MEPS 585:17-30 (2017)  -  DOI: https://doi.org/10.3354/meps12374

Response of intertidal benthic macrofauna to migrating megaripples and hydrodynamics

Daphne van der Wal1,*, Tom Ysebaert1,2, Peter M. J. Herman1,3

1NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and Delta Systems, and Utrecht University, PO Box 140, 4400 AC Yerseke, The Netherlands
2Wageningen Marine Research, PO Box 77, 4400 AB Yerseke, The Netherlands
3Deltares, PO Box 177, 2600 MH Delft, The Netherlands
*Corresponding author:

ABSTRACT: Migrating flow-transverse mesoscale intertidal bedforms (megaripples or dunes) may pose disturbance but may also provide heterogeneity in microhabitats to the inhabiting fauna. We investigated how the macrofauna community responds to these migrating intertidal bedforms, based on surveys in the Westerschelde estuary. Considering the entire estuary, low- and high-energy intertidal areas differed in macrofauna, and high-energy flat areas had a macrofauna community intermediate to those in low-energy flat areas and high-energy areas with megaripples. In megaripple areas on a polyhaline and a mesohaline tidal flat, the macrofauna community depended on hydrodynamics, morphodynamics, grain size, elevation and steepness of the megaripples. The relative importance of the environmental variables for structuring the macrofauna community differed for each site. Within the megaripples, conditions on crests, at flanks and in troughs were distinctly different: crests had more chl a and coarser sediment than troughs, while flanks had intermediate levels; troughs were higher in carbon and mud content than flanks and crests. The microhabitats supported a different macrofauna community but with a very large overlap in species. Troughs typically had higher species richness, while crests had higher densities of, in particular, (mobile) surface deposit feeders. Part of the macrofauna could benefit from the habitat heterogeneity within the megaripples, but the effect was relatively small. The distribution of macrofauna in the intertidal zone was particularly regulated by overall current velocities and bedform morphodynamics.


KEY WORDS: Macrofauna · Habitat partitioning · Bedforms · Megaripples · Hydrodynamics · Intertidal flat · Westerschelde


Full text in pdf format
Supplementary material 
Cite this article as: van der Wal D, Ysebaert T, Herman PMJ (2017) Response of intertidal benthic macrofauna to migrating megaripples and hydrodynamics. Mar Ecol Prog Ser 585:17-30. https://doi.org/10.3354/meps12374

Export citation
Mail this link - Contents Mailing Lists - RSS
- -