DOI: https://doi.org/10.3354/meps14856
copiedSubantarctic Front variability: a potential driver of Patagonian scallop Zygochlamys patagonica recruitment fluctuations
ABSTRACT:
The Patagonian scallop Zygochlamys patagonica sustains an important economic resource in the Southwestern Atlantic Ocean and presents recruitment variability in beds associated with the shelf break front. The aim of this study was to analyze the environmental drivers acting on recruits that may cause large population abundance fluctuations on interannual timescales. Scallop recruitment data from 2000 to 2007 were analyzed alongside oceanographic variables from remote sensing and bottom temperature measurements from surveys. A statistically significant correlation was identified between interannual recruitment variability and the northernmost latitude of the Subantarctic Front (SAF) (catch per unit effort vs. SAF position, r = 0.81, p < 0.05). When the SAF displaces northwards, bottom temperature is lower, and recruitment is enhanced as larvae have more time to develop and more chances to avoid advection to the open ocean. Conversely, if the SAF displaces southward, recruitment is negatively affected because the larvae do not have enough time to settle before being exported to the oceanic realm. Results are discussed considering the planktonic larval duration, larval depth distribution, connection between beds, bottom temperature variability, and the SAF latitudinal position and its role as the northern population boundary. Potential impacts of climate change on recruitment dynamics are also discussed.
KEYWORDS
Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44:83-105 Crossref
Aubone N, Saraceno M, Torres Alberto ML, Campagna J and others (2021) Physical changes recorded by a deep diving seal on the Patagonian slope drive large ecological changes. J Mar Syst 223:103612 Crossref
Bakun A, Csirke J (1998) Environmental processes and recruitment variability. In: Rodhouse PG, Dawe EG, O’Dor RK (eds) Squid recruitment dynamics. The genus Illex as a model. The commercial Illex species. Influences on variability. Fish Tech Pap 376. FAO, Rome, p 105-124 Link
Bakun A, Parrish RH (1991) Comparative studies of coastal pelagic fish reproductive habitats: the anchovy (Engraulis anchoita) of the southwestern Atlantic. ICES J Mar Sci 48:343-361 Crossref
Berden G, Charo M, Möller OO Jr, Piola AR (2020) Circulation and hydrography in the western South Atlantic shelf and export to the deep adjacent ocean: 30°S to 40°S. J Geophys Res Oceans 125:e2020JC016500 Crossref
Berden G, Piola AR, Palma ED (2022) Cross-shelf exchange in the Southwestern Atlantic shelf: climatology and extreme events. Front Mar Sci 9:855183 Crossref
Bodnariuk N, Simionato CG, Saraceno M, Osman M, Diaz LB (2021) Interannual variability of the latitude of separation of the Brazil Current: teleconnections and oceanic Rossby waves propagation. J Geophys Res Oceans 126: e2021JC017557 Crossref
Bodnariuk N, Simionato CG, Saraceno M (2022) Water exchanges between Northern Argentinean Shelf and the open ocean on interannual timescales: remote influences. J Geophys Res Oceans 127:e2022JC018517 Crossref
Bogazzi E (2008) El proceso de pesca en la explotación de la vieira patagónica (Zygochlamys patagonica) y las respuestas espacio-temporales de las poblaciones. PhD thesis, Universidad Nacional del Comahue, Neuquen
Bogazzi E, Baldoni A, Rivas A, Martos P and others (2005) Spatial correspondence between areas of concentration of Patagonian scallop (Zygochlamys patagonica) and frontal systems in the southwestern Atlantic. Fish Oceanogr 14:359-376 Crossref
Campodónico S, Macchi G, Lomovasky B, Lasta M (2008) Reproductive cycle of the Patagonian scallop Zygochlamys patagonica in the south-western Atlantic. J Mar Biol Assoc UK 88:603-611 Crossref
Campodónico S, Escolar M, García J, Aubone A (2019) Síntesis histórica y estado actual de la pesquería de vieira patagónica Zygochlamys patagonica (King 1832) en la Argentina. Biología, evaluación de biomasa y manejo. Mar Fish Sci 32:125-148 (in Spanish with English Abstract) Crossref
Caputi N, Penn JW, Joll LM, Chubb CF (1998) Stock-recruitment environment relationships for invertebrate species of Western Australia. In: Jamieson GS, Campbell A (eds) Proceedings of the North Pacific Symposium on Invertebrate Stock Assessment and Management. Can Spec Publ Fish Aquat Sci 125:247-255 Link
Caputi N, de Lestang S, Hart A, Kangas M, Johnston D, Penn J (2014) Catch predictions in stock assessment and management of invertebrate fisheries using pre-recruit abundance; case studies from Western Australia. Rev Fish Sci Aquacult 22:36-54 Crossref
Carreto JI, Carignan MO, Montoya NG, Cucchi Colleoni AD (2007) Ecología del fitoplancton en los sistemas frontales del Mar Argentino. In: Carreto JI, Bremec C (eds) El Mar Argentino y sus recursos pesqueros, Vol 5. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, p 11-31
Chen C, Zhao L, Gallager S, Ji R and others (2021) Impact of larval behaviors on dispersal and connectivity of sea scallop larvae over the northeast US shelf. Prog Oceanogr 195:102604 Crossref
Ciocco NF, Lasta ML, Narvarte M, Bremec C, Bogazzi E, Valero J, Orensanz JM (2006) Scallops fisheries in Argentina. In: Shumway SE, Parsons GJ (eds) Developments in aquaculture and fisheries sciences, Vol 2. Scallops: biology, ecology and aquaculture. Elsevier Science, Amsterdam, p 1251-1292
Combes V, Matano RP (2014) Trends in the Brazil/Malvinas confluence region. Geophys Res Lett 41:8971-8977 Crossref
Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443-466 PubMed Crossref
Cragg SM (2006) Development, physiology, behavior, and ecology of scallop larvae. Dev Aquacult Fish Sci 35:45-122 Crossref
Ferrari R, Artana C, Saraceno M, Piola AR, Provost C (2017) Satellite altimetry and current-meter velocities in the Malvinas Current at 41°S: comparisons and modes of variations. J Geophys Res Oceans 122:9572-9590 Crossref
Franco BC, Palma ED, Tonini MH (2015) Benthic-pelagic uncoupling between the Northern Patagonian Frontal System and Patagonian scallop beds. Estuar Coast Shelf Sci 153:145-155 Crossref
Franco BC, Palma ED, Combes V, Lasta ML (2017) Physical processes controlling passive larval transport at the Patagonian Shelf Break Front. J Sea Res 124:17-25 Crossref
Franco BC, Palma ED, Combes V, Acha EM, Saraceno M (2018) Modeling the offshore export of Subantarctic Shelf Waters from the Patagonian shelf. J Geophys Res Oceans 123:4491-4502 Crossref
Franco BC, Ruiz-Etcheverry LA, Marrari M, Piola AR, Matano RP (2022) Climate change impacts on the Patagonian Shelf break front. Geophys Res Lett 49:e2021GL096513 Crossref
Gilbert CS, Gentleman WC, Johnson CL, DiBacco C, Pringle JM, Chen C (2010) Modelling dispersal of sea scallop (Placopecten magellanicus) larvae on Georges Bank: the influence of depth-distribution, planktonic duration and spawning seasonality. Prog Oceanogr 87:37-48 Crossref
Guerrero RA, Piola AR, Fenco H, Matano RP, Combes V, Chao Y, Strub PT (2014) The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: satellite observations. J Geophys Res Oceans 119:7794-7810 PubMed
Hart DR, Chute AS (2004) Essential fish habitat source document: sea scallop, Placopecten magellanicus, life history and habitat characteristics, 2nd edn. NOAA Tech Memo NMFS-NE-189. repository.library.noaa.gov/view/noaa/4031 Link
Lasta M, Hernandez DR, Bremec C (1998) Determinación del tamaño muestral para la estimación de la abundancia de vieira. Informe Técnico Interno 93/1998. INIDEP, Mar del Plata
Le Cozannet G, Cazenave A (2024) Adaptation to sea level rise in France. Rend Lincei Sci Fis Nat 35:381-393 Crossref
Le Pennec M, Paugam A, Le Pennec G (2003) The pelagic life of the pectinid Pecten maximus—a review. ICES J Mar Sci 60:211-233 Crossref
Lomovasky BJ, Lasta M, Valiñas M, Bruschetti M, Ribeiro P, Campodónico S, Iribarne O (2008) Differences in shell morphology and internal growth pattern of the Patagonian scallop Zygochlamys patagonica in the four main beds across their SW Atlantic distribution range. Fish Res 89:266-275 Crossref
Matano RP, Palma ED (2008) On the upwelling of downwelling currents. J Phys Oceanogr 38:2482-2500 Crossref
Matano RP, Combes V, Piola AR, Guerrero R and others (2014) The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: numerical simulations. J Geophys Res Oceans 119:7949-7968 PubMed Crossref
Mauna AC, Franco BC, Baldoni A, Acha EM, Lasta ML, Iribarne OO (2008) Cross-front variations in adult abundance and recruitment of Patagonian scallop (Zygochlamys patagonica) at the SW Atlantic Shelf Break Front. ICES J Mar Sci 65:1184-1190 Crossref
McEdward LR (1995) Evolution of pelagic direct development in the starfish Pteraster tesselatus (Asteroidea: Velatida). Biol J Linn Soc 54:299-327 Crossref
Nathan R (2001) The challenges of studying dispersal. Trends Ecol Evol 16:481-483 Crossref
Orensanz JM, Parma AM, Turk T, Valero J (2006) Dynamics, assessment and management of exploited natural populations. Dev Aquacult Fish Sci 35:765-868 Crossref
Paniagua GF, Saraceno M, Piola AR, Charo M, Ferrari R, Artana C, Provost C (2021) Malvinas current at 44.7°S: first assessment of velocity temporal variability from in situ data. Prog Oceanogr 195:102592 Crossref
Piola AR, Martínez Avellaneda N, Guerrero RA, Jardon FP, Palma ED, Romero SI (2010) Malvinas-slope water intrusions on the northern Patagonia continental shelf. Ocean Sci 6:345-359 Crossref
Romero SI, Piola AR, Charo M, Garcia CAE (2006) Chlorophyll-a variability off Patagonia based on SeaWiFS data. J Geophys Res Oceans 111:C05021 Crossref
Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460-1466 PubMed Crossref
Ruiz-Etcheverry LA, Saraceno M (2020) Sea level trend and fronts in the South Atlantic Ocean. Geosciences 10:218 Crossref
Saraceno M, Provost C (2012) On eddy polarity distribution in the southwestern Atlantic. Deep Sea Res I 69:62-69 Crossref
Saraceno M, Provost C, Piola AR, Bava J, Gagliardini A (2004) Brazil Malvinas Frontal System as seen from 9 years of advanced very high resolution radiometer data. J Geophys Res Oceans 109:C05027 Crossref
Saraceno M, Bodnariuk N, Ruiz-Etcheverry LA, Berta M, Simionato CG, Beron-Vera FJ, Olascoaga MJ (2024) Lagrangian characterization of the southwestern Atlantic from a dense surface drifter deployment. Deep Sea Res I 208:104319 Crossref
Schejter L, Bremec C, Waloszek D, Escolar M (2010) Recently settled stages and larval developmental mode of the bivalves Zygochlamys patagonica and Hiatella meridionalis in the Argentine sea. J Shellfish Res 29:63-67 Crossref
Schwartz M, Campodónico S (2019) Primera descripción del desarrollo larval temprano de la vieira patagónica (Zygochlamys patagonica). Mar Fish Sci 32:115-124 Crossref
Sinclair M, Iles TD (1989) Population regulation and speciation in the oceans. ICES J Mar Sci 45:165-175 Crossref
The MathWorks Inc. (2017) MATLAB version 9.2.0 (R2017a). The MathWorks Inc., Natick, MA. www.mathworks.com
Tian RC, Chen C, Stokesbury KD, Rothschild BJ and others (2009) Dispersal and settlement of sea scallop larvae spawned in the fishery closed areas on Georges Bank. ICES J Mar Sci 66:2155-2164
Tian RC, Chen C, Stokesbury KD, Rothschild BJ and others (2009) Modeling the connectivity between sea scallop populations in the Middle Atlantic Bight and over Georges Bank. Mar Ecol Prog Ser 380:147-160 Crossref
Torres Alberto ML, Bodnariuk N, Ivanovic M, Saraceno M, Acha EM (2021) Dynamics of the confluence of Malvinas and Brazil currents, and a southern Patagonian spawning ground, explain recruitment fluctuations of the main stock of Illex argentinus. Fish Oceanogr 30:127-141 Crossref
Tremblay MJ, Sinclair MM (1988) The vertical and horizontal distribution of sea scallop (Placopecten magellanicus) larvae in the Bay of Fundy in 1984 and 1985. J Northwest Atl Fish Sci 8:43-53 Crossref
Tremblay MJ, Loder JW, Werner FE, Naimie CE, Page FH, Sinclair MM (1994) Drift of sea scallop larvae Placopecten magellanicus on Georges Bank: a model study of the roles of mean advection, larval behavior and larval origin. Deep Sea Res II 41:7-49 Crossref
Valero JL (2002) Analysis of temporal and spatial variation in growth and natural mortality estimation with an integrated dynamic model in the Patagonian scallop (Zygochalmys patagonica). MSc thesis, University of Washington, Seattle, WA
M. Torres Alberto (Corresponding Author)
- Instituto de Investigaciones Marinas y Costeras (IIMyC/UNMdP-CONICET), B7600 Mar del Plata, Argentina
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), B7602 Mar del Plata, Argentina
N. Bodnariuk (Co-author)
- Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), C1053 Buenos Aires, Argentina
- Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI IFAECI/ CNRS-CONICET-UBA), B1015 Buenos Aires, Argentina
- Departamento de Ciencias de la Atmósfera y los Océanos (FCEN, UBA), C1053 Buenos Aires, Argentina
M. Saraceno (Co-author)
- Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), C1053 Buenos Aires, Argentina
- Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI IFAECI/ CNRS-CONICET-UBA), B1015 Buenos Aires, Argentina
- Departamento de Ciencias de la Atmósfera y los Océanos (FCEN, UBA), C1053 Buenos Aires, Argentina
E Acha (Co-author)
- Instituto de Investigaciones Marinas y Costeras (IIMyC/UNMdP-CONICET), B7600 Mar del Plata, Argentina
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), B7602 Mar del Plata, Argentina
Handling Editor:
Alejandro Gallego, Aberdeen, UK
Reviewers:
N. Caputi, B.R. Broitman and 1 anonymous referee
Acknowledgements:
the extremely energetic environment in which populations persist, larvae likely prioritize remaining near the seafloor, making their larval swimming behavior less relevant in this context. Regarding vertical transport, we are currently employing an ocean reanalysis to assess its importance in the dispersion of scallop larvae. This analysis, which goes beyond the scope of the present study, is based on the Mercator product—an ocean circulation data set that is widely used in the region and extensively validated. In our simulation of passive particle advection, we observe that the primary mechanism transporting the larvae is horizontal transport. There exists a horizontal time scale associated with the distance traveled by larvae along the current flow until they reach the BMC. The longer (shorter) the distance traveled, the greater (smaller) is the number of scallops that could reach the seafloor. Therefore, we have chosen to adopt a 2D perspective for this study, acknowledging that large-scale 2D circulation features play the leading role in conditioning larval dynamics. This does not imply that vertical transport is unimportant—in fact, we recognize its significance, as cited in the literature. However, we consider it to play a secondary role in complementing the zero-order picture proposed in this study. We are currently investigating this aspect, which will be the subject of a forthcoming study.