Inter-Research > MEPS > v444 > p31-41  
Marine Ecology Progress Series

via Mailchimp

MEPS 444:31-41 (2012)  -  DOI:

Wave attenuation by submerged vegetation: ­combining the effect of organism traits and tidal current

M. Paul1,3,*, T. J. Bouma2, C. L. Amos

1National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK
2Netherlands Institute of Ecology, Centre for Estuarine and Marine Ecology, 4400 AC Yerseke, The Netherlands
3Present address: Forschungszentrum Küste, 30419 Hannover, Germany

ABSTRACT: Accurate wave height prediction along the shore plays an important role in coastal protection and management. To account for the effect of submerged vegetation in wave-­attenuation models, it is important to understand how the interaction between vegetation characteristics and hydrodynamic forcing affects wave attenuation. To determine the effect of vegetation characteristics, we used seagrass mimics that varied in (1) blade stiffness, (2) shoot density and (3) leaf length; to investigate the effect of hydrodynamic forcing, we studied wave attenuation in the absence and presence of a tidal current. Results show that wave attenuation is positively correlated with blade stiffness and for a given wave in shallow water, attenuation is dependent on a combination of shoot density and leaf length, which can be described by the leaf area index. The presence of a tidal current strongly reduced the wave-attenuating capacity of seagrass mimics, and this reduction was most pronounced at high shoot densities. Thus, most studies that have been carried out under waves only will structurally overestimate wave attenuation for tidal environments, emphasising that tidal currents need to be taken into account in future studies on wave attenuation by vegetation.

KEY WORDS: Waves · Currents · Artificial seagrass · Vegetation traits · Wave attenuation

Full text in pdf format
Cite this article as: Paul M, Bouma TJ, Amos CL (2012) Wave attenuation by submerged vegetation: ­combining the effect of organism traits and tidal current. Mar Ecol Prog Ser 444:31-41.

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article