MEPS

Marine Ecology Progress Series

MEPS is a leading hybrid research journal on all aspects of marine, coastal and estuarine ecology. Priority is given to outstanding research that advances our ecological understanding.

Online: ISSN 1616-1599

Print: ISSN 0171-8630

DOI: https://doi.org/10.3354/meps

Impact Factor2.1 (JCR 2025 release)

Article Acceptance Rate52.2% (2024)

Average Time in Review216 days (2024)

Total Annual Downloads2.712.530 (2025)

Volume contents
Mar Ecol Prog Ser 328:51-64 (2006)

Influence of cockle Cerastoderma edule bioturbation and tidal-current cycles on resuspension of sediment and polycyclic aromatic hydrocarbons

ABSTRACT: Experiments were performed to investigate the impact of cockle population density Cerastoderma edule on the resuspension of naturally contaminated sediments collected from the Tamar estuary (SW England). Annular flumes generated tidal-current cycles for 7 to 9 d. The suspended sediment concentration (SSC) at peak flow increased 5-fold with increasing cockle population density, although the 2 highest densities yielded similar resuspension. Polycyclic aromatic hydrocarbons (PAHs) in the sediment were analysed by gas chromatography/mass spectrometry (GC/MS) at the beginning of the experiment, and in the water column of each flume after 2 and 6 d at both the maximum and minimum current speeds. At the end of each experiment sediment erodability was measured as a function of a stepwise increase in current speed. Sediment erosion increased up to 10-fold with increasing cockle population density. However, at the highest density the SSC was lower than that observed for the medium density, probably due to binding resulting from higher mucus secretion and pseudofaeces production. Current-induced resuspension of contaminated sediment was dependent on the density of the cockles. The correlation between the suspended sediment concentrations and the concentrations of PAH was weak for low molecular weight PAHs (phenanthrene and anthracene) due to their higher water solubility. In contrast, higher molecular weight PAHs (fluoranthene, pyrene, benz(a)anthracene and chrysene) showed a strong correlation with suspended particulates as a result of their higher hydrophobicity.

KEYWORDS

Aurélie Ciutat (Corresponding Author)

  • Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
aurelie.ciutat@cict.fr

John Widdows (Co-author)

  • Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK

James W. Readman (Co-author)

  • Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK