Inter-Research > MEPS > v453 > p49-62  

MEPS 453:49-62 (2012)  -  DOI: https://doi.org/10.3354/meps09686

Influence of small-scale patchiness on resilience of nutrient cycling to extended hypoxia in estuarine sediments

Joanne L. Banks1,*, D. Jeff Ross2, Michael J. Keough1, Catriona K. Macleod2, Bradley D. Eyre3

1Department of Zoology, University of Melbourne, Melbourne, Victoria 3010, Australia
2Institute of Marine and Antarctic Studies, Nubeena Crescent, Taroona, Tasmania 7053, Australia
3Centre for Coastal Biogeochemistry, School of Environmental Science and Management, Southern Cross University, PO Box 157, Lismore, New South Wales 2480, Australia

ABSTRACT: Although much work has been done to predict the effects of hypoxia (dissolved oxygen < 2 mg l−1) at regional scales, individual estuaries consist of a patchwork of micro-environments that can have different responses. We followed the effects of extended dissolved oxygen (DO) depletion on benthic fluxes of CO2, O2, NO3, NH4+, N2, PO43− and Fe from estuarine sediments from 3 shallow sites with different macrofauna communities and levels of organic enrichment. DO depletion was achieved by a prolonged (40 d) dark incubation of sealed sediment cores. There were no discernible differences in NO3 and N2 fluxes between sites, but the effects of hypoxia on sediment metabolism, and on bioavailable nutrient release, NH4+ and PO43−, were modified by the initial macrofauna communities. The DO in cores containing sediments from a site dominated by small epifauna declined significantly faster than in cores containing a greater portion of burrowing infauna; burrows may provide an oxic reservoir within the sediments. Macrofauna mortality led to a more rapid efflux of mineralization products (CO2, NH4+ and PO43−) in the epifauna-dominated sites, as the small surface-dwelling animals decomposed more quickly. However, the cores were sealed, preventing migration of mobile epifauna away from the hypoxic conditions. The site with the lowest abundance of macrofauna also contained a large amount of refractory organic matter. Decomposition of this material was slow, with little release of nutrients. The study highlights the fact that environmental patchiness can modify the effects of hypoxia and stresses the importance of deeper burrowing fauna as a buffer against declining DO conditions.


KEY WORDS: Hypoxia · Anoxia · Denitrification · DNRA · Organic enrichment · Benthic macrofauna


Full text in pdf format  
Cite this article as: Banks JL, Ross DJ, Keough MJ, Macleod CK, Eyre BD (2012) Influence of small-scale patchiness on resilience of nutrient cycling to extended hypoxia in estuarine sediments. Mar Ecol Prog Ser 453:49-62. https://doi.org/10.3354/meps09686

Export citation
Mail this link - Contents Mailing Lists - RSS
- -