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1.  INTRODUCTION

Most sea turtles spend a large portion of their lives
underwater associated with distinctive habitats (Lutz
et al. 2002). These habitats are crucial to sea turtle
survival because they serve as areas of foraging, rest-
ing, mating, and refuge from predators (Rosman et
al. 1987, Lohoefener et al. 1990, Hart et al. 2014, Bar-
nette 2017). There are several sea turtle species that
inhabit the West Florida Shelf (WFS) in the Gulf of

Mexico (GoM): loggerhead Caretta caretta; green tur-
tle Chelonia mydas; leatherback Dermochelys cori a -
cea; hawksbill Eretmochelys imbricata; and Kemp’s
ridley Lepidochelys kempii (Lutz et al. 2002). All but
the leatherback are associated with benthic habitat
features of the WFS as neritic juveniles, sub-adults,
and adults (e.g. seagrass, reef, hardbottom; Eaton et
al. 2008). All sea turtles found in US waters are listed
under the Endangered Species Act (ESA), and are
classified as either Threatened or Endangered (Plot -
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during 97 transects of approximately 2700 km of seafloor, which was recorded on 380 h of video.
Several sea turtle species were spotted within the WFS, including loggerhead Caretta caretta,
Kemp’s ridley Lepidochelys kempii, and green turtles Chelonia mydas. These opportunistic sight-
ings revealed an area of high use on the WFS, an anthropogenic structure known as the Gulf-
stream natural gas pipeline (GSPL). C-BASS survey results suggest that 2 sea turtle species
(C. caretta and L. kempii) utilize this artificial structure primarily as a resting area. We emphasize
the importance of combining habitat mapping techniques (towed underwater video and multi-
beam bathymetry/backscatter) with tracking technology to better understand the fine-scale habi-
tat use of sea turtles.
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kin 1995). Therefore, collecting in situ habitat use
data for these sea turtles is beneficial to their conser-
vation and management efforts. Depending on the
species, these benthic habitats can include sea grass
beds (green turtles; Ballorain et al. 2010), coral reefs
(hawksbills; Walcott et al. 2014), natural rocky hard
bottoms (loggerheads; Hart et al. 2010), and rock out-
croppings (Kemp’s ridleys; Schmid et al. 2003). Hav-
ing a better understanding of how benthic habitats
support multiple sea turtle species (both temporally
and spatially) is critical for the sustainable manage-
ment of resources in our oceans. Distribution of sea
turtles on the WFS has been associated with water
temperature and benthic habitat features (natural
and artificial) which aggregate prey (Fanning et al.
1981, Foley et al. 2014, Hardy et al. 2014); however,
this information is sparse and challenging to obtain
(Stoneburner 1982). There has recently been a con-
siderable emphasis placed upon the importance of
habitat mapping (Brown et. al. 2011, Fakiris et al.
2019) and a significant by-product of this research
could be an increased amount of data on fine-scale
sea turtle habitat use.

Habitat maps classify the environment into biogeo-
graphic and aquatic settings that are differentiated
by features influencing the distribution of organisms,
and by environmental variables such as salinity, tidal
zone, and proximity to the coast (FGDC 2012). Within
habitat classification systems are 4 underlying com-
ponents that describe different aspects of the sea-
scape: water column, geoform, substrate, and biotic
(FGDC 2012). Understanding how environmental
conditions (e.g. temperature, salinity, chlorophyll a
[chl a]) affect population dynamics could be impor-
tant in understanding sea turtle life cycles and
enhancing biodiversity conservation measures (Rev-
elles et al. 2008, Lamont & Fujisaki 2014, Zepeda-
Borja et al. 2017). Clarifying the relationships
between sea turtles and their habitats guides conser-
vation research and management activities by, for
example, distinguishing and mitigating associated
threats coupled to their habitats and by advising crit-
ical habitat designation under the ESA (Hamann et
al. 2010, USFWS & NMFS 2013).

Anthropogenic structures such as artificial reefs
are utilized by sea turtles because they provide a
structure similar to natural ledges and outcroppings.
Sea turtles have been observed near or on these arti-
ficial structures resting, seeking refuge (Barnette
2017), foraging, and even self-cleaning (Schofield et
al. 2006). According to NOAA, an artificial reef is an
anthropogenic structure that may mimic some of the
characteristics of a natural reef and can include sub-

merged shipwrecks, oil and gas platforms, bridges,
lighthouses, and other offshore structures. By area,
most artificial reefs in the GoM are oil and gas plat-
forms as well as the pipeline infrastructure that con-
nects them (Froeschke & Dale 2013). There are
approximately 4000 active platforms in the GoM with
1000s of km of pipeline lining the seafloor between
them. (https://oceanexplorer.noaa.gov/explorations/
06 mexico/ background/oil/media/platform_600.html)
Studies have shown that the platforms themselves
provide habitat for algae, invertebrates, and reef fish
species (Gallaway & Lewbel 1982, Stanley & Wilson
1991, Love et al. 1999, Scarborough-Bull et al. 2008,
Seaman & Sprague 2013), and sea turtles have been
associated with platform locations (Lohoefener et al.
1990, Gitschlag et al. 1997).

Much progress has been made in the understand-
ing of sea turtle terrestrial habitat requirements
(nesting females) and the shallow habitat within in-
ter-nesting areas (Hart et al. 2010, Walcott et al. 2014,
Shaver et al. 2017). However, knowledge is limited
about sea turtle benthic habitat use in offshore re-
gions. Most of these data are collected using time−
depth recorders to infer habitat utilization (Hooker et
al. 2007) or satellite telemetry combined with bathy-
metric or dominant benthic sediment type data to
predict benthic habitats (Foley et al. 2014). Hardy et
al. (2014) described the post-nesting residence areas
of adult female loggerheads by combining satellite
telemetry data sets with data from a fishery targeting
red grouper Epinephelus morio, a species similar to
loggerhead sea turtles in terms of habitat use and
prey. They concluded that loggerhead residence
 areas on the WFS were likely focused on specific
benthic habitat features including rocky outcrop-
pings, ledges, and hard bottom patches. The benthic
habitats of the WFS are important for sea turtle con-
servation; however, research to date has been chal-
lenged by a lack of detailed benthic habitat informa-
tion. Studies have shown that satellite-tagged adult
female turtles utilize the WFS area where a pipelines
is located as foraging grounds (Hart et al. 2012), resi-
dency areas (Girard et al. 2009, Hardy et al. 2014)
and migratory corridors (Shaver et al. 2016). How-
ever, characterization of these underwater pipelines,
and details of how turtles use them, is unclear.

The University of South Florida (USF) College of
Marine Science Continental Shelf Characterization,
Assessment, and Mapping Project (C-SCAMP; www.
marine.usf.edu/scamp/) has been developing habitat
maps and quantifying reef fish species population
dynamics within the eastern GoM WFS. This study
utilized video data collected as part of C-SCAMP via
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the towed camera-based assessment survey system
(C-BASS; Grasty 2014, Lembke et al. 2017). Collec-
tion of imagery and environmental data has been
focused on commercially and recreationally impor-
tant reef communities; fortuitously, numerous sea
turtles have been observed during these surveys.
Results demonstrate that towed camera technology
can offer a novel approach to surveying sea turtles
among deep, offshore benthic habitats on the WFS. 

2.  MATERIALS AND METHODS

2.1.  Study area

This study was conducted in the eastern GoM on
the WFS, from offshore of Panama City to Tampa Bay
(Fig. 1). Benthic habitat data were collected from 4
natural study areas, which have been identified as
important habitat for marine species (Hardy et al.
2014, Locker et al. 2016), and one anthropogenic
structure (see Fig. 2):

1. The Florida Middle Grounds (FMG) area encom-
passes 1500 km2 and its depths range from 25 to
50 m. Major features include a series of natural hard
bottom ridges located approximately 180 km north-
west of Tampa Bay (Mallinson et al. 2014).

2. The Elbow (EL) is an area south of the FMG in a
depth range of 45−65 m. It possesses a large north−

south oriented ridge feature as well as several patches
of low-relief hard bottom (Ilich 2018).

3. Madison-Swanson (MS) and Steamboat Lumps
(SL) are both marine protected areas (MPAs). MS con-
sists of ridges, pinnacles, and mounds, while SL con-
tains mostly low-relief, unconsolidated sediments, but
it does have one larger ledge feature in the northern
section of the area as well as significant tracts of red
grouper E. morio holes (Grasty et al. 2019).

4. The anthropogenic structure in this study is the
Gulfstream natural gas pipeline (GSPL) where 2 sec-
tions were surveyed: the first was a 134 km section
from 28.2437 to 27.6763° N (30−70 m depths) and the
second was a 58 km section from 29.14732 to
28.7041° N (90− 195 m depths). The pipeline runs
700 km along the seafloor between Mobile Bay, Ala-
bama and Tampa Bay, Florida. Certain areas were
dredged for the placement of the pipe and thus
dredged rocks and spoils exist on one or both sides for
large sections of its length.

2.2.  Surveys

During 2014−2018, benthic surveys were con-
ducted using the USF-developed C-BASS, which is a
towed instrument equipped with cameras and addi-
tional sensors that was designed to collect video and
environmental data to a depth of 200 m for up to 20 h

19

Fig. 1. Overview of the
West Florida Shelf where
the camera-based assess-
ment survey system (C-
BASS) transects were
completed between 2014
and 2018. Specific area
names are indicated for
reference. Shaded poly-
gons: extent of the multi-
beam bathymetry maps
that were used to plan the
C-BASS transects for
ground-truthing purposes



Aquat Biol 29: 17–31, 2020

without surfacing. The C-BASS was configured with
4 LED lights and 6 video cameras; 2 forward facing
high-definition (1 black/white and 1 color), and  2
 forward-facing and 2 side-facing color standard-
definition cameras. Additional environmental sen-
sors include an RBR XR 420 CTD, a WetLabs FLNTU
fluoro meter (2014−2016) and a Wetlabs ECO fluo-
rometer (2017−2018), all of which can be monitored
in real time.

The C-BASS was deployed off the stern of the R/V
‘Weatherbird II’ (operated by the Florida Institute of
Oceanography, FIO) using the A-frame and winch.
Once in the water, the system was powered on and
then lowered to the optimal towing altitude of 2.0−
3.5 m above the benthic habitat. This height and the
characteristics of the cameras enabled a forward-
looking field of view of 10−15 m. Transects were typ-
ically 3−8 h and towing depths ranged from 25−
195 m, at a near constant speed of 1.5−2.0 m s−1 with
transects spanning between 20 and 70 km of seafloor.

2.3.  Data analysis

All camera imagery was separated into 1 min video
segments for each camera and each transect. Videos
from the high-definition, black/white forward-facing
camera were viewed most often (due to increased
video resolution), by 1−3 individuals. Additional
cameras were viewed if clarification of identification
was needed (e.g. color video could aid in ID of certain
fish species based on color). All fish and sea turtles
were counted and identified to species when possi-
ble. For the GSPL transects, videos from the 2 side-
facing cameras were viewed in addition to the for-
ward-facing black/white camera, since the pipe was
not always in the view of the forward-facing cam-
eras. Sea turtle species identification was determined
by 2 Florida Wildlife Commission (FWC) researchers.
Sea turtle sightings were characterized into 3 cate-
gories: (1) confident of species ID, (2) confident it is a
turtle but not of species, and (3) possible it is a turtle
but not confident. Data recorded per sighting were
date/ time, GPS location, species identification, sex
(when able to identify), habitat, behavior, depth,
temperature, salinity, and chl a concentration.

Though the C-BASS does have 2 parallel high-
 definition cameras for facilitating 3D stereo measure-
ments, this capability was undergoing development
for a majority of the timeframe in which the data pre-
sented here span. For individuals sighted next to the
GSPL, rudimentary measurements could be made, as
this structure has a known fixed diameter of 36

inches (0.91 m) in the offshore regions of its extent
(Federal Energy Regulatory Commission 2001) where
all of the C-BASS transects occurred. Approximate
sea turtle size could therefore be estimated by calcu-
lating the ratio of the pipe diameter to the standard
straight carapace length (SCL; from the nuchal notch
to the posterior marginal tip). For observations made
after 2017, stereo measurement capabilities were
possible but not ideal, due to syncing issues between
the cameras which introduced error into stereo meas-
urements. Estimates of length using these data could
still be assessed using SeaGIS’s software, EventMea-
sure, by taking several measurements for one indi-
vidual then averaging these values to get an approx-
imate SCL. Each sea turtle measurement was binned
by size category according to the life history stages
presented by Eaton et al. (2008).

Video of sea turtle benthic habitat was character-
ized using an abiotic habitat classification scheme
based on NOAA’s Coastal and Marine Ecological
Classification Standard (CMECS; FGDC 2012). If
needed, a combination of the multibeam bathymetry
and backscatter maps along with the C-BASS obser-
vations can be used to classify all of the CMECS com-
ponents (geoform, substrate, biotic, and water col-
umn) at varying degrees. The structural (natural or
anthropogenic), induration (hard or soft), and pri-
mary substrate features of the benthic habitat were
classified. The primary habitat substrate where the
sea turtle was observed was characterized as (1)
pipeline, (2) artificial reef, (3) rock outcrop, (4) ledge,
or (5) sand. The pipe itself was categorized into 1 of 3
descriptive features: (1) bare (pipe fully lying on top
of the seafloor without dredge or spoils), (2) buried
(pipe partially or fully covered by sand and or orga -
nic detritus), or (3) dredge (rocks or spoils placed to
either side of the pipe where it had to be dredged
and then placed) (see Fig. 3).

Sea turtle behaviors exhibited by the observed
individuals were characterized. Analyses included
only the initial behavior observed per individual and
be haviors were assigned to 1 of 6 categories: resting,
for aging, crawling, swimming, surfacing, or diving.
Resting consisted of the head, body and flippers low-
ered onto the benthic substrate. Foraging was de -
fined by head movement or digging with the fore-
limbs within the benthic substrate. Crawling was
characterized as movement along the benthic sub-
strate while maintaining flipper or body contact with
the sea bed. Swimming included movement of the
flippers within the water column, only with horizontal,
near-bottom locomotion. Surfacing and diving in clu -
ded movement of the sea turtle in a vertical direction.
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Sea turtle population density along the GSPL was
estimated by survey month using a line transect sam-
pling method. This method relies on 4 significant
assumptions: first, it assumes all animals on the tran-
sect line are observed; secondly, it assumes animals
are fixed at the initial sighting position; third, that the
distances and angles are measured exactly; and
lastly, that sightings are independent events. The
estimated population density (D̂) was then calculated
using the general formula (Buckland et. al 2001):

(1)

where n is the number of sea turtles observed on the
transect, L is the total length of transect and a is half
the effective strip width (constant). The constant a
estimates how wide the strip width would be if every
turtle were seen and counted. Conventional distance
sampling (CDS) analyses were performed using the
transect length and the perpendicular sighting dis-
tances in the distance sampling program DISTANCE
v.7.3 (Thomas et al. 2010).

3.  RESULTS

A total of 9 C-BASS survey cruises were conducted
from 2014 to 2018; cruises occurred during the months
of February, April, May, July, and October. During
these cruises a total of 97 transects (2750 km) were
surveyed which included 1152 km in FMG, 777 km in
the EL, 440 km on the GSPL, 199 km in MS, and
182 km in SL. Table 1 details the cruises by date,
area surveyed, number of transects, distance sur-
veyed, and number of sea turtles observed. Over
380 h of video and environmental sensor data were
collected. C-BASS transects were piloted during day
and night hours, with 81% during the day and 19%
at night (19:00−07:00 h).

3.1.  Sea turtle sightings

A total of 79 sea turtles were sighted: 69 logger-
heads, 4 Kemp’s ridleys, 1 green turtle, 5 hard-
shelled turtles that were unidentifiable to species,
and 1 possible turtle, but not confident (Fig. 2). Most
sea turtles (91%) were observed on the GSPL, where
a total of 70 turtles were sighted: 63 loggerheads, 3
Kemp’s ridleys, 3 unidentified hard-shelled turtles,
and 1 possible turtle. Several sea turtles (n = 6) were
ob served in the FMG: 4 loggerheads, 1 Kemp’s rid-
ley, and 1 green turtle. Two sea turtles were ob -

served in the EL and they were both identified as log-
gerheads. No sea turtles were observed in the MS or
SL MPA areas during the surveys. Two of the GSPL
loggerheads were identified as males based on the
tail appearing to extend well beyond the posterior
edge of the carapace (approx. >10 cm). Sea turtles
were observed within the benthic habitat during
both day and night hours; 24 (30%) sea turtles were
ob served during night hours. Most were utilizing the
GSPL (n = 22) and were loggerheads, although 2
could not be identified to species. Two were ob -
served in the FMG and were identified as a green
turtle and a loggerhead.

3.2.  Life stage estimation

For the 2016 sightings, stereo vision had not yet
been properly calibrated, but measurements could be
made for 16 sea turtles using the ratio of pipeline
width to SCL; all were identified as Caretta caretta.
For the 2017 and 2018 observations, an additional 5
measurements were made using the stereo-vision

ˆ
2

D
n
La

=
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Cruise      Date           Area        No. of    Distance   No. of 
No.      (mm/yyyy)  surveyed  transects     (km)      turtles

1             05/2014        FMG            6             140           1
                                     MS              2              41            0
                                     SL              2              64            0

2             02/2016       GSPL            3             125          40
                                     EL              7             208           1
                                     SL              2              91            0

3             04/2016         MS              4             158           0

4             10/2016       GSPL            1              68           10
                                   FMG            6             299           2
                                     EL              2              52            0

5             04/2017       GSPL            2              78           13
                                   FMG            6             195           1
                                     EL              9             172           0
                                     SL              1              27            0

6             10/2017       GSPL            2              44            1
                                   FMG           16            303           1
                                     EL              2              16            0

7             04/2018       GSPL            1              58            1
                                     EL             12            221           1

8             07/2018       GSPL            1              67            5

9             09/2018        FMG            6             215           2
                                     EL              4             108           0

Total                                               97           2750         79

Table 1. Camera-based assessment survey system data ana-
lyzed for sea turtle observations in each area. FMG: Florida
Middle Grounds; MS: Madison-Swanson; SL: Steamboat
Lumps; GSPL: Gulfstream natural gas pipeline; EL: Elbow
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software, EventMeasure, and all of these were identi-
fied as C. caretta. For 3 of these observations, the an-
gle at which the turtles were observed along the SCL
orientation was not conducive to accurate measure-
ment, but standard carapace width (SCW) measure-
ments were possible. An approach used to relate
SCW to SCL is described in Marn et al. (2015) for
C. caretta in the Western Atlantic, and this was used
to obtain an estimate of SCL for these individuals. A
majority of the measurements came from sea turtles
spotted along the GSPL (n = 19); only 2 individuals

that resided on natural features could be measured.
We grouped loggerheads into life stages based on the
following breaks (Eaton et al. 2008): oceanic-stage ju-
venile (<30 cm), neritic-stage juvenile (30–69 cm),
sub-adult (70–79 cm), and adult (≥80 cm). Based on
the length analysis for these 21 loggerheads, the C-
BASS was able to observe individuals from all 4 life
stages (oceanic-stage juvenile, neritic-stage juvenile,
sub-adult, adult) within anthropo genic and natural
habitats (Table 2). The most frequently observed life
stage was neritic-stage juveniles (n = 15).

22

Fig. 2. Area maps of the observed sea turtles along with multibeam bathymetry (gray polygons) and the camera-based assess-
ment survey system (C-BASS) transects completed in those years (dashed lines). (A) the Elbow and southern Gulfstream natu-
ral gas pipeline (GSPL); (B) Madison-Swanson and northern GSPL; (C) Florida Middle Grounds and central GSPL
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3.3.  Habitat characterization

Sea turtles were observed in both natural and
anthropogenic benthic habitats (Fig. 3). The major-
ity of the turtles observed were found adjacent to
or near an anthropogenic structure (n = 71),
mainly the GSPL (n = 70). The most utilized
benthic substrate was pipe with dredge (n = 35),
with 23 seen near bare pipe and 12 observed
where the pipe was buried. One turtle in the EL
was sighted near an unknown anthro po genic
structure which consisted of metal debris. Only 9
sea turtles were observed in a natural benthic
habitat including both hard and soft substrates
which consisted of rock outcrops (n = 4), sand (n =
3), and a ledge (n = 1) (Table 3).

Loggerheads (n = 69) were
observed utilizing all the benthic
habitats and most were seen
using the pipe-dredge substrate
(n = 32), followed by pipe-bare
(n = 22) and then pipe-buried
(n = 9). A total of 5 loggerheads
were ob served in natural benthic
habitat (rock outcrop, n = 2; sand,
n = 2), and an other loggerhead
was seen utilizing a ledge. The
Kemp’s ridleys were ob served
utilizing the pipe-dredge (n = 2)
and pipe-buried (n = 1) along
with a natural rock outcrop sub-
strate (n = 1). The one green
turtle sighted was using a natu-
ral habitat with a rock outcrop
substrate.

3.4.  Behavior analysis

Of the 79 observed sea turtles,
58 were classified as resting, 12
were swimming, and 6 were
seen crawling (Table 4). Of the
24 sea turtles observed during
night hours, 23 were classified
as resting and 1 was seen swim-
ming. Loggerheads were ob -
served ex hibiting all 6 of the
classified be haviors, including
surfacing and diving; some of
these activities were conducted
within the water column and
were ob served when C-BASS

23

Loggerhead                       Area     Observed size    No. of 
life stage                                           ranges (cm)      turtles

Oceanic-stage juvenile    GSPL              29                  1
Neritic-stage juvenile                           30−67              14
Sub-adult                                               75−78               4

Neritic-stage juvenile       FMG               64                  1
Adult                                                         92                  1

Table 2. Number of loggerhead sea turtles Caretta caretta ob-
served within each life stage category based on approximate
measurements attained via camera-based assessment survey
system imagery. Life stage ranges based on Eaton et al.
(2008): ocean-stage juvenile: <30 cm; neritic-stage juvenile:
30−69 cm; sub-adult: 70−79 cm; adult: ≥80 cm. GSPL: Gulf-
stream natural gas pipeline; FMG: Florida Middle Grounds

A B

C D

E F

Fig. 3. Turtles observed on the different benthic habitat substrates: (A) Caretta
caretta on natural ledge; (B) Lepidochelys kempii on natural rock outcrop; (C) C.
caretta on natural sand; (D) C. caretta on pipe-bare; (E) C. caretta on pipe-dredge; 

(F) C. caretta on pipe-buried
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was either ascending or de scending during de -
ployment. Three of the Kemp’s ridleys were seen
resting on the seafloor and the other one was crawl-
ing along the bottom. The green turtle observed
was seen swimming along the sea floor during night
hours.

3.5.  In situ environmental data

The benthic environmental data analyzed con-
sisted of depth, temperature, salinity, and chl a
recorded within an average of 4.1 m above the
observed sea turtles (Fig. 4). The shallowest depth
observed was the diving loggerhead in the water col-
umn at 26 m, the deepest was a loggerhead at 108 m,
and the average depth was 50 m. The majority of the
sea turtles (n = 71) were observed between 30 and
79 m depth (Fig. 4A). Kemp’s ridleys were observed
within a depth range of 31−52 m and the green turtle
was at 28 m. Observed in situ water temperatures
ranged from 17.1 to 28.9°C, with the majority of the
sea turtles (n = 75) observed between 17 and 25°C
(Fig. 4B). Salinity measurements ranged from 35.7 to
36.7 with an average of 36.4, with the majority of the
turtles (n = 30) at 36.4 (Fig. 4C). The in situ chl a
range of the observed turtles was 0.05−1.84 µg l−1

with an average of 0.50 µg l−1. The majority of sea tur-
tles (n = 63) were observed within chl a concentra-
tions of 0.2−0.6 µg l−1 (Fig. 4D).

A 46 km section (27.91956−28.07787° N) of the
pipe line was surveyed 4 separate times during the
study, during the months of February, April, July, and
October. Benthic temperature, salinity, and chl a
were analyzed for changes (Fig. 5). The benthic tem-
perature ranges recorded per month were 17.1−
19.4°C (February), 20.8−20.9°C (April), 22.4−23.1°C
(July), and 23.4−24.8°C (October). The overall ben-
thic salinity range recorded for this section was 36.3−
36.7, with February/April having an average salinity
of 36.4 and July/October an average of 36.6. Overall
benthic chl a ranged from 0.04 to 2.15 µg l−1 with
average concentrations of 0.44 µg l−1 (February),
0.96 µg l−1 (April), 0.62 µg l−1 (July), and 1.11 µg l−1

(October). A total of 20 sea turtles were observed
within the sub-section of the GSPL (Fig. 5); 17 logger-
heads, 1 Kemp’s ridley, and 2 unidentified species.
Eight turtles (7 loggerheads, 1 unknown) were ob -
served in February, 3 loggerheads were seen in
April, 4 turtles (3 loggerheads and 1 Kemp’s ridley)
were seen in July, and 5 loggerheads were sighted in
October.

3.6.  GSPL density estimation

A total of 70 sea turtles were observed utilizing the
GSPL as benthic habitat within the 441 km surveyed,
resulting in an overall encounter rate of 0.16 sea tur-
tles km−1 (Table 5). Surveys were conducted during

24

Habitat     Induration            Benthic     Turtle    No. of 
type                                        substrate       sp.     sightings

Anthro-       Pipeline              Dredge        CC          32
pogenic                                                       LK            2

                                                                      sp            1

                                                  Bare           CC          22
                                                                      sp            1

                                                 Buried         CC           9
                                                                     LK            1
                                                                      sp            2

                Artificial reef     Metal debris   CC           1
                                                      
Natural          Hard            Rock outcrop   CC           2
                                                                     LK            1
                                                                     CM           1

                                                 Ledge         CC           1

                        Soft                    Sand          CC           2
                                                                      sp            1

Table 3. Benthic habitat (type, induration, substrate) for ob-
served sea turtles on the West Florida Shelf during 2014−
2018. CC: Caretta caretta; LK: Lepidochelys kempii; CM: 

Chelonia mydas; sp: unidentified species

Behavior            Habitat type            Turtle            No. of 
                                                              sp.             sightings

Resting            Anthropogenic            CC                  49
                                                              LK                   3
                                                              sp                    3

                              Natural                  CC                   3

Swimming       Anthropogenic            CC                   8
                                                              sp                    1

                              Natural                  CC                   1
                                                             CM                  1
                                                              sp                    1

Crawling         Anthropogenic            CC                   5

                              Natural                   LK                   1

Foraging                Natural                  CC                   1

Diving             Anthropogenic            CC                   1

Surfacing        Anthropogenic            CC                   1

Table 4. Summary of sea turtle behavior for each sighting
based on habitat type and species. CC: Caretta caretta ; LK:
Lepidochelys kempii; CM: Chelonia mydas; sp: unidentified 

species
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February, April, July, and October. Sea turtle density
estimates were much higher in February than all the
other months combined. October estimates were
higher than April and July, respectively. Logger-
heads were observed utilizing the GSPL during all
survey months, while Kemp’s were only seen during
October (n = 2) and July (n = 1).

4.  DISCUSSION

This study demonstrated that towed camera sys-
tems have a unique ability to document sea turtle
presence over wide swaths of area in offshore (>25 m
to approximately 200 m) environments. In addition to
recording species presence, each observed sea turtle
can be evaluated for behavior, the surrounding habi-
tat can be classified, and various environmental
para meters can be measured to provide a more com-
plete characterization of sea turtle habitat use. With
the appropriate setup, these systems can also facili-
tate size estimates to then estimate life stage, data
which are imperative to better understand sea turtle
population dynamics. Though the refinement of C-
BASS’s stereo setup was in progress during the time-
frame in which these data were collected, we none-
theless demonstrated that it is possible to observe a
range of life stages with this approach. In addition to

collecting data on various life stages, towed camera
systems such as the C-BASS offer the ability to
observe sea turtle behavior. This may be of particular
utility considering the need for improved data on
where foraging habitats for sea turtles are located
(Hamann et al. 2010).

The data from our surveys showed that the major-
ity of the sea turtles observed were associated with a
natural or artificial hard benthic substrate; either
rock outcrops, ledges, metal debris, or the pipeline.
Most of the sea turtles observed were associated with
the GSPL, especially habitat areas of pipe with
dredge material or bare pipe. Both of these pipe sub-
strates offer substantial vertical relief and/or over-
hanging structure compared to the surrounding flat,
sand bottom observed in the area (Fig. 6), thus pro-
viding beneficial habitat for loggerheads and Kemp’s
ridleys. Therefore, our data indicate that an anthro-
pogenic pipeline structure on the WFS — the GSPL
— serves as habitat for Threatened and Endangered
sea turtles in the GoM. Sea turtles have long been
known to use natural and artificial reefs (Stone -
burner 1982, Witzell 1982, Steimle & Zetlin 2000), in -
cluding oil and gas platforms (Gitschlag & Herczeg
1994). However, few studies have quantified use of
these structures, particularly pipelines, by sea turtles.
Observations revealed that the GSPL provides habi-
tat for at least 2 sea turtle species: loggerheads and
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Fig. 5. Change in benthic environmental parameters along the 46 km Gulfstream natural gas pipeline sub-section: (A−D) tem-
perature; (E−H) salinity; (I−L) chl a. Black line: camera-based assessment survey system track; black dots: loggerheads; green

star: Kemp’s ridley; pink triangles: unidentified turtle species. Plots generated using Ocean Data View software
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Kemp’s ridleys. The WFS is heavily used by these
species as migratory pathways and foraging loca-
tions (Hart et al. 2014, Shaver et al. 2017) and both
species have been associated with anthropogenic
structures in the GoM (Rosman et al. 1987, Lohoe-
fener et al. 1990).

The GSPL transects were only 17% of the total dis-
tance surveyed, but contained 89% of the sea turtles
observed. Dupont (2008) examined fish use of artifi-
cial reefs in the area of the GSPL and found greater
species richness where large boulders were placed
versus similar habitat where no artificial reefs had
been installed. However, our observations of dispro-
portionate use of the GSPL by sea turtles may also be
a consequence of detectability. While larger areas of
other sections of the WFS (FMG and EL) were sur-
veyed, the same section of the GSPL was examined
multiple times. Since the GSPL region is a relatively
flat linear area that is easy to follow and capture with
the C-BASS cameras, the higher sea turtle abundance
observed on the pipeline could be a function of detect-
ability. When the water clarity was fair (approx. 5 m),
because of the size of the pipeline the entire potential

suitable habitat was visible within the field of view of
the C-BASS. Thus, detectability was likely relatively
high along the pipeline compared to the natural
areas. In the natural regions, the area of suitable ben-
thic habitat was usually larger than the C-BASS field
of view, thus preventing us from recording its
entirety within a single transect. Also, several areas
in the natural habitats were characterized by steep
ridges and other topographic features that hindered
the benthic viewing range of the C-BASS (e.g. pinna-
cles in MS MPA), thus quite possibly preventing
observations of present sea turtles. Additionally, sea
turtles have been known to exhibit diel behavior pat-
terns, such as longer dives and lower activity levels
during night hours (Hays et al. 2000, Christiansen et
al. 2017), which suggests that sea turtles rest at depth
during those hours. Most of the C-BASS transects
were conducted during daylight hours, thus poten-
tially preventing observations of benthic sea turtles
due to diel activity patterns. Due to the features of
the GSPL described above, it was viewed at night
more than the natural areas (31 and 18%, respec-
tively), potentially contributing to a higher detect-
ability of sea turtles on the pipeline.

Sea turtles may use artificial structures for foraging
(Rosman et al. 1987), resting (Lohoefener et al. 1990),
self-cleaning (Schofield et al. 2006), or predator avoid-
ance (Barnette 2017). C-BASS observations discov-
ered that most sea turtles sighted during the surveys
were utilizing the GSPL as a resting area, whereas the
turtles observed in the natural habitats were mostly
seen performing active behaviors such as swimming,
crawling, and foraging. Sea turtles use different
patches within their overall home ranges for a variety
of behaviors, such as foraging, resting, and breeding
(Dujon et al. 2018). Movement between patches may
be driven by prey availability, competition, and/or
predation (Holt 1977). On the WFS, sea turtles may
forage in natural habitats where prey is available and
then use the GSPL as a refuge or resting site due to
its extensive horizontal and vertical features.

Environmental conditions have a substantial im pact
on sea turtles, especially temperature. Cold in situ
temperatures cause sea turtles (Caretta caretta, Lepi -
do che lys kempii, Chelonia mydas) to stop feeding
(<10°C) and can result in death (5−6.5°C) (Schwartz
1978), while warm temperatures (27− 28°C) cause
shorter inter-nesting intervals in female loggerheads
and green turtles (Hays et al. 2002). The in situ tem-
perature range associated with observed sea turtles
on the WFS was 17−29°C, which is generally suitable
for sea turtle physiological and behavioral activities.
One green turtle and one loggerhead were observed

27

Fig. 6. Male loggerhead observed via the camera-based as-
sessment survey system utilizing the Gulfstream pipeline.
Shown is the pipe with dredge material and the flat sand 

substrate where the pipe was placed

Month      Distance    No. of turtle     Encounter   Density
                     (km)          sightings       rate (km−1)    (km−2)

February      125                40                  0.32            73.1
April              137                14                  0.10            12.9
July               67                5                  0.07            5.3
October        112                11                  0.10            27.5
Overall          441                70                  0.16            35.5

Table 5. Estimated sea turtle density along the Gulfstream
natural gas pipeline for 6 cruises and 10 transects of the 

camera-based assessment survey system
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during the month of October at temperatures above
27°C, which could have affected their inter-nesting
activities if they were females.

The WFS exhibits variations in circulation and sea
level, which arise from changes in temperature and
salinity. In this area from October to April a pre -
dominant upwelling occurs, whereas during June to
September, downwelling occurs (Liu & Weisberg
2012). Upwelling is an oceanographic process that
in volves wind-driven motion of dense, cooler, and
usually nutrient-rich water towards the ocean sur-
face, whereas downwelling is the process of accumu-
lation and sinking of higher density, colder water
beneath warmer or fresher water. Upwelling stimu-
lates the growth of primary producers (chlorophyll),
which could influence sea turtle habitat use (Scales
et al. 2015). Chlorophyll concentration, which is an
indicator of active phytoplankton biomass, has been
correlated with foraging habitats and migration
routes of sea turtles (Polovina et al. 2004, Kobayashi
et al. 2008). Higher sea turtle density estimations for
the GSPL were calculated for upwelling months
(February and October) than downwelling (April and
July). Also, within the 46 km section of the GSPL, dis-
tinct variations in benthic temperature and chl a con-
centrations were measured during the differing
months (Fig. 5). More sea turtles were ob served dur-
ing upwelling months (February and October), which
had the coldest and warmest average benthic temper-
atures and lowest and highest average benthic chl a
concentrations, respectively.

Use of tracking technology has allowed re searchers
to identify offshore benthic hot spots for sea turtles
(Walcott et al. 2012, Hardy et al. 2014, Hart et al.
2014, 2018). However, little is known about the spe-
cific features of these habitat areas. A better under-
standing of the fine-scale characteristics of these fea-
tures is needed so similar habitats in the GoM can be
identified and conserved. Loggerheads use patches
within their overall home ranges; to fully understand
the environmental and habitat characteristics re -
quired for loggerhead foraging, fine-scale habitat
use data are needed (Dujon et al. 2018). In the GoM,
the WFS has been shown to support large numbers of
sea turtles, particularly loggerheads, and factors such
as bathymetry and habitat type have been suggested
as drivers of this distribution (Girard et al. 2009,
Foley et al. 2014, Hardy et al. 2014, 2018, Hart et al.
2018). However, this area also contains a large num-
ber of anthropogenic structures, including the GSPL,
and our study is one of the first to illustrate the poten-
tial importance of this structure to sea turtles. Close
associations between neritic sea turtles and benthic

anthropogenic structures is not without risk. For ex -
ample, anthropogenic structures pose entangle ment
risks (Barnette 2017) and risk of exposure to oil or
chemical spills (Wallace et al. 2017). As more anthro-
pogenic structures are installed (Dance et al. 2018),
understanding how sea turtles use different artificial
structures is necessary, both from the perspective of
habitat requirements and injury risk. We emphasize
the importance of conducting long-term studies that
couple tracking technology with in situ towed instru-
ments to better understand sea turtle benthic habitat
use. Individual hotspots and the dynamics of those
areas can vary from year to year due to anthropo -
genic, environmental, or climate changes; thus, mul-
tiple year studies are needed to capture long-term
associations.

5.  CONCLUSIONS

Characterizing the benthic habitat and developing
methods to improve sub-surface sea turtle surveys is
highly important to understanding sea turtle ecology.
This research represents the first example of towed
camera system data being used to characterize and
study sea turtles in the GoM at depths greater than
30 m (Zawada et al. 2008). The importance of the
methods and resulting data sets presented here is
further underscored by how data-deficient the GoM
is for sea turtles (Valverde & Holzwart 2017). Though
the C-BASS does not fill in all of the knowledge gaps
that currently exist for the GoM sea turtle popula-
tions, it has demonstrated valuable utility for studying
offshore occurrences of several life stages, namely for
C. caretta individuals. Additionally, it does what few
other types of observation platforms can, by associat-
ing an individual within a small and large-scale habi-
tat context while also providing a description of be -
havior at the time of observation.

Anthropogenic structures, such as artificial reefs,
oil rigs, and shipwrecks have been known to attract
and support a broad range of marine wildlife, includ-
ing sea turtles (Lohoefener et al. 1990, Gitschlag et
al. 1997). In this study, the data showed that 2 species
of sea turtles (Caretta caretta and Lepidochelys kem-
pii) appear to frequently use the GSPL, an anthro-
pogenic structure on the WFS. Though this is worthy
of note, additional studies are needed to address
whether this area is a high-use zone for turtles as for-
aging or resting habitat and whether it is preferential
to natural hard bottom habitat in order to better
understand what actual impacts this structure may
be having on the Gulf’s sea turtle populations.
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