MEPS

Marine Ecology Progress Series

MEPS is a leading hybrid research journal on all aspects of marine, coastal and estuarine ecology. Priority is given to outstanding research that advances our ecological understanding.

Online: ISSN 1616-1599

Print: ISSN 0171-8630

DOI: https://doi.org/10.3354/meps

Impact Factor2.1 (JCR 2025 release)

Article Acceptance Rate52.2% (2024)

Average Time in Review216 days (2024)

Total Annual Downloads2.729.663 (2025)

Volume contents
Mar Ecol Prog Ser 536:149-162 (2015)

High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina

ABSTRACT: Climate change intensifies the frequency and intensity of rainfall events, which increases the discharge of freshwater and nutrients to coastal areas. This may lower salinity and increase nutrient availability and, thus, affect estuarine eelgrass populations. We studied the interactive effect of increasing NH4+ levels and low salinity on estuarine eelgrass Zostera marina, grown in microcosm at various combinations of NH4+ enrichment (0, 10 and 25 µM) and salinity (5, 12.5 and 20). Increasing NH4+ had a positive effect on eelgrass performance as long as salinity was kept at ambient level (20). N enrichment was followed by an increase in pigments, photosynthesis and various growth variables and a decrease in stored carbon concentrations (sucrose and starch). Low salinity had an overall negative effect on plant fitness; pigment concentration, photosynthesis and growth were reduced while mortality increased. Exposure to low salinity was also followed by a decrease in sucrose, suggesting that it was used as an osmolyte and/or that photosynthesis could not cover energy requirements needed for osmoregulation or repairing processes. Concomitant exposure to high NH4+ and low salinity turned the positive effect of NH4+ into a strong, negative synergistic effect. Several growth-related variables were affected significantly and mortality increased substantially. We suggest that this simultaneous exposure intensified competition for energy and C skeletons affecting other metabolic processes (e.g. growth, repair processes) negatively. Our results suggest that climate change driven alterations in precipitation and NH4+ loading might seriously impact estuarine eelgrass communities.

KEYWORDS

Beatriz Villazán (Co-author)

  • Departamento de Biología (Área de Ecología), Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real 11510, Cádiz, Spain

Tiina Salo (Co-author)

  • Department of Environmental, Social and Spatial Change (ENSPAC), Roskilde University, PO Box 260, 4000, Roskilde, Denmark
  • Department of Biosciences, Åbo Akademi University, Artillerigatan 6, 20520 Åbo, Finland

Fernando G. Brun (Co-author)

  • Departamento de Biología (Área de Ecología), Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real 11510, Cádiz, Spain

Juan J. Vergara (Co-author)

  • Departamento de Biología (Área de Ecología), Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real 11510, Cádiz, Spain

Morten F. Pedersen (Corresponding Author)

  • Department of Environmental, Social and Spatial Change (ENSPAC), Roskilde University, PO Box 260, 4000, Roskilde, Denmark
mfp@ruc.dk