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Soya isoflavones, genistein and daidzein, induce
differential transcriptional modulation in the ovary

and testis of zebrafish Danio rerio
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ABSTRACT: Most research into the effects of phytochemical isoflavones has focussed on endo-
crine disruptions, and especially on oestrogenic imbalances; however, little is known about their
effects on other molecular signals such as transcriptional coregulators and choriolytic enzymatic
pathways, which are also important in reproductive processes. In male and female zebrafish
Danio rerio, the soya isoflavones genistein and daidzein (provided at 10 mg 17! for 15 d) modulated
the basal expression levels of oestrogen receptor transcripts (ERP) in variable and differential
ways. Exposure to genistein resulted in decreased levels of ERP in the zebrafish ovary; conversely,
this isoflavone increased the basal expression levels of the hatching enzyme (HE1) in both gonads.
On the other hand, daidzein increased the basal expression levels of the bromodomain testis-
specific gene (BRDT) in the male gonad, but not in the ovary. Both isoflavones also differentially
modulated (up—down regulations) the basal expression patterns of the 3 molecular signals studied
in other regions of the body (e.g. head, digestive system, skeletal musculature). Despite all these
transcriptional imbalances, neither of the phytoestrogens modified gonadal histomorphology or
the baseline histochemical pattern of proteins, carbohydrates and glycoconjugates distributed in
either the vitelline structures or in the developing and maturing germ cells of Danio rerio.
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1. INTRODUCTION

Fish exposure to different endocrine disrupting
compounds (EDCs), both chemical and phytochemi-
cal, can occur through contaminated waste in surface
water and coastal areas. In particular, phytoestrogens
(flavonoids and non-flavonoids) originating from vari-
ous anthropogenic activities (e.g. livestock, agricul-
ture, aquaculture), with variable levels of isoflavones,
metabolites and other phytochemicals, have been re-
corded in aquatic environments ranging from nano-
molars to 0.20 mg 1! (Kiparissis et al. 2001, Spengler
et al. 2001, Rocha et al. 2013, Rearick et al. 2014). In
terms of hormonal modulation and endocrine disrup-
tion in fish, it has been widely noted that all stages of
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development and life history, from embryo to adult-
hood, constitutively express the majority of mRNA
transcripts related to hatching, reproduction and
growth. All these crucial processes are modulated
through oestrogen: apoptotic, proliferative and epige-
netic signaling pathways, among others. It has also
been reported that all fish life stages are sensitive and
respond differently to both chemical and phytochemi-
cal EDCs (Pelissero et al. 1991, Kiparissis et al. 2003,
Segner et al. 2003, Sassi-Messai et al. 2009, Schiller et
al. 2013, Sarasquete et al. 2017, 2018a,b, 2019).
Phytochemical isoflavones act as selective oestro-
gen receptor modulators (SERMs), that is, as ligands
(agonists or antagonists) of oestrogen receptors
(ERs). This function depends on the coactivators and
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corepressors present in the cells due to cross-talks
between ERs and other transcription factors, and
varies according to the basal levels of endogenous
oestrogens (An et al. 2001, Setchell et al. 2005,
Lecomte et al. 2017, Xiao et al. 2018). Unlike mam-
mals, many species of fish harbor 3 ER genes. In
zebrafish, the genes of these oestrogen receptors are
designated ER1 (ERa), ER2b (ERB1) and ER2a (ERB2).
Basal constitutive levels of ERs (ERo and fs) are
expressed at all life history stages of fish and show
highly variable levels of transcription in both repro-
ductive and non-reproductive organs. In addition,
ERs have different binding profiles than natural and
exogenous ligands, which vary according to de-
velopment and life history stage. ERs also show se-
lective and differential distribution in the organs and
tissues of adult fish and also differ between males
and females, as has been described extensively in
zebrafish and other species (Bardet et al. 2002,
Menuet et al. 2002, 2004, Chandrasekar et al. 2010,
Lu et al. 2017).

Isoflavones (genistein, daidzein) are unique, in that
these phytochemicals have a higher and more selec-
tive binding affinity for ERf than for ERa. Most of the
isoflavonoid phytoestrogens, which act as SERMs,
also show a higher binding affinity for ERp compared
to many chemical endocrine disruptors and in con-
trast to the endogenous ligand (17B-oestradiol),
which in mammals shows a very high binding affinity
for both receptors (ERo. and ER). In fish, in contrast
to many higher vertebrates, a lower binding affinity
of ERs (ERa and Bs) for the natural ligand, oestradiol,
has also been demonstrated (Kuiper et al. 1998,
Miyahara et al. 2003, Setchell et al. 2005, Patisaul &
Adewale 2009, Nelson & Habibi 2013). Interestingly,
in a recent in vitro study in zebrafish, genistein
exhibited higher binding affinity for ERo than for
ERP1 or B2 (Sassi-Messai et al. 2009). In a different
study with medaka Oryzias latipes and zebrafish
embryos exposed to different doses of genistein, dif-
ferent and variable response patterns were described
in the transcription levels of the ERo. and ERf recep-
tors which also varied by species and with the phy-
toestrogen dose (Schiller et al. 2013). Due to the
highly conserved sequences and very high structural
homologies (DNA-binding domain [DBD] and ligand
binding domain [LBD]) between ERs in humans
(ERa, B) and zebrafish (ERa, B1, B2) (Menuet et al.
2002, Chandrasekar et al. 2010, Schaaf 2017, Asnake
et al. 2019), and also because of the higher expected
affinity of genistein and daidzein for ERp, in this
work we analyzed the levels of expression of ERfJ
transcripts (B2 + Bl as a whole) in zebrafish, as has

been done in studies with other fish species (Legler
et al. 2000, Arukwe et al. 2008, Reyhanian et al. 2014,
Sarasquete et al. 2017, 2018a, 2019).

In zebrafish and other fish species, reduced fertili-
sation, decreased hatching rates and reproductive
imbalances have been described as the most com-
mon endocrine disorders (and/or the most toxic
effects) that can be induced by endogenous factors
(e.g. sex hormones) and by isoflavonoid phytoestro-
gens (Bennetau-Pelissero et al. 2001, Kiparissis et al.
2003, Kim et al. 2009, Sassi-Messai et al. 2009,
Schiller et al. 2013, Sarasquete et al. 2018a). Hatch-
ing enzymes (HEs) are composed of the astacin-pro-
tease domain, and these zinc-dependent metallopro-
teases possess the ability to digest the envelope of
the egg or chorion. While HEs (e.g. choriolysins)
digest the egg's protein envelope to facilitate hatch-
ing, alveoline, which is a metalloprotease released
from cortical alveoli of early vitellogenic oocytes,
induces reassembly of choriogenins to harden the
egg envelope at the time of fecundation. Some metal-
loproteases that are present in gametes are essential
to ensure reproductive success, by facilitating the
passage and penetration of sperm during fertilisation
(Yamagami, 1996, Sano et al. 2008, Kawaguchi et al.
2012, Shibata et al. 2012, Nagasawa et al. 2015,
Chakraborty et al. 2017).

Phytoestrogenic isoflavones have also been associ-
ated with the developmental processes of prolifera-
tion, apoptosis and sexual differentiation, as well as
with chromatin remodelling, DNA repair and epige-
netic mechanisms (Patisaul & Adewale 2009, Lecomte
et al. 2017, Xiao et al. 2018). In mammals, the bro-
modomain testis-specific gene (BRDT) is an essential
factor during spermatogenesis and for male fertility.
It is widely known that BRDT proteins bind to hyper-
acetylated chromatin during sperm elongation, and
that these bromodomains recruit the machinery to
remove acetylated histones which are replaced by
protamines. In addition, bromodomain and extrater-
minal domain (BET) proteins can also maintain this
structural role and participate in chromatin remodel-
ling during oogenesis (Paillisson et al. 2007, Berkovits
& Wolgemuth 2013, Bao & Bedford 2016, Taniguchi
2016). In fish, the role of the BRDT gene and proteins,
which play a key role in hatching, development and
differentiation, as well as embryogenesis and game-
togenesis of males and females, is much less known
and appears to be much more complex and variable
than in other vertebrates (Ubeda-Manzanaro et al.
2016, Sarasquete et al. 2018a). This complexity is
potentially due to different strategies and reproduc-
tive behaviors, environmental and hormonal sensi-
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tivity or to the remarkable neuroendocrine and sex-
ual plasticity of the fish (Devlin & Nagahama 2002,
Segner et al. 2003, Piferrer & Guiguen 2008, Ribas et
al. 2017).

The zebrafish Danio rerio is a small tropical fresh-
water cyprinid and an experimental model widely
accepted in different fields of biomedical and animal
research. The existence of a syntenic relationship
between the human and zebrafish genomes (www.
ensembl.org, D. rerio, genome release Zv9genomes)
has been demonstrated, and both genomes can be
compared (Mayden et al. 2007, Howe et al. 2013). In
addition, due to its well-known embryogenesis and
larval development, easy reproduction, sexual di-
morphism, high fertility and short life cycle, all stages
of zebrafish development and life history have been
used in research disciplines such as embryogenesis,
larval development, sexual differentiation, reproduc-
tion, environmental control, endocrine disruption
and ecotoxicology (Selman et al. 1993, Kimmel et al.
1995, Segner 2009, Santos et al. 2017, Wang et al.
2019, and many others).

In the present study, our objective was to provide
substantial evidence of the suitability of using a dou-
ble transcriptional and cellular approach to evaluate
the effects of 2 phytoestrogenic isoflavones. This
research is mainly focussed on oestrogenic and chori-
olytic signals and transcriptional coregulation path-
ways. For this purpose, basal expression patterns and
transcriptional variations of 3 molecular signals (ERf
[= B1 + B2, as a whole], HE1 and BRDT) were ana-
lysed in different organs and tissues (gonads, head
portion, skeletal musculature and digestive system)
of male and female zebrafish exposed to a non-toxic
concentration of soya isoflavones (daidzein and
genistein). Furthermore, in both gonads the histo-
morphological and histochemical basal patterns and
possible cellular alterations induced by both phyto-
chemicals were examined.

2. MATERIALS AND METHODS
2.1. Biological samples

Adult male and female zebrafish Danio rerio (geno-
type AB/Tubingen) were maintained at the Institute
of Marine Sciences of Andalusia (ICMAN-CSIC,
Puerto Real, Spain). The facilities of ICMAN-CSIC
are in compliance with the European Convention for
the Protection of Animals used for Experimental and
Scientific Purposes, and the fish were approved for
experimentation by the Ministry of Agriculture and

Fisheries (REGA-ES110280000311) in accordance
with current EU (Directive 2010/63/EU) and Spanish
legislation. The experimental procedure (projects
AGL2014-52906-R; RTI2018-0939-B-100) was ap-
proved by the Spanish National Research Council
(CSIC) Ethics Committee, and by the Spanish Com-
petent Authority, Junta de Andalucia (no. 09-7-15-
278, RD53/2013; 832/2019).

2.2. Toxicity tests

Genistein (C15H1005, LC Laboratories) and dai-
dzein (C15H1004, LC Laboratories) were dissolved
in ethanol to make up 20 and 5 mM stock solutions,
respectively, and then kept in the dark at 4°C until
use. Mixed stock of 3-4 mo old male and female ze-
brafish D. rerio (AB) were kept in an automatic flow-
through system supplied with recirculating filtered
water at 27-28°C under 14 h light:10 h dark photope-
riod cycle, keeping the physical-chemical parameters
stable (Zebrafish Housing System from Aquatic Habi-
tats B26U-2-A). For experimental trials, fish (n = 60;
1:1 sex ratio) with a standard total length between 3.5
and 4.0 cm were randomly distributed in 2.5 1 glass
tanks (n = 6 group™?!) and fed daily with commercial
pellets. Duplicates of controls (with and without
ethanol) and triplicates of the experimental groups
were used and analysed. For exposure tests to both
isoflavones, a nominal concentration of 10 mg 1! was
chosen, taking into account toxicity parameters and
non-harmful effects or responses that were calculated
in zebrafish embryos and early larvae (Sarasquete et
al. 2018a). During the 2 wk experimental period, un-
der semi-static tests, 50 % of the water was renewed
daily with the corresponding proportion of freshly
prepared stock solutions of both isoflavones. At the
end of the experimental tests (15 d), all fish were
anesthetised with an overdose of phenoxyethanol,
and samples of the different organs and tissues were
taken for molecular analysis (gonads, head, digestive
system, skeletal musculature) and for histological—
histochemical studies (ovary, testis), following similar
procedures and standardised technical protocols con-
ducted in recent research on zebrafish and other fish
species (Sarasquete et al. 2017, 2018a, 2019).

2.3. Nucleic acid extraction and quantification of
mRNA expression levels

For molecular analysis, triplicate samples were
preserved into RNAlater (Sigma-Aldrich) for 24 h at
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4°C and stored at —80°C. Total RNA was isolated
from different organs and tissues (gonads, head,
digestive system and musculature) using a RNeasy®
Micro kit (Qiagen). Genomic DNA was removed via
DNase digestion at 37°C for 30 min. Total RNA qual-
ity was verified (Bioanalyzer 2100; Agilent Technolo-
gies) and concentration was assessed by spectro-
photometry (Ajs0/Asgo nm). For cDNA synthesis, total
RNA (500 ng) was utilised for reverse transcription
using a gScript™ c¢DNA Synthesis kit (BioRad). Real-
time analysis was performed (Mastercycler ep gradi-
ent S Realplex2). Each reaction was carried out in
triplicate with a mixture containing each of the spe-
cific primer pair (Table 1), cDNA (~10 ng), and 5 pl
iTaq™ Universal SYBR® Green SuperMix (BioRad).
Relative gene quantification was performed using
the method of Pfaffl (2001), and results were nor-
malised to elongation factor 1 alpha 1 (eEflal) and
18S rRNA, as recently described by Sarasquete et al.
(20184, 2019).

2.4. Statistical analysis

Temporal differences for each of the gene ex-
pression patterns and both treatments were tested
by 1-way ANOVA performed after a base 10 loga-
rithmic transformation to meet requirements for
the parametric test. Normality was checked using
Shapiro-Wilk's test and homogeneity of variances
with the Levene's test. Tukey's post hoc test was
used to identify significantly different groups. Dif-
ferences were considered statistically significant
at p < 0.05. Statistical analyses of data from

gqPCR were performed using SPSS v.23.0.0.0 soft-
ware (IBM).

2.5. Histological and histochemical approaches

Samples of both gonads were fixed in 4% v/v
neutral formaldehyde (pH: 7.2) in sodium phos-
phate buffer (0.1 M) and embedded in paraffin
wax. In the serial sections (5-6 pm), histomorpho-
logical staining techniques were used, such as
Haematoxylin-eosin and Haematoxylin-VOF (Light
green, Orange G, Acid Fuchsin) and Type III-G.S
(Sarasquete & Gutierrez 2005). To analyse the cel-
lular distribution of carbohydrates and proteins,
several histochemical techniques were performed:
PAS and diastase-PAS (neutral-glycoconjugates,
glycoproteins, glycogen); Alcian Blue at pH 2.5, 1,
and 0.5 (carboxylated and sulphated glycoconju-
gates); Mercury-Bromophenol Blue/Hg-BFB (gen-
eral proteins); Ninhydrin-Schiff (proteins rich in
lysine, NH,); Ferric-Ferricyanide/Thioglycollate re-
duction (cysteine and cystine; -SH and -S-S groups);
1,2-Naftoquinone-4-sulphonate sodium/NQS (argi-
nine); P-dimethylaminobenzaldehyde/DMAB-nitrite
(tryptophan); and Hg-sulphate-sulphuric acid-
sodium nitrate/Millon reaction (tyrosine). For the
characterization of different glucidic residues
bound to the glycoconjugates, several peroxidase-
HPR-conjugated lectins were used, extracted from
Canavalia ensiformes (ConA; Man/Glc), Ulex
europaeus (UEA-I; Fuc), Triticum vulgaris (WGA;
BGIcNAc >> NeuNAc/sialic acids/NANA), Glycine
max (SBA; o/ GalNAc) and Sambucus nigra

Table 1. Primer sequences, amplicon length (AE), annealing temperature (T), efficiency (E) and gene reference in the
experiment of zebrafish exposed to isoflavones

Target Sequence (5-3") AE (bp) T (°C) E® GeneBank
accession no.

18S sRNA GAA CGC CACTTG TCC CTCTA 130 60 2.0704 NR_145818.1
ATG GCC GTT CTT AGT TGG TG

eEFlal TCT TCC ATC CCT TGA ACC AG 134 60 2.0234 AY422992.1
CCT ACA GCG AAA CACGTTCA

ERB GGA TTC AAG CCATTG TCA CC 130 60 2.0112 AJ275911.3
CCT GCA GGA TTC AAG GTT TC

HE1lal AGG AGC GAT CGT GAC CAG TA 140 60 2.0396 NM_001045174.2
GCC GTT TTT CCA TAG TGC AT

BRDT CCA GCA AAC CGT GAC CGT CAT CC 130 60 1.9952 NM_001305664.1
GGC AGA AGG TGT CGT AGT GTC TGC

3100 % efficiency is E = 2 and corresponds to a slope of —3.32. To accept the standard curve the R? value must be >0.99
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(SNA; Neur5Aco?2; sialic acids/NANA). Lectin A ERB

concentrations ranged between 15 and 30 pg ml™?, 35 0 Control

and specific sugar inhibitors were also used. 10 mg I”' daidzein 2
The peroxidase activity was visualised with 307 W 10 mg I”" genistein d3
3,3'diaminobenzidine tetra hydrochloride/DAB and
hydrogen peroxide (0.05%). All techniques were
performed according to Pearse (1985), and follow-
ing previously standardised techniques and proto-
cols (Sarasquete et al. 2002). All reagents were
purchased from Sigma-Aldrich.
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tem (Fig. 1B). Furthermore, the basal levels of the
BRDT transcripts were differentially expressed as
follows: ovary >> testis > head = musculature > diges-
tive system (Fig. 1C).

The isoflavone genistein down-regulated the
transcript levels of ERB in the ovary and digestive
system, and up-regulated ERP levels in the skeletal
musculature. Daidzein increased ERP expression
levels in the head portion and skeletal musculature.
Nevertheless, no significant differences were ob- ,
served in the basal expression levels of ERp in the Head Muscle Digestive Ovary Testis
testes due to the effect of both isoflavones. On the system
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Fig. 1. Relative expression levels of (A) oestrogen receptor
transcript (ERB), (B) hatching enzyme (HE1) and (C) bro-
modomain testis-specific gene (BRDT) in controls and male b3

and female zebrafish exposed to both isoflavones. Bars: alye
means + SE (n = 6 x 3) of the relative expression level of the a2
gene for controls, and treatment with 10 mg 1! daidzein and Y
10 mg 1! genistein. Asterisks: significant differences between a3
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these bromodomains were down-regulated in the
digestive system. Finally, genistein up-regulated
the expression levels of BRDT in the head portion,
and these BRDT transcripts were down-regulated
in the digestive system (Fig. 1).

As illustrated briefly in Fig. 2, the male and
female zebrafish gonads were in advanced stages
of gametogenesis. Thus, in the ovaries the pres-
ence of pre-vitellogenic basophilic oocytes and
acidophilic oocytes was observed in the different
stages of vitellogenesis, as well as the presence of
some residual post-ovulatory follicles. In the testes,
all the cells of the spermatogenic line were also
present, distributed along the seminiferous tubules
and contained cysts of spermatogonia, spermato-
cytes and spermatids in the testicular epithelia, as
well as groups of spermatozoa released in the
lumen of the tubules and seminiferous ducts. In
the ovary, the cortical alveoli, which appeared at
the periphery of the early vitellogenic oocytes,
contained a moderate amount of carboxylated gly-
coconjugates and abundant neutral glycoproteins.
As vitellogenesis progressed, acidophilic yolk-
granules and the characteristic zona radiata were
evident, and both structures contained abundant
proteins rich in all amino acids studied along with
neutral glycoproteins. The yolk granules showed a
remarkable staining affinity for all the lectins
studied (ConA, UEA, WGA, SBA, SNA), which
indicates great richness in glycoconjugates con-
taining different sugar residues, such as man-
nose/glucose, fucose, N-acetyl galactosamine/glu-
cosamine and sialic acids, whereas cortical alveoli
and the zona radiata showed specific higher affin-
ity for the WGA lectin (B-GlcNAc; NeuNAc). In
the testes, most spermatogenic cells contained
proteins rich in all amino acids studied, with
marked increases in proteins rich in basic amino
acids (i.e. arginine and lysine) and cysteine, espe-
cially in the spermatozoa. Most sugar residues
bound to glycoconjugates increased, especially in
spermatids and spermatozoa, as summarised in
Table 2.

Finally, no histomorphological-histochemical mod-
ifications were observed in either the male or female
gonads after exposure to both soya isoflavones. In
addition, over the course of the 2 wk experiment, no
significant variations were detected in the biometric
parameters of the 3-4 mo old male and female
zebrafish exposed to both phytoestrogens (average
weights between 0.38 + 0.03 and 0.40 + 0.02 g) com-
pared to the controls groups, and no mortalities were
recorded.

4. DISCUSSION

The present study showed variable and differential
basal expression patterns in the 3 genes studied
(ERB, HE1, and BRDT) according to sex and the dif-
ferent organs and tissues of the zebrafish that were
analysed. Interestingly, basal constitutive transcript
patterns for the 3 genes were quite unexpected in
both gonads. In fact, for both transcript patterns (ERB
and HE1), higher basal expression levels were
recorded in the testes than in the ovaries, while basal
expression levels of BRDT were higher in the ovaries
than in the testes. Similarly, exposure to the same
non-toxic dose of both soya isoflavones (genistein
and daidzein, at 10 mg 17! for 2 wk) induced differen-
tial and variable transcriptional responses depending
on the organs and tissues analysed (e.g. gonads,
head, digestive system and skeletal musculature)
and according to sex and the type of isoflavone pro-
vided. Most genes involved in reproduction, hatch-
ing, development and epigenetic processes (e.g.
oestrogens and receptors, choriogenins, HEs, apop-
totic and epigenetic markers, bromodomains) ex-
press constitutively at high or moderate levels in the

-
>

Fig. 2. Histological sections of zebrafish ovary and testis. (A)
Asynchronous oogenesis showing several basophilic pre-
vitellogenic oocytes (arrowheads), an early vitellogenic oocyte
with a still intense basophilia (RNA) and with the presence
of the first cortical alveoli in the peripheral cytoplasm. There
is also a section of a final vitellogenic oocyte containing aci-
dophilic yolk granules and the characteristic zona radiata.
(B) Pre-vitellogenic basophilic oocytes and intermediate aci-
dophilic vitellogenic oocytes containing abundant cortical
alveoli. (C) Different stages of vitellogenesis showing an
early vitellogenic oocyte with numerous cortical alveoli, and
an advanced vitellogenic oocyte with abundant acidophilic
yolk granules. (D) Detail of an oocyte in the final stage of
vitellogenesis containing numerous acidophilic yolk gran-
ules (orange-G affinity) and abundant cortical alveoli, as
well as empty vacuoles or lipid globules. The onset of coa-
lescence or fusion of the yolk is highlighted. The character-
istic zona radiata is observed with its cellular or follicular
outer layer, as well as the presence of post-ovulatory resid-
ual follicles. (E,F) In the 2 testicular sections, the different
types of germ cell cysts (spermatogonia, spermatocytes,
spermatids and spermatozoids) are distributed along the
seminiferous epithelium, with a synchronous development
of the germ cells and several groups of spermatozoids that
are found regularly and are released in the lumen of the
seminiferous tubules and in the system of efferent ducts.
CA: cortical alveoli; FL: follicular layer; LG: lipid globules;
PO: previtellogenic oocytes; PF: post-ovulatory follicles; VO:
vitellogenic oocytes; YG: yolk granules; ZR: zona radiata;
SZ: spermatozoids. Scale bars in (A,D) 100 pm; (B,C) 50 pm;
(D,F) 25 pm. Ovarian sections: Haematoxylin-VOF. Testicu-
lar sections: Haematoxylin-eosin (E); Haematoxylin-VOF (F)
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Table 2. Histochemical characteristics in gonads of zebrafish controls and exposed to isoflavones. Semi-quantitative data de-

termined by 4 independent observers, showing different staining intensities and affinities to biological compounds, from neg-

ative () to weak, moderate and strongly positive (from 1+ to 3+). CA: cortical alveoli; YG: yolk granules; ZR: zona ra-
diata; Spg: spermatogonia; Spc: spermatocyte; Spd: spermatid; Spz: spermatozoid

Demonstrated compounds Previtellogenic Vitellogenic oocytes Spg Spc Spd Spz
cytoplasm CA YG ZR

PAS

Neutral glycoconjugates/GCGs

Glycogen/Glycolipids 2+ 2+ 2+ 3+ 2+ + + +

Diastase-PAS

Glycogen + 2+ + 3+ + +- + +

AA 25

Carboxylated GCGs +- 2+ +- +- + + 2+ 3+

AA0.5/1

Sulphated GCGs +— +— — _ _ _ _ _

Bromophenol-blue

General proteins 2+ + 2+ 3+ + + 2+ 3+

Lysine rich proteins 2+ + 2+ + + + 2+ 3+

Arginine rich proteins + + 2+ 2+ + + 2+ 3+

Cysteine-SH- + + + 2+ + + 2+ 3+

Cystine-S-S- + + + 2+ + + 2+ 2+

Tyrosine rich proteins + +— + 2+ + + + 2+

Tryptophan rich proteins+ + +- + + +- +- +— +—

ConA

Man/Glc + - +- +- - - + +

UEA-I

L-Fucal, + - +- +- - - + +

WGA

B-GINAc>> NeuNAc + + + + - - + 2+

SBA

o/p GalNac + + + + - - + +

SNA

Sialic acids/

NeubAca2/NANA + + + + - - + 2+

gonads and during the early stages of development
and life, as has been reported in different species of
fish including zebrafish (Segner et al. 2003, Chan-
drasekar et al. 2010, Ubeda-Manzanaro et al. 20186,
Sarasquete et al. 2018a, Gonzalez-Rojo et al. 2019).
All these findings corroborate the maternal origin of
mRNA transcripts and their transfer to the progeny,
since the oocyte is the starting point of a new gener-
ation. As reviewed by Arukwe & Goksgyr (2003),
most of the machinery for DNA and protein synthesis
necessary for the developing embryo is performed
autonomously by fertilised oocytes.

In the present study, as expected, ERs (e.g. ERp)
were expressed constitutively and differentially in
most organs and tissues involved in reproductive and
non-reproductive functions, displaying higher tran-
script levels for ERB in the testes than in the ovaries.
Several authors have also pointed out that the 3 ERs
(o, B1, B2) overlap and are expressed mainly in the

brain, pituitary, liver and gonads of zebrafish, dis-
playing much lower basal expression levels for the
ERs in the ovaries than in the testes. Furthermore,
zebrafish males and females show a differential and
opposite binding affinity for the different endoge-
nous and exogenous ligands, indicating a sexually
divergent mechanism and sex-specific control of ERs
(Menuet et al. 2002, 2004, Chandrasekar et al. 2010,
Lu et al. 2017, Schaaf 2017). Interestingly, some re-
markable differences were observed in zebrafish
compared to other species of fish, such as the her-
maphrodite seabream Sparus aurata, which showed
higher basal expression levels of ERf in the ovaries
and for ERa in the testes. In addition, very high basal
expression levels have also been described for the 3
ERs (ERo, Ps) in seabream testes, which corroborates
the crucial role of oestrogens and their receptors for
reproduction in both sexes. In parallel, in zebrafish
and other fish species, moderately high basal expres-
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sion levels for the ERs (i.e. ERa, Ps) have been
recorded in many other non-reproductive organs and
tissues, such as the digestive system, muscles, gills,
heart, kidney and eyes (Socorro et al. 2000, Pinto et
al. 2006, Chandrasekar et al. 2010, Nelson & Habibi
2013). As has already been extensively reported, the
baseline expression patterns of ERB, which are con-
stitutively expressed at a much higher level in the
testes than in the ovaries of zebrafish and other fish
species, allows corroboration of the obvious function
of ERs (ERa, PBs) during gametogenesis, and their
involvement in the reproductive functions of females
and males. In this context, it is appropriate to remem-
ber that oestrogens, which are commonly known as
‘female hormones' and are studied more and better
known during oogenesis, are also key actors in sper-
matogenesis. In fact, through genomic and non-
genomic pathways via ERs (ERo, PBs), including the
pathway to the transmembrane G-protein coupled
oestrogen receptors (GPERs), oestrogen receptors
participate in reproductive functions. In particular,
through the genomic signaling pathway, ERs play a
fundamental role in the development, differentiation
and maturation of female and male germ cells, as
well as in the survival of spermatozoa. Recently, it
has also been pointed out that GPER = GPR30 (i.e. a
non-genomic pathway) is not necessary for the deter-
mination of sex, development or function of the ovary
or fertility in female zebrafish (Leal et al. 2009,
Schulz et al. 2010, Hao et al. 2013, Nelson & Habibi
2013, Crowder et al. 2018). Accordingly, the current
results and the numerous previous studies allow cor-
roboration of the generalised effects, integrating
functions and even autoregulation of ERs (i.e. ERBs
vs. ER0) in both gonads, as well as in different organs
and somatic tissues.

Similar to oestrogens, soya isoflavones (i.e. genis-
tein and daidzein), as characteristic phytoestrogens
(= 17B-oestradiol) or better known as SERMs, can
modulate (or interrupt) the gonadal development
and reproductive cycle of both sexes (Pelissero et al.
1991, Kiparissis et al. 2003, Patisaul & Adewale 2009,
Lecomte et al. 2017, Xiao et al. 2018). In the present
study, baseline ER[} expression levels decreased sig-
nificantly in the ovary (but not in the testes) and in
the digestive system (including the liver) due to the
action of genistein (at 10 mg I7!). Conversely, ERB
expression levels were not altered by the effect of
daidzein in either of the gonads. This isoflavone
increased ERP transcription levels in the head (i.e.
brain and pituitary) and in skeletal musculature. In
other recent studies, it was reported that both soya
isoflavones (at 5 mg 17!) increased ERP expression

levels in fertilised embryos and newly hatched
zebrafish larvae. Nevertheless, during the larval
development of Senegalese sole, baseline ERp ex-
pression levels were modulated in variable ways due
to exposure to both isoflavones, showing a greater
induction pattern with daidzein (at 20 mg 17!) that
genistein at lower concentrations (3 and 10 mg 17}
Sarasquete et al. 2017, 2018a, 2019). In a different
study, in male and female zebrafish exposed to
chemical endocrine disruptors (e.g. diethylstilbestrol
and 4-nonylphenol), different transcriptional re-
sponses were described for the 3 ERs (ERa, ERB1, $2)
in the brain and in both gonads, depending on sex
and the circulating basal levels of the natural ligand
17B-oestradiol (Chandrasekar et al. 2010). Recently,
it was noted that ER transcript levels (ERa, Bs) were
not altered in zebrafish males when exposed to
bisphenol-A. However, the expression levels of ERs
coupled to the transmembrane G protein (GPER-1)
were up-regulated by this plasticizer EDC (estrogen-
dendrimer conjugate), which induced apoptotic and
epigenetic effects in zebrafish testis (Gonzdalez-Rojo
et al. 2019). Taken together, the current results and
all the previous findings allow us to corroborate the
differential and variable oestrogenic (and anti-)
responses that can be induced by different endocrine
disruptors, including phytoestrogenic isoflavones,
through binding to ERs, as demonstrated in the
gonads and other brain and somatic organs and tis-
sues. In particular, a decrease in ERf expression lev-
els was observed in the ovary, but not in the testis,
due to the action of genistein. In contrast, daidzein
did not induce significant transcriptional effects
(through ERP), in either of the gonads, which is
indicative of differential oestrogenic (anti-) effects of
both genistein and daidzein in males and females,
since a similar dose of each isoflavone was tested,
and the male and female zebrafish were in a similar
or parallel state of gonadal maturation.

On the other hand, the highest basal expression
levels of HE1 were, surprisingly, expressed in the
testes, with only moderate expression levels dis-
played in the ovaries. The lowest levels of HE1 were
recorded in skeletal musculature > head = digestive
system. Chakraborty et al. (2017) reported that in
Japanese anchovy Engraulis japonicus, some iso-
forms of the HEs (i.e. AcHEs), which are considered
to be ovastacin homologs, predominated both in the
ovary and testis, and these isoforms showed no ex-
pression biased by sex, suggesting a conserved role
in other areas unrelated to sex. In addition, some of
these metalloproteases play the role of proteolytic
agents by digesting the egg-envelope to facilitate
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penetration of spermatozoa and by promoting inter-
action between both gametes; other metallopro-
teases which are within the ovary, such as the alve-
olin peptidase, do not break the egg-envelope, but
are instead involved in its hardening upon fertilisa-
tion (Yamagami 1996, Sano et al. 2008, Kawaguchi et
al. 2012, Shibata et al. 2012, Nagasawa et al. 2015).
Interestingly, in zebrafish, HE1 expression levels
were up-regulated by exposure to genistein (at 10
mg 1I"!) in both male and female gonads, while
daidzein only increased HE1 expression levels in
skeletal musculature. In a recent study, HE1 reached
the highest levels of expression in zebrafish embryos
(at 24 h post-fertilization, hpf), with a decreasing
transcriptional pattern from this embryonic phase to
hatching (at 72-96 hpf). In addition, expression lev-
els of HE1 increased with exposure to daidzein (at
20 mg 17!, LOTEC —Low Observable Toxic Effect
Concentration —value, at 72 hpf), and this isoflavone
accelerated the hatching process in zebrafish, while
expression levels of HE1 were not modified by expo-
sure to genistein at 5 mg 1! (Sarasquete et al. 2018a).
In the present study, by inducing increases in HE1
expression levels, genistein (at 10 mg 17!) could acti-
vate or accelerate degradation of the egg or chorion
envelope during the maturation of oocytes and/or
increase the process of atresia (for example, auto-
phagy or apoptosis), as described in other species due
to increases in HEs (Donato et al. 2003, Chakraborty
et al. 2017). Taken together, despite certain increases
in the expression levels of HE1 and parallel de-
creases in ERP levels (which are 2 signals oppositely
modulated in the ovary [up—down regulations]) with
exposure to genistein, these imbalances did not mod-
ify histomorphological or histochemical patterns of
the vitelline structures, nor did they influence the
maturation of the oocytes. Similarly, the expression
levels of HE1 also increased in the testes with expo-
sure to genistein, but neither histomorphological-
histochemical alterations nor effects on the develop-
ment and maturation of spermatogenic cells were
observed.

It is widely known that the BRDT protein has 2 N-
terminal bromodomains that bind to the tails of
acetylated histones, and thus both bromodomain
genes and proteins are involved in epigenetic pro-
cesses, both constitutive and induced (Bao & Bedford
2016, Taniguchi 2016). In zebrafish, basal expression
levels of BRDT were higher in the ovaries than in the
testes, and moderate or low levels of expression were
recorded in other organs and tissues (i.e. head, mus-
culature, digestive system). In another recent study,
higher levels of BRDT expression were recorded in

fertilised eggs of zebrafish, showing lower expres-
sion levels during embryogenesis and hatching of
larvae (Sarasquete et al. 2018a). In other fish species,
such as the protandrous hermaphrodite Sparus
aurata, basal levels of the BRDT transcripts were
higher in the mature testes than in the ovaries, and
moderately high levels of expression were also
recorded in other organs and tissues (i.e. brain, pitu-
itary, musculature, heart, kidney, spleen, intestine,
gills), while in the gonochoric sea bass Dicentrarchus
labrax, similar and elevated expression levels of
BRDT were registered in both gonads, and very low
levels of expression were recorded in the other
organs and tissues. In addition, a constitutive expres-
sion of BRDT has been described in both spermato-
cytes and spermatids, which could be related to the
role of BRDT in the termination of meiosis-I as well as
in genome condensation or as a transcriptional regu-
lator during these spermatogenetic states (Ubeda-
Manzanaro et al. 2016). Interestingly, Kurtz et al.
(2009) reported that histone acetylation (e.g. H4)
occurs during fish spermatogenesis. In the gono-
choric species D. labrax, the replacement of histones
by protamines was observed during spermiogenesis,
while in the hermaphrodite S. aurata there was no
displacement of these basic nuclear proteins. The
inter- and intra-specific differences indicated in
BRDT expression levels in different species of fish
(including zebrafish in the present study; i.e. higher
levels of BRDT in the ovaries than in the testes) sug-
gest a different role of BRDT protein during both
spermatogenesis and oogenesis, as a transcriptional
regulator and/or for chromatin remodeling and com-
paction depending on the species, as reported in
mammals and fish (Taniguchi 2016, Ubeda-Manza-
naro et al. 2016). In the present study, in the zebrafish
testes, basal expression levels of BRDT transcripts
increased significantly with exposure to daidzein (at
10 mg 1I71), but not with exposure to the same dose of
genistein. In the ovary, no significant transcriptional
changes were recorded due to the effect of either
isoflavone. In another recent study, baseline expres-
sion levels of BRDT were up-regulated by genistein
(at 5 mg 17!, LOEC value, at 96 hpf), but BRDT tran-
script levels were not altered by exposure to daidzein
(up to 20 mg 17!), which is known to be less toxic than
genistein, as reported in embryos and larvae of
zebrafish at LC50 (lethal concentration 50 %) values
of 67.63 mqg 1! (daidzein) and 4.41 mg 1! (genistein)
(Sarasquete et al. 2018a). As previously noted, the
BRDT gene and the family of BETs are mainly
involved in the modulation of gene transcription
through epigenetic mechanisms, between bromo-
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domains and acetylated histones (rich in lysine), re-
gulating genome reprogramming during spermato-
genesis and oogenesis, embryogenesis, sex- differ-
entiation and maintenance of lineage commitment
(Taniguchi 2016, Ubeda-Manzanaro et al. 2016).
Accordingly, in zebrafish, some of the basic and cru-
cial events that participate in certain structural
aspects of gametogenesis, and that depend on the
regulation and modulation of the bromodomain gene
and proteins, would be enhanced by the effect of the
phytoestrogenic daidzein, at least at the transcrip-
tional level as demonstrated in mature testicles (i.e.
up-regulation of BRDT). Nevertheless, baseline BRDT
expression levels were not altered in the ovaries with
exposure to both isoflavones. Therefore, despite the
induced transcriptional imbalances (up—down regu-
lations) in the expression levels of the studied signals
(ERB, HE1 and BRDT) in both gonads and in the other
organs and tissues, no cellular alterations were ob-
served. In this context, the histomorphological and
histochemical characteristics of both gonads (controls
and exposed to both isoflavones) are in agreement
with numerous previous descriptions and findings. In
particular, these gonadal characteristics highlight in
the ovary the continuous development and asynchro-
nous growth of germ cells at different stages of ooge-
nesis, which is very characteristic of this species; that
is, there is a permanent presence of oogonia, baso-
philic previtellogenic cells and oocytes in different
stages of vitellogenesis and maturation, as well as the
presence of post-ovulatory residual follicles and
atretic oocytes. In the testis, these characteristics
highlight the continuous and synchronous develop-
ment of cysts of the spermatogenetic cell line, numer-
ous from spermatogonia to spermatozoa, as has been
described extensively in zebrafish (Selman et al.
1993, Leal et al. 2009, Gallo & Costantini 2012,
Schulz et al. 2010, Deshpande & Pancharatna 2013,
Lu et al. 2017).

In conclusion, the soya isoflavones genistein and
daidzein differentially modulated the basal expres-
sion patterns of genes in the gonads of male and
female zebrafish. Genistein resulted in a decrease in
ERB in the ovary but an increase in expression levels
of HE1 in both gonads, whereas daidzein only in-
creased the transcript levels of BRDT in the testes.
These responses could suggest a greater anti-oestro-
genic transcriptional effect (through ERP) in the
gonad of females induced by genistein, which also
provokes a higher transcriptional choriolytic effect in
both gonads. In addition, increased BRDT transcript
levels in the testes caused by the action of daidzein
could suggest a greater activating effect in spermato-

genesis, chromatin remodelling and/or epigenetic pro-
cesses. Altogether, these transcriptional responses
(up—down regulations) must also be complemented
and analysed at hormonal and physiological levels,
since no histomorphological-histochemical changes
were observed in the zebrafish ovary, as recorded
through the pattern of distribution of carbohydrates,
proteins and the presence of sugar residues in the
content of glycoconjugates, which are detected in
cortical alveoli, yolk granules and zona radiata of
vitellogenic and mature oocytes. Similarly, no appre-
ciable histomorphological or histochemical changes
were observed in the spermatogenetic cells (from
spermatogonia to spermatozoa). All these transcrip-
tional and cellular responses, as well as changes at
the protein, hormonal and enzymatic levels, should
be studied in greater depth throughout the reproduc-
tive cycle of females and males, as well as during the
process of sexual differentiation of zebrafish exposed
to both phytoestrogenic isoflavones.
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