Inter-Research > MEPS > v409 > p27-39  
MEPS
Marine Ecology Progress Series

via Mailchimp

MEPS 409:27-39 (2010)  -  DOI: https://doi.org/10.3354/meps08631

Organic matter release by the dominant primary producers in a Caribbean reef lagoon: implication for in situ O2 availability

Andreas F. Haas1,*, Carin Jantzen1,2, Malik S. Naumann1, Roberto Iglesias-Prieto3, Christian Wild1

1Coral Reef Ecology (CORE) Work Group, GeoBio-Center and Department of Earth & Environmental Science, Ludwig-Maximilians Universität, Richard Wagner Strasse 10, 80333 Munich, Germany
2Centre for Tropical and Marine Ecology (ZMT), Bremen, Germany
3Reef Systems Unit, Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autónoma de México, Apartado Postal 1152, Cancún QR 77500, Mexico

ABSTRACT: Coral reef lagoon benthic primary producers may control various processes important for ecosystem functioning, predominately via the release of organic matter, but comparative data are rare. This study therefore comparatively investigated the quantity of particulate and dissolved organic matter released by different benthic primary producers (seagrasses, macroalgae and scleractinian corals) from the coral reef lagoon of Puerto Morelos, Mexican Caribbean. Microbial degradability of the released organic matter was determined along with diurnal in situ measurements of O2 concentrations at lagoon sites dominated by different primary producers. Particulate organic carbon (POC) release was highest for corals (8.2 ± 4.2 mg m–2 h–1), followed by benthic algae (3.9 ± 0.7 mg m–2 h–1) and seagrasses (3.1 ± 2.0 mg m–2 h–1). Dissolved organic carbon (DOC) release rates were highest for seagrasses (15.8 ± 6.0 mg m–2 h–1), followed by algae (1.9 ± 2.0 mg m–2 h–1), whereas corals displayed net DOC uptake. Benthic algae-derived organic matter stimulated planktonic microbial O2 consumption significantly more than seagrass- or coral-derived organic matter. In situ O2 loggers revealed significantly lower average O2 concentrations, particularly during the night, at algae-dominated sites compared to other benthic lagoon environments. This indicates effects of algae-derived organic matter on in situ O2 availability. We therefore suggest that shifts in benthic primary producer dominance affect ecosystem functioning owing to differences in quantity, composition and microbial degradability of the released organic matter.


KEY WORDS: Organic matter · Primary producer · Caribbean reef lagoon · Oxygen · Coral · Algae · Seagrass


Full text in pdf format 
Cite this article as: Haas AF, Jantzen C, Naumann MS, Iglesias-Prieto R, Wild C (2010) Organic matter release by the dominant primary producers in a Caribbean reef lagoon: implication for in situ O2 availability. Mar Ecol Prog Ser 409:27-39. https://doi.org/10.3354/meps08631

Export citation
Mail this link - Contents Mailing Lists - RSS
Facebook - - linkedIn