MEPS 403:279-290 (2010)  -  DOI: https://doi.org/10.3354/meps08482

When foraging becomes unprofitable: energetics of diving in tidal currents by common eiders wintering in the Arctic

Joel P. Heath1,3,*, H. Grant Gilchrist2

1Centre for Wildlife Ecology and Behavioural Ecology Research Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
2National Wildlife Research Centre, Canadian Wildlife Service, 1125 Colonel by Drive, Raven Rd, Carleton University, Ottawa, Ontario K1A 0H3, Canada
3Present address: Mathematical Biology, University of British Columbia, 121–1984 Math Rd., Vancouver, British Columbia V6T 1Z2, Canada

ABSTRACT: A variety of ecological, physiological and environmental factors influence the energy budgets of diving animals. For common eiders Somateria mollissima sedentaria wintering in sea ice habitats in the Canadian Arctic, time and energy costs of diving increase exponentially with tidal current speed. Here we use literature estimates of diving energetics and underwater dive data to quantitatively model net energy gain per dive cycle as a function of current speed. The model indicates a strong non-linear decrease in the profitability of diving with increasing currents, predicting that net energy gain per dive cycle will reach zero and become unprofitable at 1.21 m s–1 (at 11.3 m depth using baseline parameters from our study). As currents increase travel time, foraging time at the bottom decreases non-linearly, reaching a point where intake is inadequate to balance increasing diving and surface swimming costs. Sensitivity analysis indicates that this threshold is robust over a range of energy expenditure rates and is influenced most by energy intake rate, emphasising the importance of ecological factors such as prey abundance and quality. Eiders stop foraging and rest on the ice well below this threshold in weaker current regimes (~0.8 m s–1), at about the point when profitability begins to decelerate. Behavioural time series of diving under constraints of strong tidal current regimes indicate that these eiders do occasionally dive in currents up to ~1.2 m s–1, providing support for the energetic model. Eiders did not dive in faster currents, which could also be influenced by a physiological limit to swimming speed. We conclude that ocean currents can cause a non-linear decrease in net energy balance and are therefore an important and understudied consideration for diving animals. Many functional aspects of diving (e.g. locomotor costs or convective heat loss) have non-linear characteristics; these diminishing returns can be expected to play an important role in the dynamics of behavioural routines and the ability of organisms to respond to environmental variation.


KEY WORDS: Diving · Foraging · Energetics · Non-linear · Profitability · Winter ecology · Polynyas · Somateria mollissima sedentaria


Full text in pdf format 
Cite this article as: Heath JP, Gilchrist HG (2010) When foraging becomes unprofitable: energetics of diving in tidal currents by common eiders wintering in the Arctic. Mar Ecol Prog Ser 403:279-290. https://doi.org/10.3354/meps08482

Export citation
Mail this link - Contents Mailing Lists - RSS
- -