DOI: https://doi.org/10.3354/meps10358
copiedNutrient gradients in Panamanian estuaries: effects of watershed deforestation, rainfall, upwelling, and within-estuary transformations
ABSTRACT:
To test whether deforestation of tropical forests alters coupling of watersheds, estuaries, and coastal waters, we measured nutrients in 8 watershed-estuarine systems on the Pacific coast of Panama where watershed forest cover ranged from 23 to 92%. Watersheds with greater forest cover discharged larger dissolved inorganic nitrogen concentrations and higher N/P into estuary headwaters. As freshwater mixed with seawater down-estuary, within-estuary biogeochemical processes erased the imprint of watershed deforestation, increased ammonium, lowered nitrate concentrations, and otherwise altered down-estuary water column composition. As estuarine water left mangrove estuaries, ammonium, nitrate, and phosphate, but not dissolved organic nitrogen, were exported to receiving near-shore waters. Mangrove estuaries in this region thus provide important ecological services, by uncoupling coastal waters from changes in terrestrial land covers, as well as by subsidizing adjoined receiving coastal waters by providing nutrients. The pattern of land-sea coupling and exports was disrupted during La Niña-influenced conditions. In one instance when La Niña conditions led to upwelling of deeper layers, high concentrations of marine-derived ammonium were inserted into estuaries. In another instance, La Niña-associated high rainfall diluted nutrient concentrations within estuaries and lowered salinity regionally, and the fresher upper layer impaired coastal upwelling. Regional rainfall has increased during the last decade. If La Niña rainfall continues to increase, disruptions of current land-estuary-sea couplings may become more frequent, with potentially significant changes in nutrient cycles and ecological services in these coupled ecosystems.
KEYWORDS

The impacts of anthropogenic changes in land cover on the export of nutrients to tropical estuaries are attenuated by mangroves (inset). Photos: I. Valiela
Deforestation decreases the discharge of inorganic nitrogen (DIN) to stream headwaters in Panama. The effect of land cover is erased in estuaries, however, as fresh water mixes with seawater that is very poor in nutrients. Land-derived nitrate is subject to denitrification, and regeneration within mangrove sediments adds ammonium to the water column of tropical estuaries. In spite of within-mangrove interception, these estuaries export significant amounts of DIN to the nutrient-poor coastal waters. Mangrove estuaries thus attenuate variability in terrestrial nutrient discharges that results from changes in land cover, while simultaneously allowing significant exports of DIN (and phosphate) to coastal waters.
I. Valiela (Co-author)
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
Anne Giblin (Co-author)
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
Coralie Barth-Jensen (Co-author)
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
Carolynn Harris (Co-author)
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
Thomas Stone (Co-author)
- Woods Hole Research Center, Falmouth, Massachusetts 02540, USA
Sophia Fox (Co-author)
- Cape Cod National Seashore, National Park Service, Wellfleet, Massachusetts 02667, USA
John Crusius (Co-author)
