MEPS

Marine Ecology Progress Series

MEPS is a leading hybrid research journal on all aspects of marine, coastal and estuarine ecology. Priority is given to outstanding research that advances our ecological understanding.

Online: ISSN 1616-1599

Print: ISSN 0171-8630

DOI: https://doi.org/10.3354/meps

Impact Factor2.1 (JCR 2025 release)

Article Acceptance Rate52.2% (2024)

Average Time in Review216 days (2024)

Total Annual Downloads3.011.764 (2025)

Volume contents
Mar Ecol Prog Ser 408:33-46 (2010)

Characterization of phytoplankton exudates and carbohydrates in relation to their complexation of copper, cadmium and iron

ABSTRACT: The goal of this study was to investigate if transparent exopolymer particles (TEP), carbohydrates, surface-active substances (SAS), reduced sulfur species (RSS), or thio/amino groups contribute significantly to the complexing capacity of phytoplankton exudates for Cu (LTOTCu), Cd (LTOTCd), or Fe (LTOTFe). Complexing capacities and apparent stability constants (Kapp) were determined electrochemically for Cu and Cd in cultures of the marine diatoms Thalassiosira weissflogii and Skeletonema costatum, and in a culture of the coccolithophore Emiliana huxleyi. Furthermore, the complexing capacity with Fe, Cu and Cd of 4 marine polysaccharides (PS) (phytagel, carrageenan, laminarin and alginic acid) was investigated. As expected, more Cu than Cd was complexed in the 3 phytoplankton cultures and in the phytagel solution. Size fractionation of the phytagel solution suggests that the binding capacity for Cu was more significant in the particulate fraction (>0.7 µm), indicating that Cu was preferably trapped within pores and channels of large hydrogels. In contrast, Cd binding sites were predominantly found in the fraction <0.7 µm, suggesting binding to the outer surfaces of gel particles to be of greater importance for larger ions. The Kapp of the Cd complexes were higher than those of Cu, indicating stronger binding of Cd ions than of Cu ions. Solutions of carrageenan, laminarin and alginic acid did not form complexes with either Cu or Cd, and Fe-binding properties could not be detected for any of the 4 polysaccharide solutions. Thio/amino groups of sulfur-rich ‘glutathione’ type ligands were found in all phytoplankton cultures and were presumably responsible for the complexation of Cu. No consistent relationship was observed between TEP, carbohydrate concentration, SAS or sulfur content, or with the complexing capacity, emphasizing the high degree of heterogeneity of substance classes responsible for metal binding.

KEYWORDS

Slađana Strmečki (Co-author)

  • Ruđer Bošković Institute, Center for Marine and Environ. Research, Zagreb, 10002 Zagreb, Croatia

Marta Plavšić (Corresponding Author)

  • Ruđer Bošković Institute, Center for Marine and Environ. Research, Zagreb, 10002 Zagreb, Croatia
plavsic@irb.hr

Sebastian Steigenberger (Co-author)

  • Alfred Wegener Institute for Polar and Marine Research, 27570 Bremerhaven, Germany

Uta Passow (Co-author)

  • Alfred Wegener Institute for Polar and Marine Research, 27570 Bremerhaven, Germany