Inter-Research > MEPS > v693 > p107-124  
MEPS
Marine Ecology Progress Series

via Mailchimp

MEPS 693:107-124 (2022)  -  DOI: https://doi.org/10.3354/meps14091

Traits of tidal marsh plants determine survival and growth response to hydrodynamic forcing: implications for nature-based shoreline protection

Ken Schoutens1,*, Pieter Luys1, Maike Heuner2, Elmar Fuchs2, Vanessa Minden3, Tilla Schulte Ostermann4, Tjeerd J. Bouma5, Jim Van Belzen5, Stijn Temmerman1

1University of Antwerp, Ecosystem Management Research Group, 2610 Antwerp, Belgium
2Federal Institute of Hydrology, Department of Ecological Interactions, 56068 Koblenz, Germany
3Vrije Universiteit Brussels, Department of Biology, Ecology and Biodiversity, 1050 Brussels, Belgium
4University of Oldenburg, Institute of Biology and Environmental Sciences, Landscape Ecology Group, 26129 Oldenburg, Germany
5Netherland Institute for Sea Research (NIOZ), Department of Estuarine and Delta Systems, Utrecht University, 4400 AC Yerseke, The Netherlands
*Corresponding author:

ABSTRACT: Tidal marshes are increasingly valued for their nature-based shoreline protection function, as they reduce waves, currents and erosion. The effectiveness of this function depends on the ability of tidal marsh plants to grow and survive under pressure from waves and currents. However, how this varies with species-dependent plant traits is poorly understood. We performed a field transplantation experiment to quantify species-specific growth responses to different levels of hydrodynamic exposure and tidal inundation for 3 NW European marsh species: Schoenoplectus tabernaemontani, Bolboschoenus maritimus and Phragmites australis. In this order, these species showed increasing shoot stiffness, length and biomass, which are traits that increase hydrodynamic drag forces experienced by plants. Increased exposure to tidal inundation and hydrodynamics reduced the growth of all 3 species, but species with lower biomass and shorter, thinner and more flexible shoots could better cope with higher hydrodynamic exposure and tidal inundation. Furthermore, transplants of S. tabernaemontani (i.e. the species with the lowest shoot stiffness, length and biomass that survived under all tested conditions) developed smaller, thinner and more flexible shoots in response to higher hydrodynamic exposure and inundation. Hence our study indicates that similar inter- and intra-specific plant traits drive plant growth in response to hydrodynamics and inundation. This suggests that the spatial distribution of species typically observed in tidal marshes results not only from species-specific tolerance to tidal inundation gradients but also from hydrodynamic gradients. Allowing enough space for development of species zonation may be important to increase the efficiency of nature-based shoreline protection by tidal marshes.


KEY WORDS: Plant traits · Growth response · Hydrodynamic exposure · Tidal inundation · Schoenoplectus tabernaemontani · Bolboschoenus maritimus · Phragmites australis


Full text in pdf format
Supplementary material
Cite this article as: Schoutens K, Luys P, Heuner M, Fuchs E and others (2022) Traits of tidal marsh plants determine survival and growth response to hydrodynamic forcing: implications for nature-based shoreline protection. Mar Ecol Prog Ser 693:107-124. https://doi.org/10.3354/meps14091

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article