MEPS

Marine Ecology Progress Series

MEPS is a leading hybrid research journal on all aspects of marine, coastal and estuarine ecology. Priority is given to outstanding research that advances our ecological understanding.

Online: ISSN 1616-1599

Print: ISSN 0171-8630

DOI: https://doi.org/10.3354/meps

Impact Factor2.1 (JCR 2025 release)

Article Acceptance Rate52.2% (2024)

Average Time in Review216 days (2024)

Total Annual Downloads3.015.381 (2025)

Volume contents
Mar Ecol Prog Ser 314:25-33 (2006)

Effect of swash climate and food availability on sandy beach macrofauna along the NW coast of the Iberian Peninsula

ABSTRACT: The swash exclusion hypothesis (SEH) is widely used in explaining the abundance and diversity of macrofauna in sandy beaches. This hypothesis predicts a reduction in richness, abundance and biomass of macrofaunal assemblages from flat slope beaches to steep slope ones due to the swash climate. Nevertheless, flat slope beaches are characterised by greater food availability than steep slope beaches; thus, food supply may also explain macrofaunal trends in exposed sandy beaches. This paper investigates the relative importance of food availability (expressed as biopolymeric carbon and chlorophyll a) and swash climate within this macrofauna impoverishment. Macrofaunal assemblages and sediment food availability were studied at 3 levels on the shore, 2 intertidal and 1 supratidal, at each of 11 sandy beaches located on the NW coast of the Iberian Peninsula. Results indicated that: (1) the beach slope had a stronger effect on richness, density and biomass of macrofaunal assemblages at the intertidal than at the supratidal level; (2) steep slope beaches presented a higher percentage of active burrower species than flat slope beaches; and (3) species richness, density and biomass of macrofauna were not related to food availability, measured as biopolymeric carbon and chlorophyll a in the sediment. Overall, our results strongly support the idea that the harsh swash climate of steep slope beaches may exclude some species without active and rapid burrowing abilities, and is probably one of the mechanisms responsible for the observed decrease of macrofauna in this habitat.

KEYWORDS

Mónica Incera (Corresponding Author)

  • Departamento de Ecología e Biología Animal, Facultade de Ciencias, Universidade de Vigo, Spain
  • Present address:
incera@uvigo.es

Mariano Lastra (Co-author)

  • Departamento de Ecología e Biología Animal, Facultade de Ciencias, Universidade de Vigo, Spain

Jesús López (Co-author)

  • Departamento de Ecología e Biología Animal, Facultade de Ciencias, Universidade de Vigo, Spain