MEPS

Marine Ecology Progress Series

MEPS is a leading hybrid research journal on all aspects of marine, coastal and estuarine ecology. Priority is given to outstanding research that advances our ecological understanding.

Online: ISSN 1616-1599

Print: ISSN 0171-8630

DOI: https://doi.org/10.3354/meps

Impact Factor2.1 (JCR 2025 release)

Article Acceptance Rate52.2% (2024)

Average Time in Review216 days (2024)

Total Annual Downloads2.706.279 (2025)

Volume contents
Mar Ecol Prog Ser 674:163-171 (2021)

Sediment selection: range-expanding fiddler crabs are better burrowers than their historic-range counterparts

ABSTRACT: Climate change plays a large role in driving species range shifts; however, the physical characteristics of an environment can also influence and alter species distributions. In New England salt marshes, the mud fiddler crab Minuca pugnax is expanding its range north of Cape Cod, MA, into the Gulf of Maine (GoM) due to warming waters. The burrowing lifestyle of M. pugnax means sediment compaction in salt marshes may influence the ability of crabs to dig, with more compact soils being resistant to burrowing. Previous studies indicate that salt marshes along the GoM have a higher sediment compaction relative to marshes south of Cape Cod. Physical characteristics of this habitat may be influencing the burrowing performance of M. pugnax and therefore the continuation of their northward range expansion into the GoM. We conducted a controlled laboratory experiment to determine if compaction affects the burrowing activity of M. pugnax in historical and range-expanded populations. We manipulated sediment compaction in standardized lab assays and measured crab burrowing performance with individuals collected from Nantucket (NAN, i.e. historical range) and the Plum Island Estuary (PIE, i.e. expanded range). We determined compaction negatively affected burrowing ability in crabs from both sites; however, crabs from PIE have a higher probability of burrowing in higher sediment compactions than NAN crabs. In addition, PIE crabs were more likely to burrow overall. We conclude that site level differences in compaction are likely altering burrowing behavior in the crab’s expanded-range territory by way of local adaptation or phenotypic plasticity.

KEYWORDS

Richard J Wong (Corresponding Author)

  • Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125, USA
rjw38@duke.edu

Michael S. Roy (Co-author)

  • Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125, USA

Jarrett E. K. Byrnes (Co-author)

  • Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125, USA