appreciation of the integrated roles of physical processes may assist the development of predictive models about the assembly and maintenance of heterogeneity of natural communities, and their potential disruption by humans.

KEY WORDS: Algae · Human · Impact · Positive effect · Understorey

Full text in pdf format