MEPS

Marine Ecology Progress Series

MEPS is a leading hybrid research journal on all aspects of marine, coastal and estuarine ecology. Priority is given to outstanding research that advances our ecological understanding.

Online: ISSN 1616-1599

Print: ISSN 0171-8630

DOI: https://doi.org/10.3354/meps

Impact Factor2.1 (JCR 2025 release)

Article Acceptance Rate52.2% (2024)

Average Time in Review216 days (2024)

Total Annual Downloads2.745.602 (2025)

Volume contents
Mar Ecol Prog Ser 538:229-237 (2015)

Population-specific wintering distributions of adult south polar skuas over three oceans

ABSTRACT: Migratory routes and the areas used during winter have probably been selected to maximize fitness by providing favorable environmental conditions outside the breeding season. In polar environments, because of the extreme winter weather, most breeding species migrate to encounter better conditions in areas that can differ between and also within species. Using geolocation sensors, we found that south polar skuas Catharacta maccormicki from 2 distant populations breeding on the Antarctic continent along the Atlantic and Indian Oceans migrate northward to winter in tropical Indian Ocean and in temperate North Pacific waters, respectively. Most individuals from each population winter in different environmental conditions, with water temperatures ranging from 16 to 29°C. Nevertheless, they have very similar activity patterns, spending more than 80% of their time on the water, and their feather δ15N values suggest that they probably feed at similar trophic levels during the molt. During overwintering, the overall and constant low activity level may be partly imposed by molting constraints, but it also suggests that trophic conditions are good for skuas. The wintering areas of the species correspond to sectors of high concentrations of breeding or wintering tropical, Northern, and Southern Hemisphere seabird species that are likely to be kleptoparasitized by skuas. A certain degree of individual variation exists within each population, which induces a spatial overlap in the wintering grounds of distant breeding populations. These results have potential important consequences in terms of fitness, genetic divergence, and susceptibility to climate change and marine pollution.

KEYWORDS

H. Weimerskirch (Corresponding Author)

  • Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France
henri.weimerskirch@cebc.cnrs.fr

A. Tarroux (Co-author)

  • Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway

O. Chastel (Co-author)

  • Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France

K. Delord (Co-author)

  • Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France

Y. Cherel (Co-author)

  • Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France

S. Descamps (Co-author)

  • Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway