MEPS

Marine Ecology Progress Series

MEPS is a leading hybrid research journal on all aspects of marine, coastal and estuarine ecology. Priority is given to outstanding research that advances our ecological understanding.

Online: ISSN 1616-1599

Print: ISSN 0171-8630

DOI: https://doi.org/10.3354/meps

Impact Factor2.1 (JCR 2025 release)

Article Acceptance Rate52.2% (2024)

Average Time in Review216 days (2024)

Total Annual Downloads2.994.606 (2025)

Volume contents
Mar Ecol Prog Ser 497:215-227 (2014)

Trophic role of gulf menhaden Brevoortia patronus examined with carbon and nitrogen stable isotope analysis

ABSTRACT: The gulf menhaden Brevoortia patronus is an important species of the coastal ecosystem and the target of the largest fishery by landings in the Gulf of Mexico. Menhaden species forage on a variety of plankton and detritus and, by grazing plankton stocks, may provide an important regulatory ecosystem service by reducing organic material loadings. This study used stable isotope analysis to examine the spatial, temporal, and ontogenetic dynamics of food selectivity and trophic role observed in gulf menhaden. The most important dietary item for juvenile (<100 mm total length) fish was phytoplankton (74.0% dietary composition), while that of sub-adults (100-200 mm) and adults (>200 mm) was zooplankton (61.6% for sub-adults and 52.4% for adults). Juvenile fish also utilized detritus when present in the water column, and their diet was more varied among individuals than sub-adult and adult age classes. Juveniles occupied a trophic level approximately one step lower (2.65 ± 0.31; mean ± SE) than sub-adults (3.50 ± 0.21) and adults (3.39 ± 0.19). Spatial dietary variation was related to known ontogenetic habitat shifts (i.e. onshore to offshore stratification of size classes), while temporal variation was minimal, especially in the larger size classes. Since the fishery largely targets age 1+ fish (sub-adults and adults), these results suggest that if overfishing occurs to the extent that it impacts recruitment, it may decrease the resiliency of the inshore Gulf of Mexico ecosystem to eutrophication by decreasing the abundance of juvenile fish seasonally present in this environment.

KEYWORDS

Zachary Olsen (Corresponding Author)

  • Department of Coastal Sciences, University of Southern Mississippi, Ocean Springs, Mississippi 39564, USA
zachary.olsen@tpwd.texas.gov

Richard Fulford (Co-author)

  • United States Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, Florida 32561, USA

Kevin Dillon (Co-author)

  • Department of Coastal Sciences, University of Southern Mississippi, Ocean Springs, Mississippi 39564, USA

William Graham (Co-author)

  • Department of Marine Science, University of Southern Mississippi, Stennis Space Center, Mississippi 39529, USA