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1.  INTRODUCTION

Body shape in fishes evolved with their adaptations
to different environmental conditions (Langerhans et
al. 2004) and, because natural flow velocities vary
widely, fish adapted to different flow regimes. Gen-
erally, fish that have adapted to high flow velocities
are strong swimmers and have a streamlined body
shape (Langerhans et al. 2007, Yan et al. 2013). 

In the laboratory, swimming capability is frequently
measured using a stepped velocity test (Brett 1964).
Among the stepped velocity tests, the critical swim-
ming speed (Ucrit) protocol is used to evaluate pro-

longed swimming capability. Although this ap proach
may introduce bias as fatigue accumulates through
the time steps, it is useful for comparing the relative
influence of factors that affect fish swimming capabil-
ity. Fish use burst swimming when they pursue prey,
flee from predators or encounter high-velocity cur-
rents. Although endurance is low at burst speed
(Uburst), burst swimming is important for survival. The
lowest flow velocity that induces continuous fish mo-
tion is termed the induced flow velocity (Uind). This
parameter is useful for fish passage de sign because
fish maintain their orientation more easily when flow
velocity is higher than Uind (Cai et al. 2018).
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Fin clipping is a common practice in fisheries man-
agement, and hatchery fish are often marked by clip-
ping adipose fins and, less frequently, pelvic fins
(Han sen 1988, Vander Haegen et al. 2005). The tail
(caudal) fin is important, both for locomotion and
changing direction (Ohlberger et al. 2007, Handegard
et al. 2009), and the sizes and shapes of tail fins vary
across species. Tail beat frequency (TBF) is an impor-
tant index of fish swimming behavior and its correla-
tion with swimming speed is near linear (Hunter &
Zweifel 1971, Webb 1975, Beamish 1978). Fish species
differ in tail fin type (size and hardness), which affects
swimming capability (Plaut 2001). The tail fin may be
damaged or lost to predation or disease, and it would
thus be useful to investigate the effect of such dam-
age or loss on swimming performance.

The black carp Mylopharyngodon piceus is a cypri -
nid species native to China and eastern Russia. Prey-
ing on snails, shellfish, shrimp and insects, black carp
provide biological control of aquatic pests (Ben-Ami
& Heller 2001) and survive well in freshwaters if
predators, such as yellowcheek Elopichthys bambu -
sa, do not find them. Black carp have been trans-
ported, accidentally and/or intentionally, to many
countries and are considered an invasive species in
certain countries where they threaten native fish. 

Here, we tested the swimming performance of black
carp by measuring Ucrit, Uburst, Uind and TBF. The effect
of tail fin loss on swimming capability was also investi-
gated. The results add to our knowledge of the rela-
tionship between fish swimming speed and tail beat.

2.  MATERIALS AND METHODS

2.1.  Ethics statement

This study was conducted in strict accordance with
the laws governing animal experimentation in
China. The protocol was approved by the China
Three Gorges University. All efforts were made to
minimize suffering.

2.2.  Test fish

Juvenile black carp (standard length = 11.4 ± 1.0 cm,
mass = 23.9 ± 6.1 g; SD, n = 60 ), were obtained from an
aquaculture farm in Tongren, China (27° 94’ N,
108° 23’ E). The test fish were maintained in tanks of
river water (20.2−23.4°C) and fed to satiation daily at
07:00 and 16:00 h with a compound feed (crude protein
≥ 45%, fat ≥ 10%, crude fiber ≥ 3% and ash ≥ 17%).

2.3.  Equipment

Based on a study on fish swimming and coasting
distance by Müller et al. (2000), Peake & Farrell
(2006) suggested that the swim chamber length
should be >2.1 body lengths (bl) to avoid the effects
of respirometer confinement. Cai et al. (2018) sug-
gested the minimum swim chamber length should be
>5 bl, based on measurements of swimming speeds of
fish with different body lengths. In the present study,
the swim chamber length was 70 cm (4.9−7.7 bl). Fish
were tested in a modified Brett-type swimming
respirometer with a volume of 95 l and a 28 l rectan-
gular swim chamber (70 cm × 20 cm × 20 cm). A flow
rectifier (honeycomb shape) maintained nearly uni-
form flow in the chamber, and a grid at the end of
the chamber prevented fish from being swept away
(Cai et al. 2018). Test fish had a maximum cross-
sectional area <10% of the chamber cross-section,
and it was assumed that fish swimming speed
equaled flow velocity (Bell & Terhune 1970). Flow
velocity was measured by a propeller-type flow
velocity meter (LGY-II). In the respirometer, dis-
solved oxygen ranged from 7.61 to 8.35 mg l−1 and
water temperature ranged from 20.2 to 23.4°C, as
measured with a multi-sensor probe (Hach HQ30d).
A video camera (Hikvision CS-C6TC-32WFR) was
placed over the respirometer to record tail beat.

2.4.  Test protocol

Stepped velocity tests were carried out to meas-
ure Ucrit, Uburst, Uind and TBF. Sixty healthy fish with
intact fins and squamae were selected randomly for
testing and were randomly placed into 3 groups of
20 individuals. Group 1 was not treated (intact fin).
In Group 2, the tail fin was partially removed (fin
clipped posterior to fork), and in Group 3, the tail
fin was completely removed (Fig. 1). Thirty fish (10
from each group) were tested for Ucrit and TBF
(Expt 1) and the other thirty fish were tested for
Uburst and Uind (Expt 2).

2.4.1.  Expt 1

Thirty fish were tested individually. Fish body
length and mass were measured, and each fish was
allowed to acclimate to experimental conditions at
0.05 m s−1 (0.35−0.50 bl s−1) for 2 h. Flow velocity, ini-
tially at 1.0 bl s−1, was increased by 1.0 bl s−1 at
20 min intervals (Brett 1964, Tierney 2011). When the
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fish ceased swimming, the flow velocity was de -
creased, the swim chamber was rapped to encourage
swimming, and the test was resumed if the fish con-
tinued swimming. A fish was regarded as ex hausted
when it did not resume swimming and rested against
the wire grid for 10 s. The Ucrit was calculated using
Eq. (1) in Section 2.5. Tail beat frequency was meas-
ured using the digital recordings to obtain TBFmax

and TBFmean (beats s−1).

2.4.2.  Expt 2

Thirty fish were tested individually. Fish body
length and mass were measured, and each fish was
allowed to acclimate to experimental conditions at
0.05 m s−1 for 2 h. At that velocity, the fish remained
nearly motionless along the flow direction. The flow
velocity was then increased by 0.01 m s−1 at 5 s inter-
vals and, when the fish began actively swimming, the
flow velocity was reported as Uind (Cai et al. 2018).
Flow velocity was then adjusted to 1.0 bl s−1 and
increased by 1.0 bl s−1 at 1 min intervals (Tierney
2011, Wang et al. 2017). When the fish ceased swim-
ming, the flow velocity was decreased, the swim
chamber was rapped to encourage swimming, and
the test was resumed if the fish continued swimming.
A fish was regarded as exhausted when it did not
resume swimming and rested against the wire grid
for 10 s. Uburst was calculated using Eq. (1).

2.5.  Data analyses

Ucrit (and Uburst) were calculated using Eq. (1) (Brett
1964, Dai & Suski 2019):

Ucrit = Ui−1 + (ti/Δt) × ΔU (1)

where i is the increment number in stepped velocity
tests, Ui-1 (bl s−1) is the velocity during the last com-
plete time increment, ΔU (bl s−1) is the velocity step,
Δt (s) is the time step, and ti (s) is the time elapsed at
fatigue during the last (incomplete) time step.

The data were analyzed using Origin 9.0 (Origin-
Lab), and parameter values are reported as mean ±
SD. Data on fish body length, mass, Ucrit, Uburst, Uind,
TBFmax and TBFmean did not significantly deviate
from normality, according to a Lilliefors test (p >
0.05). Homogeneity of variance among parameters
was tested using Levene’s test and differences in
variance were not significant (p > 0.05). ANOVA was
used to test differences among mean values, and a
posteriori pairwise comparisons were made using a
Tukey test.

3.  RESULTS

In Expts 1 and 2, there were no significant differ-
ences between the 3 treatment groups with respect
to body length and mass (all p > 0.05). The results for
Ucrit, Uburst, Uind, TBFmax and TBFmean are presented in
Figs. 2−5. Based on 1-way ANOVA, there were sig-
nificant effects of experimental treatments on Ucrit

(bl s−1 and m s−1, p = 0.016 and 0.011), Uburst (bl s−1

and m s−1, both p < 0.001) and TBFmean (beats s−1, p <
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Fig. 1. Representative juvenile black carp from the 3 treat-
ment groups (intact fin, partial fin and no fin)
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Fig. 2. Variation in the critical swimming speed (Ucrit) of juve-
nile black carp (standard length = 11.4 ± 1.0 cm), both relative
(body lengths [bl] s−1) and absolute (m s−1), among treatment
groups. Error bars are SD. Different letters (a and b) above the
columns indicate a significant difference between groups
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0.001), but effect was not significant on Uind (bl s−1

and m s−1, p = 0.179 and 0.229) or TBFmax (beats s−1,
p = 0.130). Based on comparison of means (Tukey
test), Ucrit, Uburst and TBFmean were significantly lower
in the no fin groups than in the intact fin groups (all
p < 0.05), but Ucrit, Uburst and TBFmean in the partial fin
groups were not significantly lower than in the intact
fin groups (all p > 0.05). Thus, complete loss of the tail
fin had considerably more effect on swimming per-
formance than partial loss, and the effect of tail fin
loss was significant on Ucrit, Uburst and TBFmean, but
not on Uind and TBFmax.

4.  DISCUSSION

4.1.  Critical swimming speed, Ucrit

The tail fin is important to fish swimming capability
(Hunter & Zweifel 1971, Webb 1975, Beamish 1978).
Fin loss reduces swimming capability (Plaut 2001),
but the reduction varies significantly among species
(Fu et al. 2013). Ucrit, a measure of prolonged swim-
ming capability, can be attained primarily by aerobic
metabolism (Brett 1964, Milligan 1996). In this study,
the decrease in Ucrit was not significant for the partial
fin group but was significant for the no fin group
(Fig. 2). It appears likely that the decrease in Ucrit

would also be significant in the partial fin group if the
sample size was larger.

The black carp Mylopharyngodon piceus is 1 of 4
common domestic fishes of China; the other 3 species
are grass carp Ctenopharyngodon idella, silver carp
Hypophthalmichthys molitrix and bighead carp Aris-
tichthys (Hypophthalmichthys) nobilis. In China, all 4
species inhabit the same rivers and lakes and all are
important commercially. Ucrit values for juveniles of
the other 3 species are shown in Table 1. The Ucrit of
M. piceus is higher than that of H. molitrix, but lower
than that of C. idellus and A. nobilis. Black carp pri-
marily inhabit the middle to bottom waters and forage
for snails, shellfish, shrimp and insects. They are not
considered to be very active fish, consistent with the
relatively low swimming capability found in this study.

4.2.  Burst speed, Uburst

Uburst is an estimate of the speed that can be
attained with the contribution of anaerobic metabo-
lism, which leads to lactic acid accumulation (Brett
1964, Dominy 1971). Compared with the intact fin
group, Uburst decreased slightly in the partial fin
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Fig. 3. Variation in the burst speed (Uburst) of juvenile black 
carp; details as in Fig. 2
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group and significantly in the no fin group (Fig. 3),
similar to the results for prolonged swimming capa-
bility (Ucrit). It has been speculated that swimming
propulsion by the caudal fin is mainly provided by
the front half of the tail because the soft, flexible back
half can generate only a weak propulsive force (Tan-
gorra et al. 2010). It is also possible that swimming
behavior can be altered to partially offset the loss of
the caudal fin, and the degree of compensation
depends on the amount of tail that is missing.

The Ucrit decreased by ~25% from the intact fin
group to the no fin group (Fig. 2), and Uburst de -
creased by ~40% (Fig. 3). The large decrease in burst
speed has serious consequences for avoiding preda-
tors such as Elopichthys bambusa. Fish missing the
tail fin are also less able to pass obstructions and con-
trol structures, such as road crossings, that generate
high-velocity flows, which also negatively affects dis-
persal and migration.

4.3.  Induced flow velocity, Uind

Holding their position in a current is innate be -
havior for fish. Fish sense water motion by means of
the lateral line organ and adjust swimming as needed
to counter the current (Arnold 1974, Montgomery &
Macdonald 1987). The Uind (m s−1) increases with
body length (Cai et al. 2018). In Fig. 4, the differences
in Uind among the 3 treatment groups was not signifi-
cant, indicating that the tail fin has little effect on Uind.

4.4.  Tail beat frequency, TBF

TBF is integral to the kinematics of swimming and is
closely related to swimming capability (Webb 1975).

The linear correlation between TBF and U has been
verified repeatedly (Videler & Wardle 1991, Ohl -
berger et al. 2007, Cai et al. 2013). In the present
study, tail fin loss had little effect on the TBFmax of
black carp (Fig. 5), consistent with the findings for the
cyprinid Spinibarbus sinensis (Fu et al. 2013) and con-
trary to the results for common carp Cyprinus carpio
and goldfish Carassius auratus, for which TBFmax in-
creased significantly with tail fin loss (Fu et al. 2013).

TBFmean was slightly lower in the partial fin group
and significantly lower in the no fin group (Fig. 5),
similar to results for Ucrit and Uburst. Loss of the tail fin
lowers thrust (tail beat force) and, when tail beating
is ineffective, the lower TBF could be an instinctive
response evolved from the need to conserve energy.
A large tail fin and small tail fin aspect ratio are
advantageous for fish swimming capability (Langer-
hans et al. 2004, Domenici et al. 2008). With loss of
tail fin area, the thrust per tail beat is lower and the
kinematics are less efficient. However, thrust is not
generated from the tail fin alone, as other fins and the
body also generate thrust.

The tail fin has the potential for de creasing muscle
activity and conserving energy by exploiting the vor-
tices created by the beating tail (Liao et al. 2003).
Fish use a burst-and-coast gait in the Uburst test and in
the higher-velocity steps of the Ucrit test. Burst and
coast phases generate different vortices, and the
drag coefficient is lower during the coast phase (Wu
et al. 2007), conserving energy. While partial fin loss
does not significantly reduce swimming capability,
total loss does significantly de crease swimming
capability and increases the energy cost of transport.

The difference between swimming capability be -
tween the intact fin and partial fin groups was small
(Figs. 2 & 3). Hence, we speculate that partial fin loss
does not significantly affect thrust and vortices. The
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Species                                                  bl, m             Temp, °C          n          Ucrit, bl s−1         Ucrit, m s−1         Reference

Mylopharyngodon piceus             0.117 ± 0.012            22               10           5.9 ± 1.0          0.69 ± 0.13        This study
                                                        0.079 ± 0.003            25                7               ~5.6              0.44 ± 0.03        Yan et al. (2013)

Ctenopharyngodon idella             0.112 ± 0.007            20               16           9.4 ± 1.3          1.05 ± 0.15        Cai et al. (2014)
                                                        0.055 ± 0.003            25                8               ~7.8              0.43 ± 0.04        Yan et al. (2013)

Hypophthalmichthys molitrix       0.130 ± 0.005            20               20           5.0 ± 0.6          0.65 ± 0.07        Ke et al. (2019)
                                                        0.096 ± 0.006            20               20           5.7 ± 0.8          0.55 ± 0.07        Ke et al. (2019)
                                                             ~0.096                 21               30              ~4.6                  ~0.44             Shi et al. (2014)
                                                        0.075 ± 0.002            25                8               ~7.1              0.53 ± 0.03        Yan et al. (2013)

Aristichthys nobilis                              ~0.196              22–25            14              ~5.8                  ~0.97             Yuan et al. (2014)
                                                             ~0.118                 25               10           6.8 ± 0.3          0.80 ± 0.04        Yuan et al. (2019)
                                                        0.069 ± 0.002            25                8               ~6.5              0.45 ± 0.07        Yan et al. (2013)

Table 1. Critical swimming speed (Ucrit) of 4 common domestic fishes in China; bl: body length; Temp: temperature; n: number 
of fish. Data are reported as mean ± SD



Aquat Biol 29: 71–77, 2020

rear half of the tail fin is soft, and thus the beat force
is lower and may not have a large effect on the vor-
tices. This speculation could be verified by future
studies on particle image velocimetry.

5.  CONCLUSION

This study provides data on Ucrit, Uburst, Uind, TBFmax

and TBFmean of black carp, and the effect of partial
and complete tail fin loss on TBF and swimming ca-
pability. Differences among Uind and TBFmax in the 3
treatment groups were not significant. Ucrit and Uburst

decreased slightly with partial loss of fin, but de -
creased significantly with complete loss. Partial, and
especially complete loss, of the tail fin resulted in
lower beat force and TBFmean. Further, tail fin loss in-
terrupts the vortices produced by tail beats, lowering
the potential for energy conservation during burst-
and-coast swimming and decreasing Ucrit and Uburst.
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