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ABSTRACT: The impact of large food falls and carrion on meiobenthic communities remains little
understood. The objective of the present study was to investigate whether the carcass of a stingray,
encountered fortuitously in an Australian estuary, affects the underlying meiobenthic community, in
particular nematode assemblages. The integrity of the skeleton and the low redox values observed
under the carcass suggest that the cadaver had been slowly and chiefly decomposed by microbes.
The abundance and number of meiofaunal taxa, as well as nematode abundance and nematode-
species richness, were significantly lower under the carcass when compared to samples outside the
carcass. Nonetheless, a few nematode species, typical of hypoxic/anoxic sediments, were more abun-
dant under the carcass. Interestingly, all these species were absent or rare in samples near, but not
under, the carcass, suggesting that they may take advantage of the reduced environment created by
the carcass and the consequent lack of competition to prosper. As observed for other marine environ-
ments, carcasses in estuaries create a microhabitat that supports a characteristic meiobenthic fauna,
distinct from those inhabiting the surrounding sediments, but similar to those of reduced habitats.
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INTRODUCTION

Nekton carcasses from fishes, birds, cetaceans and
other large animals have pronounced effects on ben-
thic organisms from a variety of aquatic environments
(Ramsay et al. 1997). Once deposited on the bottom,
carcasses attract several opportunist species and are
usually consumed within a few days. In the deep sea,
for instance, the carcasses of whales attract dense
aggregations of mobile scavengers, including dramati-
cally increased numbers of macrofaunal species, sev-
eral being unique to the carcasses (Smith et al. 2002,
Smith & Baco 2003, Dahlgren et al. 2004, Glover et al.
2005, Fujikura et al. 2006). In the North Sea, the fish
discards produced by the beam-trawl fishery attract
several species of invertebrate scavengers, such as brit-
tle stars, starfish, gadoids, and hermit and swimming
crabs (Kaiser & Spencer 1994, Groenewold & Fonds
2000). In the same way, the upstream migration and
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subsequent death of salmons and other cyprinids
attracts the larvae of different insects (Chaloner et al.
2002). Although the importance of carcass decomposi-
tion as a transfer mechanism for nutrients and energy
across trophic levels and ecosystem boundaries has
been widely recognized (King et al. 2007), benthic
studies focusing on its ecological importance have pre-
dominantly investigated the effect of carcasses on
macroorganisms. To date there are few data available
on the impact of carcasses on smaller meiobenthic
organisms (organisms retained by 0.32 pm mesh and
passing through 0.5 mm mesh; Giere 2009), the numer-
ically dominant metazoans representative of the ben-
thos of most marine and brackish water habitats (Heip
et al. 1985).

Studies on the meiofauna associated with carrion
showed varying results. In the deep sea, the abun-
dance of the dominant group of meiofauna, the nema-
todes, was negatively affected by whale carcasses

© Inter-Research 2011 - www.int-res.com



28 Aquat Biol 13: 27-33, 2011

(Debenham et al. 2004, Pavlyuk et al. 2009). Shallow-
water studies, on the other hand, did not observe sig-
nificant differences in nematode abundances between
samples with and without carrion (Gerlach 1977, Olafs-
son 1992, Franco et al. 2008). A common finding
among these studies is that carrion significantly af-
fected nematode composition, favoring a few genera
but not others (Gerlach 1977, Olafsson 1992, Franco et
al. 2008, Pavlyuk et al. 2009). In addition to these stud-
ies, there is evidence from the North Sea that the free-
living marine nematode Pontonema vulgare is at-
tracted to dead and moribund organisms (Lorenzen et
al. 1987, Prein 1988). Given such paucity of data, the
effect of carrion on meiobenthic organisms remains
little understood.

The objective of the present study was to investigate
how the carcass of a stingray, encountered fortuitously
in an Australian estuary, affected the meiobenthic com-
munity, in particular nematode assemblages. Specifi-
cally, the study examined the hypothesis that no differ-
ences occur in meiofaunal and nematode abundances,
number of taxa, or faunal composition between sam-
ples taken underneath this carcass and those taken
nearby. Additionally, the present study aimed at inves-
tigating whether there is a specialized nematode scav-
enger assemblage or whether opportunistic/generalist
species take advantage of the new environment cre-
ated by the carcass.

MATERIALS AND METHODS

Study area and the carcass. The carcass of a stingray
was found in December 2009 at 0.5 m water depth in
Basin View, St. Georges Basin, in the southeast of New
South Wales, Australia (35°5'43" S, 150°33' 29" E). The
basin covers an area of approximately 42 km? and has a
catchment area of 348 km?. St. Georges Basin is rela-
tively shallow (0 to 10 m water depth), mesotrophic to
eutrophic, and incorporates a wide variety of sedimen-
tary habitats: sand banks, saltmarshes, seagrasses,
rocky reefs, mangroves, intertidal flats, fluvial delta
and a channel (Murray et al. 2005). Like other Aus-
tralian estuaries, St Georges Basin receives little input
of freshwater and is highly saline throughout the year
(35 psu at the sampling site) (Hutchings 1999). The
basin is permanently open to the ocean, with little wa-
ter exchange due to the long and narrow outlet. The
benthic environment at the basin is variable; overall,
diatoms are the primary source of organic matter, and
the organic matter in the sediment is mainly degraded
by anaerobiosis (Murray et al. 2005).

The carcass was found lying on bare sediment and was
partially degraded (Fig. 1). The skeleton was intact, and
the flesh was partially decomposed, mainly on the wings

and tail. The nose was partially covered with sediment
and intact. The cadaver formed a black halo in the sedi-
ment, indicating the lack of oxygen and presence of sul-
fides. The skeleton of the carcass measured approxi-
mately 60 cm in width. The dead animal probably
belonged to the species Dasyatis brevicauda Hutton,
1875 or D. thetidis Ogilby, 1899 (M. McGrouther pers.
comm., Australian Museum). Both are widespread, tem-
perate, Southern Hemisphere species recorded in
Australia, New Zealand and southern Africa, occurring
in a wide variety of habitats including shallow coastal
bays, estuaries, lagoons, large inlets, coastal rocky
reefs, offshore islands and open sea floor (Duffy & Paul
2003, Stevens 2008). Although very little is known about
their populations, during summer, D. brevicauda forms
large aggregates for mating (Duffy & Paul 2003). Re-
creational fishers and bycatch from inshore trawling are
probably the main causes of their decline and the pro-
duction of cadavers (Stevens 2008).

Sampling and sample processing. Four samples
(core of 2 cm inner diameter and 3 cm in depth) of
meiofauna were taken from underneath the stingray,
and 4 samples were taken from adjacent sediments
outside the carcass. No samples were taken inside or
on the carcass. The samples ‘outside’ the carcass were
randomly taken up to 1 m from the cadaver. Another 3
samples of the same size were taken under and outside

Fig. 1. Carcass of a stingray measuring ca. 60 cm in width

found at a water depth of 0.5 m in St. Georges Basin, NSW,

Australia. Black strips on the water surface are leaves of
Zoostera capricorni from adjacent areas
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the carcass to determine total organic matter and
redox potentials. Redox potentials were analyzed in
the surface layer.

Samples for the investigation of meiofauna were
fixed in 10 % formalin immediately after sampling. In
the laboratory, samples were washed through a 45 pm
sieve, extracted by flotation with a solution of colloidal
silica (LUDOX TM-50; density: 1.18 g cm’3), stained
with Rose Bengal and sorted under a low-power stereo
microscope (Heip et al. 1985). All nematodes from sam-
ples under the carcass were picked out, transferred to
anhydrous glycerol and mounted on permanent slides
for identification. From samples outside the carcass,
10% of all nematodes were randomly picked out and
mounted on permanent slides for identification. Nema-
todes were identified under the microscope to genus
level (Warwick et al. 1998) and were separated into
putative morphospecies, while the other groups were
identified to a higher taxonomic level (phylum or class).
All material has been deposited in the Australian
Museum.

Sediment total organic matter (OM) was estimated
by dry weight after combustion at 550°C for 4 h. Redox
potential was measured at the sediment surface using
a Metrohm AG 9109 Herisau Combined Pt-wire elec-
trode, with an Ag/AgCl reference electrode. The
instrument was calibrated using Orion Application
Solution ORP Standard 967961, and all redox readings
were corrected for EHRef = -210 + 3 mV, i.e. reported
redox potentials are versus that of the hydrogen elec-
trode, EHO = 0 mV.

Data analysis. As univariate descriptors of the fauna,
abundance, number of higher meiofaunal taxa and
number of nematode species were considered. ANOVA
was applied to test for differences in all univariate mea-
sures between under the carcass and outside the car-
cass. Differences in the multivariate structure of meio-
faunal communities and nematode assemblages were
analyzed by means of analysis of similarity (ANOSIM;
Clarke & Gorley 2006). Multivariate analyses were con-
ducted on Euclidean-distance similarity matrices. For
the meiofauna, presence/absence data were used to
remove the relative importance of nematodes. For
nematodes, data were standardized to eliminate the
effect of density, and no transformation was applied.
To visualize the multivariate structure of the meiofau-
nal and nematode assemblages, non-metric multi-
dimensional scaling ordination (nMDS) was performed
based on the same Euclidian-distance similarity matrix.
To identify which nematode species were the most
important in characterizing differences between sam-
ples from under and outside the carcass, a similartiy
percentage (SIMPER) analysis was conducted. All mul-
tivariate analyses were performed with PRIMER v6.0
(Clarke & Gorley 2006).

RESULTS AND DISCUSSION

The integrity of the skeleton, the presence of remain-
ing flesh and the apparent absence of macroinverte-
brates on the carcass (Fig. 1) suggest that the cadaver
had been slowly and chiefly decomposed by microbes.
Although no macrofaunal or microbial samples were
taken, the low redox values observed in surface sedi-
ments underneath the carcass in comparison to the
samples from outside the carcass (Fig. 2) provide addi-
tional evidence for strong microbial degradation of the
stingray cadaver, as this was probably a result of
higher oxygen consumption due to microbial decompo-
sition of the carrion (Tang et al. 2006). Larger scav-
engers, like starfish, fish and amphipods can consume
large amounts of food falls in <5 d (Kaiser & Moore
1999). However, microbial decomposition is much
slower, taking several weeks to months, depending on
the local conditions, to completely decompose a fish
carcass (Minshall et al. 1991, Parmenter & Lamarra
1991, Fenoglio et al. 2005, Premke et al. 2010). This
much slower decomposition is partly due to the fact
that scavenger microbes produce noxious chemicals
that deter animal scavengers (Burkepile et al. 2006).

Although there was a significant reduction in redox
potential under the stingray, an indication of lack of
oxygen and presence of sulfides, sediment samples
near the carcass were also anoxic (Fig. 2). These values
were nevertheless within the range reported for vege-
tated and unvegetated sites in St. Georges Basin
(below —100 mV; Murray et al. 2005, McKinnon et al.
2009), suggesting that values sampled outside the car-
cass are natural for the study area and probably free of
effects from the carcass itself. There were no signi-
ficant differences in the concentrations of sediment

Fis=37.76,p < 0.01 F,s=2.06, p = 0.201
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Fig. 2. Redox potentials and organic matter content (OM) from
samples taken outside and under the carcass of a stingray. Data
are mean * SD. ANOVA results are given above each panel
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organic matter between samples taken under and out-
side the stingray (Fig. 2). This was probably due to the
high variability in organic matter values from samples
underneath the carcass, since a mosaic of spots with
and without remaining flesh was observed. Outside
the carcass no flesh was observed.

A total of 12 meiofaunal taxa were encountered
(Appendix 1). Meiofaunal abundance and the number
of meiofaunal taxa per core were significantly lower
underneath the carcass compared to samples outside
(Fig. 3a,b). Additionally, meiofaunal composition
underneath the carcass was significantly different
from samples taken outside the carcass (R = 0.839,
p < 0.05; Fig. 4a). Whereas no meiofaunal taxon oc-
curred exclusively under the carcass, several taxa such
as nauplii, turbellarians, oligochaetes, isopods and
kinorhynchs were only found in samples outside the
carcass (Appendix 1). Other taxa, such as acari and
polychaetes, were found only once (as singletons in
only 1 sample) under the stingray carcass, but other-
wise were restricted to samples outside the carcass. As
observed for other aquatic systems (Debenham et al.
2004, Pavlyuk et al. 2009, Premke et al. 2010), the
encountered stingray carcass had a negative impact on
meiofaunal abundances. Such a negative impact is
probably due in part to hypoxia and the presence of
toxic sulfides in sediments underneath the carcass,
since most of the affected taxa (i.e. taxa that were
found in control samples but were not sampled under-
neath the ray) are known to be more abundant in oxic
than in anoxic conditions (Modig & Olafsson 1998, Fon-
seca et al. 2011).

Among the meiofaunal taxa that occurred in sedi-
ments underneath the carcass, nematodes dominated
all samples, representing 82.2 to 94.7 % of all organ-
isms collected per sample. In total, 29 nematode spe-
cies were identified (Appendix 1). They showed similar
trends to those of total meiofauna (i.e. significantly
lower abundance and species richness under the car-
cass; Fig. 3c¢,d). Likewise, samples from outside and
under the carcass also showed distinct nematode
assemblages (R = 0.59, p < 0.01;

F, ¢ = 38.400, p < 0.001 F,q = 13.953,p < 0.01
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Fig. 3. Meiofaunal and nematode abundances (Nmeio and

Nnema, respectively), number of higher taxa (NT) and number

of nematode species (S)in samples taken outside and under the

carcass of a stingray. Data are mean + SD. ANOVA results are
given above each panel

1990) and are attracted to patches of intense microbial
degradation (Riemann & Schrage 1988). Studies on
other co-familial genera (Oncholaimidae) have also
reported members of this family scavenging on dead
and moribund macrofauna, as well as being associated
with rotted seaweed (Ulva sp.), and occurring in highly
polluted areas (Lorenzen et al. 1987, Bett & Moore
1988, Prein 1988), under seagrasses (Fonseca et al.
2011) and under the noxious seaweed Caulerpa taxifo-

Fig. 4b). In contrast to other meiofaunal
taxa, however, there were some nema-
tode species that occurred exclusively
under the carcass, such as Adoncholai-
mus sp. 1, Calomicrolaimus sp. 1 and
Microlaimus sp. 1 (SIMPER analysis; ®
Table 1, Appendix 1). Adoncholaimus
species are facultative predators that
exhibit a variety of feeding strategies

O 2D Stress: 0.05 || b o 2D Stress: 0.02

(Moens et al. 1999). A. thalassophygas
De Man, 1876, for example, can benefit
from the fermentation products (ace-
tate) of anoxic habitats (Riemann et al.

Fig. 4. Ordination plots of multidimensional scaling for (a) the meiofaunal com-
munity (presence and absence) and (b) nematode assemblages (standardized
data) from samples taken outside (black dots) and under the carcass of a stingray

(open squares)
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Table 1. Similarity percentage (SIMPER) results for the ne-

matode assemblage of samples from outside vs. samples

from under the carcass. Average dissimilarity = 60.33. Av.N:

average abundance (10 cm?); Cont%: contribution for the
dissimilarity in percentages

Species Outside Under Cont%
Av.N Av.N
Metalinhomoeus sp. 1 5.89 29.74 19.76
Terschellingia sp. 1 17.26 29.76 18.82
Perspiria sp. 1 33.50 12.39 18.64
Gomphionema sp. 1 11.54 4.72 6.79
Daptonema sp. 1 7.06 10.07 6.36
Adoncholaimus sp. 1 0.00 6.94 5.76
Parodontophora sp. 1 6.06 0.00 5.02
Sabatieria sp. 1 6.44 0.68 4.78
Thalassomonhystera sp. 1 3.76 0.00 3.12
Calomicrolaimus sp. 1 0.00 3.63 3.01

lia (F. Gallucci et al. unpubl. data). These observations
suggest that oncholaimids tolerate the presence of sul-
fides, are attracted to putrefied conditions and are able
to utilize (parts of) the nutritious mixture of the body
remains of dead organisms, bacterial epigrowth, dis-
solved glucose and the end products of fermentation
(Lopez et al. 1979, Riemann et al. 1990, Moens et al.
1999).

The other 2 species restricted to the carcass, Calo-
microlaimus sp. 1 and Microlaimus sp. 1 (Appendix 1),
are classified as epigrowth feeders, feeding mainly on
diatoms and microalgae (the 2A feeding group; Wieser
1953). Calomicrolaimus is one of the dominant genera
in anoxic sediments on the Isle of Sylt, Germany (Wet-
zel et al. 1995), and Microlaimus is considered an
opportunistic genus (Lee et al. 2001, Gallucci et al.
2008), which is also associated with naturally hypoxic
environments such as sediments colonized by sea-
grasses (Fonseca et al. 2011) and algal mats (Wetzel et
al. 2002). The study area of St. Georges Basin is charac-
terized by large areas of seagrasses (3.170 km?), salt-
marshes (0.149 km?) and mangroves (0.276 km?) (Mur-
ray et al. 2005), all known to have naturally anoxic
sediments. The fact that these 3 species were not
encountered in the samples near the carcass suggests
they are probably rare in bare sediments and were
originally from the surrounding vegetated sites where
the sediment is also depleted in oxygen. These species
took advantage of the ‘favorable’ conditions created by
carcass decomposition to flourish. Like Adonchola-
imus, these genera probably do not feed directly or
exclusively on the carcass, but take indirect advantage
of the lack of competition in the reduced and toxic envi-
ronment. Other nematode genera that were favoured
under the carcass were Terschellingia sp. 1 and Meta-
linhomoeus sp. 1 (SIMPER analysis; Table 1). Both gen-
era are well known to contain species that can tolerate

O

anoxic conditions and organic enrichment (Steyaert et
al. 2007). Finally, all 5 species mentioned above are
long and slender, a morphological adaptation of ‘thio-
bios' nematodes to low oxygen tension and high con-
centrations of dissolved organic matter (Jensen 1986,
1987, Wetzel et al. 1995).

The present study is limited in the number of experi-
mental units (i.e. carcasses), and we have no informa-
tion about when the carcass was deposited, hindering
full assessment of the effects of carcasses on the meio-
benthos. Nonetheless, the results demonstrate that a
carcass in estuarine sediments may support a charac-
teristic nematode fauna, distinct from that inhabiting
the surrounding sediments, but similar to those of re-
duced environments. Similar observations have been
made for meiofauna of sand beaches (Gerlach 1977),
estuarine intertidal areas (Franco et al. 2008) and subti-
dal areas (Olafsson 1992). In all these studies it was
determined that the nematode species associated with
carrion were inhabitants of reduced habitats, which
are commonly designated as ‘thiobios’ (Giere 2009).
Such similarity between habitats gives further support
to the hypothesis that carrion maintains a specialized
set of species across a variety of marine environments
(Britton & Morton 1994), and is of primary importance
regarding the distribution of meiobenthos (Olafsson
1992).
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Appendix 1. Absolute abundance of higher meiofaunal taxa (ind. 10 cm™2) and
relative abundance of nematode species in each replicate (A to D) encountered
outside and under the carcass of a stingray in St. Georges Basin, NSW, Australia

Outside the carcass Under the carcass

A B C D A B C D
Higher meiofaunal taxa
Nematodes 7272 8183 7605 3391 339 393 110 232
Copepods 226 430 308 327 6 22 16 19
Nauplii 82 25 66 72 0 0 0 0
Ostracods 31 6 6 25 6 3 3 3
Kinorhynchs 19 19 28 13 0 0 0 0
Polychaete larvae 13 0 31 13 0 0 0 3
Polychaetes 9 9 9 0 3 0 0 0
Isopods 9 3 0 3 0 0 0 13
Turbellarians 9 0 9 0 0 0 0 0
Oligochaetes 9 3 0 6 0 0 0 0
Acari 6 0 6 3 0 0 0 3
Gastropods 0 0 3 3 3 0 0 6
Nematode species
Perspiria sp. 1 19.6 327 53.8 159 3.6 87 8.0 15.5
Terschellingia sp. 1 15.0 354 7.1 5.3 47.0 20.2 0.0 27.6
Metalinhomoeus sp. 1 13.8 5.0 2.0 3.8 157 356 32.0 121
Daptonema spp. 6.7 1.5 8.7 18.9 10.8 12.5 12.0 1.7
Gomphionema sp. 1 14.2 3.8 6.7 27.3 7.2 4.8 0.0 3.4
Sabatieria sp. 1 142 3.1 47 53 2.4 1.0 4.0 1.7
Parodontophora sp. 1 6.7 7.7 3.2 7.6 0.0 0.0 0.0 1.7
Adoncholaimus sp. 1 0.0 00 00 0.0 0.0 0.0 200 0.0
Thalassomonhysterasp. 1 2.1 1.2 40 6.1 0.0 1.0 00 0.0
Theristus spp. 1.7 2.3 1.2 0.8 2.4 0.0 4.0 0.0

Pseudochomadora sp. 1 0.4 1.5 0.4 3.8 0.0 0.0 4.0 1.7
Calomicrolaimus sp. 1 0.0 0.0 0.0 0.0 2.4 5.8 0.0 3.4

Ptycholaimellus sp. 1 1.3 0.4 2.4 3.0 00 29 00 0.0
Cobbia sp. 1 2.1 0.4 2.4 0.8 0.0 0.0 0.0 1.7
Paracyatholaimus sp. 1 2.1 0.0 1.6 0.0 0.0 0.0 0.0 1.7
Spirinia sp. 1 00 00 04 0.0 0.0 29 00 1.7
Prochromadorella sp. 1 0.0 0.0 0.0 0.0 0.0 1.0 4.0 0.0
Chromadora sp. 1 0.0 0.4 0.0 0.0 0.0 0.0 4.0 0.0
Dorylaimidae sp. 1 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0
Eurystomina sp. 1 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0
Microlaimus sp. 1 00 00 00 0.0 0.0 19 00 0.0
Linhomoeus sp. 1 0.0 0.0 0.4 0.0 1.2 0.0 0.0 0.0
Comesa sp. 1 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0
Megadesmolaimussp.1 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0
Paralinhomoeus sp. 1 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0
Paracomesoma sp. 1 0.4 0.4 0.4 0.0 0.0 0.0 0.0 0.0
Chromadorina sp. 1 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
Desmolaimus sp. 1 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
Sphaerolaimus sp. 1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0
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