Inter-Research > MEPS > v446 > p45-59  
Marine Ecology Progress Series

via Mailchimp

MEPS 446:45-59 (2012)  -  DOI:

Influence of microbial community composition and metabolism on air−sea ΔpCO2 variation off the western Antarctic Peninsula

Sébastien Moreau1,*, Irene R. Schloss1,2,3, Behzad Mostajir4, Serge Demers1, Gastón O. Almandoz3,5, Martha E. Ferrario3,5, Gustavo A. Ferreyra

1Institut des Sciences de la Mer (ISMER), Université du Québec à Rimouski (UQAR), 310 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada
2Instituto Antártico Argentino, Cerrito 1248 (C1010AAZ) Buenos Aires, Argentina
3CONICET, Av. Rivadavia 1917 (C1033AAV), Buenos Aires, Argentina
4Laboratoire d’Ecologie des Systèmes Marins côtiers (ECOSYM), UMR 5119 (Université Montpellier 2 − CNRS − IFREMER − IRD), Case 093, 34095 Montpellier Cedex 05, France
5División de Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA, La Plata, Argentina

ABSTRACT: We studied CO2 and O2 dynamics in the western Antarctic Peninsula (WAP) waters in relation to (1) phytoplankton biomass, (2) microbial community primary production and respiration, and (3), for the first time, phytoplankton composition, during summer and fall in 3 consecutive years (2002, 2003 and 2004). The areal average of ΔpCO2 (the difference between surface seawater and atmospheric partial pressure of CO2) for the 3 yr was significantly negative (−20.04 ± 44.3 µatm, p < 0.01) during the summer to fall period in the region, possibly indicating a CO2 sink. In the southern WAP (i.e. south of Anvers Island), ΔpCO2 was significantly negative (−43.60 ± 39.06 µatm) during fall. In the northern WAP (north of Anvers Island), ΔpCO2 values showed a more complex distribution during summer and fall (−4.96 ± 37.6 and 21.71 ± 22.39 µatm, respectively). Chlorophyll a (chl a) concentration averaged 1.03 ± 0.25 µg l−1 and was higher in the south of the peninsula. Phytoplankton composition influenced chl a concentration with higher and lower values for diatom- and phytoflagellate-dominated communities, respectively. A significant negative correlation existed between chl a and ΔpCO2. From incubation experiments performed in the northern WAP, respiration was low (averaging 5.1 mmol O2 m−3 d−1), and the net community production (NCP) correlated negatively with ΔpCO2 and positively with %O2 saturation. However, despite the high NCP values measured, ΔpCO2 was significantly positive in the northern WAP during the summer to fall period. Strong mixing and lower chl a concentration may explain this result. In contrast, ΔpCO2 was significantly negative in the southern WAP, possibly because of high surface water chl a concentration.

KEY WORDS: CO2 sinks · CO2 sources · Phytoplankton biomass · Phytoplankton composition · Primary production · Community respiration

Full text in pdf format 
Cite this article as: Moreau S, Schloss IR, Mostajir B, Demers S, Almandoz GO, Ferrario ME, Ferreyra GA (2012) Influence of microbial community composition and metabolism on air−sea ΔpCO2 variation off the western Antarctic Peninsula. Mar Ecol Prog Ser 446:45-59.

Export citation
Mail this link - Contents Mailing Lists - RSS
Facebook - - linkedIn