MEPS

Marine Ecology Progress Series

MEPS is a leading hybrid research journal on all aspects of marine, coastal and estuarine ecology. Priority is given to outstanding research that advances our ecological understanding.

Online: ISSN 1616-1599

Print: ISSN 0171-8630

DOI: https://doi.org/10.3354/meps

Volume contents
Mar Ecol Prog Ser 692:119-136 (2022)

Intra- and inter-population variation in sensitivity of migratory sockeye salmon smolts to phenological mismatch

ABSTRACT: Certain consumer traits may influence sensitivity to phenological mismatches between consumers and their prey, and understanding the variation in these traits across or within populations could be helpful in predicting if and how a consumer population will respond to climate change. Here, we quantify intra- and inter-population variation in traits of sockeye salmon (Oncorhynchus nerka) smolts that may influence sensitivity to starvation associated with phenological mismatch. We asked 2 questions: (1) What is the magnitude of intra- and inter-population variation in physical and energetic condition at different stages of emigration? (2) How would this trait influence survival during periods of starvation? We collected sockeye salmon smolts from 3 populations before and 8 populations after riverine migration within the Skeena River watershed, BC, and measured condition-specific traits such as size and energetic condition. We discovered among-population variation was lower after migration: before migration traits differed between populations, but after-migration traits were more similar across populations. We estimated starvation resistance, the number of days until predicted death, using a previously developed model. Mean starvation resistance varied between 18 and 33 d across populations and varied within each population to as low as 6 d. These results reveal substantial within- and across-population sensitivity to starvation which may be associated with phenological mismatch. Thus, factors other than phenology (e.g. freshwater ecosystem dynamics that influence smolt condition) have the potential to influence sensitivity to phenological mismatch and, potentially, marine survival.

KEYWORDS

Samantha M. Wilson (Corresponding Author)

  • Earth to Ocean Research Group, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
swilson471@gmail.com

David A. Patterson (Co-author)

  • Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

Jonathan W. Moore (Co-author)

  • Earth to Ocean Research Group, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada