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1.  INTRODUCTION

Reef fish are socially, nutritionally, and economi-
cally valuable to human society (Sadovy 2005). How-
ever, they are vulnerable to overfishing because of
their long-lived, slow-growing, and limited-dispersal
characteristics (Parker et al. 2000, Love et al. 2006).
Rocky reefs, the habitat of reef fish, are also under
anthropogenic stress as a result of port construction,
mariculture, and destructive bottom trawl fisheries
(Neira & Cantera 2005). The bladder of reef fish cre-
ates a relatively narrow zone of neutral buoyancy in
shallow waters which makes them easily injured by
forced up-and-down movements through the water

column (Parker et al. 2006); therefore, release strate-
gies for reef fish are often ineffective (Parker et al.
2000, Yamanaka & Logan 2010). Ecosystem-based
fisheries management (EBFM), the establishment of
marine protected areas (MPAs), and construction of
artificial reefs are approaches aimed at conserving
these vulnerable fish, but their effectiveness requires
a robust understanding of reef fish structure, includ-
ing the effects of habitat on fish assemblages.

Physical and biological habitat variables can drive
the spatial variation of populations and assemblages
of various reef inhabitants (Guidetti et al. 2004,
Schroeter et al. 2015). Nutrient availability and tem-
perature influence local fish community structure
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by altering recruitment and post-recruitment pro-
cesses (Connell & Jones 1991, Tupper & Boutilier
1997), prey availability (Warfe & Barmuta 2004),
and interspecies interactions (Hixon & Beets 1993,
Johnson 2006). The magnitude of the associations
between fish assemblages and habitat variables has
been a key criterion for the designation, manage-
ment, and assessment of MPAs (Anderson & Millar
2004, García-Charton et al. 2004). Artificial reefs are
commonly used for fishery-enhancement programs
(Smith et al. 2017), but un certainties regarding their
design and site selection can influence the targeted
marine communities. However, associations between
fish assemblages and habitat variables have not
been explicitly incorporated into the deployment of
artificial reefs (Parsons et al. 2016). Recent studies
of associations be tween species and habitat vari-
ables focused on tropical (Beger & Possingham 2008,
Richardson et al. 2017) and temperate (Tuya et al.
2009, Cameron et al. 2014, Parsons et al. 2016) mar-
ine ecosystems. Thus, the effective conservation and
enhancement for reef fish in subtropical rocky reefs
has not been well promoted.

Habitat suitability modeling has become a common
ecological tool to understand how physical and bio-
logical variables influence species distribution and
assemblages (Guisan & Zimmermann 2000, Cameron
et al. 2014, Nash et al. 2016, Parsons et al. 2016).
Generalized additive models (GAMs) are one of the
most commonly used statistical modeling techniques
for habitat suitability modeling, as GAMs can ex -
plore nonlinear relationships between response (e.g.
species presence or abundance) and explanatory (e.g.
temperature, depth, salinity, etc.) variables. However,
potential biotic interactions (e.g. species co-occur-
rence) are not included in GAM-based analyses. The
multivariate generalized linear model (MGLM) and
joint species distribution model (JSDM) have been
developed for analyzing multivariate community
abundance data (Hui 2016), and have improved our
ability to model community-level responses to physi-
cal and biological variables, while accounting for spe-
cies correlations (Warton et al. 2015). Here, we used
a combination of these modeling methods to make
our analysis more comprehensive and in-depth.

In Ma’an Archipelago, in the East China Sea, the
rocky reefs are under high anthropogenic pressure
from road/port construction and fishing (Wang et al.
2012). Based on a combination of the life-history
characteristics of the reef fish and the status of their
habitat in Ma’an Archipelago, there is an urgent
need to conserve them. In this study, we examined
the effects of habitat on reef fish diversity (using a

GAM) and community composition (using a MGLM
and a JSDM) in Ma’an Archipelago. The results of
this study will further our understanding of the asso-
ciations between habitat and reef fish in subtropical
rocky reefs and provide guidance for the manage-
ment of reef fish and their habitats, including habitat
zonation and the deployment of artificial reefs.

2.  MATERIALS AND METHODS

2.1.  Study area

Ma’an Archipelago is located at the center of the
Zhoushan fishing ground, where the confluence of
the Yangtze River, Qiantang River, Yellow Sea cold
water mass, Taiwan Warm Current surface water,
and Taiwan Warm Current deep water occurs (Zhang
et al. 2007). This complex hydrological environment
makes Ma’an Archipelago a feeding ground for
many marine organisms (Wang et al. 2012). The coast
of Gouqi Island in Ma’an Archipelago is dominated
by Sargassum horneri, which provides feeding and
spawning areas as well as shelter for a variety of in -
vertebrates and fish (Chen et al. 2015). Ma’an Archi-
pelago is under high fishing pressure, with more
than 150000 fishermen yr−1 operating fishing vessels
in the area (Lin 2017). In order to protect the fishery,
an MPA and ongoing artificial reef program were
established. The MPA has been moderately effective,
although its management still needs to be improved
(Sun 2018). This area is closed to fishing from 1 May to
1  September.

2.2.  Survey data

This study was based on a fishery-independent
multi-mesh gillnet survey conducted in Ma’an Archi-
pelago from January to December in 2009 (Fig. 1). A
total of 21 sites were sampled during the survey;
details of the total sample composition and sampling
months for each site can be found in Wang et al.
(2012). Each site was sampled for 24 h by 2 groups of
parallel gillnets. One group consisted of 4 connected
gillnets with mesh sizes of 2.5, 3.4, 4.3, and 5.8 cm,
each net being 1.5 m in height and 3.75 m long (= 1.5 m
height × 15 m total length). The other group con-
sisted of 4 connected gillnets with mesh sizes of 5, 6,
7, and 8 cm, each net being 2.4 m in height and 7.5 m
long (= 2.4 m height × 30 m total length). Catches
from the 2 gillnets were combined for further analy-
sis. Depth (m), temperature (°C), salinity (‰), dis-
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solved oxygen (DO; mg l−1), chlorophyll a (chl a; mg
l−1), and turbidity (NTU) at each site were measured
with a water quality measuring instrument (AAQ1183).
Using a grab sampler at each site, mud, mixed sand,
rock, and mud (srm), sand, mixed sand and rock (sr),
and rock were identified.

2.3.  GAM

A GAM was used to assess the effects of habitat
variables on reef fish diversity. Three indices of diver-
sity were modeled as response variables: the total
number of species (S), Shannon-Wiener index (H’),
and Simpson’s diversity index (D). H’ and D were cal-
culated by the following formulae:

(1)

(2)

where i is the number of i th species and Pi is the pro-
portion of i th species in the total number of species.
Location (longitude and latitude), month, depth (m),
bottom type, temperature (°C), salinity (‰), DO (mg l−1),
chl a (mg l−1), and turbidity (NTU) were selected as
explanatory variables.

To check the multicollinearity of candidate ex -
planatory variables, Spearman’s correlation and vari-
ance inflation factors (VIFs) were used. Firstly, we
calculated the Spearman coefficients between vari-

ables. If the coefficient between 2 variables was >0.7
(Jaureguizar et al. 2016), a variable explaining less
variation of reef fish diversity in the GAM was re -
moved. We further detected collinearity using VIFs,
where variables with VIF > 10 were removed (Bor-
card et al. 2011). To assess the influence of DO along
the depth gradient, an interaction between DO and
depth was included in the models. An interaction
between longitude and latitude was also included to
assess the spatial influence.

The general formulation of a GAM can be ex -
pressed as:

(3)

where yi is the response variable, α denotes an inter-
cept term, f denotes the non-parametric cubic spline
smooth function, xi denotes the i th explanatory vari-
able, and ε is the residual error term. The GAM was
fitted with a Tweedie family distribution to account
for large proportion of zeros within response vari-
ables (Jaureguizar et al. 2016). A Tweedie GAM
parameter, p, can be a value between 1 and 3, where
p = 1 corresponds to Poisson distribution and p = 3
corresponds to inverse Gaussian distribution (Tweedie
1984). The Tweedie GAM developed in our study was
fitted by restricting p between 1 and 2, which defined
a compound Poisson that can model positive values
and zeros at once. Model selection was carried out
through backwards selection based on Akaike’s in -
formation criterion (Wood 2017); model assumptions
were evaluated by examining the plots of residuals.
The relative importance of each variable in the GAM
was calculated by (1) assessing the original adjusted
R2 and smooth parameter of each variable from the
best-fitting GAM; and (2) removing a variable and
re-modeling the other variables with their smooth
parameter derived from (1) (above) in a new GAM to
get a new adjusted R2. The relative importance of the
removed variable was evaluated by the new adjusted
R2 minus the original adjusted R2 (Wood 2005). All
statistical analyses were conducted using the ‘mgcv’
package (Wood & Wood 2007) in R v.3.6.1 (R Devel-
opment Core Team 2019).

2.4.  MGLM

A MGLM was used to model the relationship
between the habitat variables and reef fish commu-
nity composition. A MGLM fits a separate GLM for
each species; resampling-based hypothesis testing is
then used to find predictors that influence multivari-
ate abundances (Yi et al. 2012). The MGLM in our
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study was fitted with a negative binomial error distri-
bution. Variation in species composition explained
by predictors was calculated by the ‘anova.manyglm’
function in packaqge 'mvabund' (Yi et al. 2012).

2.5.  JSDM

We used a JSDM to further explore our multi-
species data set. A JSDM incorporates the impact of
habitat predictors and interspecific interactions in a
single model (Hui 2016). Two latent variables were
included in our JSDM to create an unconstrained
ordination to visualize the main trends between reef
sites based on their species composition. Latent vari-
ables account for unknown or unmeasured variables,
and enable an unconstrained ordination for visualiz-
ing site and species patterns by inducing correlations
between taxa (Warton et al. 2015). There was no row
effect in our JSDM, which means that the ordination
patterns were driven by differences in both abun-
dance and species composition between sites. The
residual correlation matrices were also evaluated to
explore correlations between species (i.e. co-occur-
rence) due to habitat factors and un measured vari-
ables. The JSDM was built using the R package
‘boral’ (Hui 2016).

3.  RESULTS

3.1.  Observed species composition

A total of 12 species of reef fish were identified
from the gillnet survey in 2009 (Table 1). The most
frequently observed species were Sebastiscus mar-
moratus, Hexagrammos agrammus, and Hexagram-
mos otakii representing 63.6, 20.3, and 7.3% of the
total abundance, respectively.

3.2.  Effects of habitat on reef fish diversity

Turbidity and chl a were highly correlated (correla-
tion: 0.71, p < 0.01) (Fig. 2). Turbidity was removed
from the candidate variables, as the GAM including
turbidity explained less variation in reef fish diversity
than the GAM including chl a. The rest of the candi-
date variables were included in our models because
their VIF values were less than 10 (Table 2).

The best-fitting Tweedie-GAM identified that S in
Ma’an Archipelago was significantly influenced by
chl a, temperature, DO, month, bottom type, the

interaction of latitude and longitude, and the interac-
tion of DO and depth (Table 3). These predictors
explained 77.5% of variation in S. The most impor-
tant predictor for S was the interaction between DO
and depth (Table 3). The chl a response curve from
the best-fitting model showed higher S at 50, 250,
and >450 mg l−1 (Fig. 3). The temperature response
curve showed the highest S at 25°C (Fig. 3). The DO
response curve showed S decreased with DO (Fig. 3).
Higher S was found in May and November (Fig. 3),
and the highest S occurred in rock bottom type
(Fig. 3). The interaction of depth and DO response
map showed higher S associated with 5−15 m depth
and DO < 4 mg l−1 (Fig. 3).

H’ and D were significantly influenced by month,
bottom type, chl a, and temperature (Table 3). These
variables explained 42.5% and 37.5% of variation in
H’ and D, respectively. The most significant factor for
H’ and D was chl a (Table 3). Higher values of H’ and

Variable                                               Type                   VIF

Longitude (°)                                     Spatial                 6.70
Latitude (°)                                         Spatial                 5.58
Bottom type                                       Abiotic                 n/a
Month                                              Temporal               n/a
Depth (m)                                          Abiotic                 1.59
Temperature (°C)                              Abiotic                 3.94
Salinity (‰)                                        Abiotic                 1.36
Dissolved oxygen (mg l−1)                Abiotic                 3.51
Chlorophyll a (mg l−1)                       Abiotic                 1.19

Table 2. Candidate explanatory variables used in this study. 
VIF: variance inflation factor; n/a: not assessed

Species                                         Common     Abundance
                                                         name           (ind. yr−1)

Sebastiscus marmoratus          False kelpfish        1671
Hexagrammos agrammus       Spotty-bellied        532
                                                     greenling
Hexagrammos otakii                Fat greenling         193
Microcanthus strigatus                  Stripey               65
Parajulis poecilepterus             Multicolorfin          60
                                                   rainbowfish
Pagrosomus major                   Red seabream         40 
Acanthopagrus schlegelii   Blackhead seabream    34
Apogon semilineatus           Half-lined cardinal     24
Epinephelus akaara           Spinycheek grouper     4
Oplegnathus fasciatus           Barred knifejaw         2
Goniistius zonatus             Spottedtail morwong     1
Enedrias nebulosus               Tidepool gunnel         1

Table 1. Total number of individuals of each species col-
lected in 2009 in Ma’an Archipelago; common names were 

derived from FishBase (Froese & Pauly 2019)
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Response       Model                              Formula                                            edf                  Deviance         AIC       Predictor’s 
variable                                                                                                                               explained (%)                   importance

Total                Full      s(Latitude,longitude) + month + bottom      17.75, 2.76, 4.02,          82.50           907.49
number of                  + s(chl a) + s(temperature) + s(DO,depth)     12.04,2.91, 1.00,
reef fish (S)                          + s(salinity) + s(depth) + s(DO)                        4.48

                        Best-             s(Latitude,longitude) + month               4.09, 7.10, 5.85,           77.50              905      0.035, 0.146, 
                       fitting        + bottom+ s(chl a) + s(temperature)              18.88, 5.41                                                 0.001, 0.029, 
                                                    + s(DO,depth) + s(DO)                                                                                              0.035, 0.102,
                                                                                                                                                                                             0.012

Shannon-         Full      s(Latitude,longitude) + month + bottom       2.88, 5.72, 2.14,           49.50              351
Wiener                             + s(depth,DO) + s(salinity) + s(DO)            1.00, 3.98, 1.21,
index (H’)                       + s(chl a) + s(depth) + s(temperature)                  1.00

                        Best-                Month + bottom + s(chl a)                       4.68, 1.00                42.50           300.22     0.06, 0.073,
                       fitting                       + s(temperature)                                                                                                   0.087, 0.086

Simpson’s        Full      s(Latitude, longitude) + month + bottom      2.88, 8.92, 1.55,           46.30            113.5
diversity                           +s(depth, DO) + s(salinity) + s(DO)           1.00, 4.87, 1.00,
index (D)                         + s(chl a) + s(depth) + s(temperature)                   1.00

                        Best-                Month + bottom + s(chl a)                       4.84, 1.00                37.50            61.44      0.05, 0.056,
                       fitting                       + s(temperature)                                                                                                   0.092, 0.074

Table 3. Full and best fitting generalized additive models for the total number of reef fish, Shannon-Wiener index, and Simp-
son’s diversity index. Relative importance of predictors for the best fitting model are listed in the last column. edf: estimated 

degree of freedom; AIC: Akaike’s information criterion

0 100 300 500

0

2

4

6

8

Chl a (mg l–1)

To
ta

l n
um

b
er

 o
f r

ee
f f

is
he

s 
(S

)

10 15 20 25 2 4 6 8 10

DO (mg l–1) Month
1 3 5 7 9 11

Bottom
mud sand srm

Temperature (°C)

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35

4

6

8

10

Depth (m)

D
O

 (m
g 

l–1
)

The total number of reef fishes (S) The total number of reef fishes (S)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

122.60 122.70 122.80

30.70

30.72

30.74

30.76

30.78

30.80

30.82

La
tit

ud
e 

(d
ec

im
al

 d
eg

re
e)

Longitude (decimal degree)
Fig. 3. Fitted back-transformed smoothing curves for significant univariate explanatory variables in the best-fitting general-
ized additive model explaining the total number of reef fish species. Tick marks on x-axis: relative density of observation; gray 

shading: 95% CIs



143

D were found in May and November (Figs. 4 & 5), and
the highest H’ and D occurred in the rock bottom type
(Figs. 4 & 5). The chl a response curves showed H’ and
D increased with chl a between 0−50 and >450 mg l−1

and decreased with chl a between 50 and 450 mg l−1

(Figs. 4 & 5). The temperature re sponse curves
showed the highest H’ and D at 25°C (Figs. 4 & 5).

3.3.  Effects of habitat variables on 
species composition

The MGLM results showed month, depth, rock and
srm bottom type, and the interaction of longitude and
latitude significantly influenced reef fish composition
(Table 4). All these variables explained 18% variation
in the reef fish community among our survey sites.

The biplot of residual ordination from the JSDM
distinguished no obvious clusters of sites based on
species composition (Fig. 6). The residual correla-
tions (Fig. 7) showed that H. agrammus was posi-
tively correlated with Pagrosomus major; Apogon
semilineatus was positively correlated with S. mar-
moratus and Microcanthus strigatus; and S. mar-
moratus was positively correlated with M. strigatus.

Zeng et al.: Effects of habitat on reef fishes
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                                                  Wald value                    p

(Intercept)                                       4.94                        0.01
February                                          0.99                        0.54
March                                              1.79                        0.15
April                                                 2.36                        0.04
May                                                  2.93                        0.02
June                                                 2.94                        0.02
July                                                  2.32                        0.11
August                                             2.19                        0.13
September                                       2.31                         0.1
October                                            1.18                        0.37
November                                        1.49                        0.26
December                                        0.61                        0.76
Depth                                               4.71                        0.02
Salinity                                             2.95                        0.53
DO                                                    3.88                        0.14
Temperature                                     4.1                         0.08
Rock                                                 5.66                          0
Sand                                                 2.64                         0.1
sr                                                       0.67                        0.45
srm                                                   3.62                        0.03
Chl a                                                 2.85                        0.58
Longitude × Latitude                      5.03                        0.02
Depth × DO                                     4.09                        0.08

Table 4. Results of the multivariate generalized linear model.
Significant variables (p < 0.05) are in bold. DO: dissolved 

oxygen; sr: sand and rock; srm: sand, rock, and mud
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4.  DISCUSSION

4.1.  Habitat effects on reef fish
diversity in Ma’an Archipelago

The reef fish diversity along the
coast of Ma’an Archipelago was sig-
nificantly influenced by habitat vari-
ables. Chl a, temperature, DO, month,
bottom type, the interaction of longi-
tude and latitude, and the interaction
of depth and DO had significant effects
on S, while month, bottom type, chl a,
and temperature significantly influ-
enced H’ and D.

In general, the number of fish species
increases with chl a since higher levels
of chl a support more zooplankton, on
which of the fish rely for food (Badsi
et al. 2010). However, our GAM re-
sults showed that S decreased with
chl a levels be tween 50−200 and 250−
450 mg l−1; H’ and D also decreased
with chl a be tween 50 and 450 mg l−1

(Figs. 3−5). Zhao et al. (2013) also
found that fish diversity decreased as
chl a increased in Ma’an Archipelago.
The negative relationship between
chl a and reef fish diversity found in
this study might be influenced by S.
marmoratus, the most abundant spe-
cies collected by the gillnet survey,
which had a significant effect on the
biodiversity indices of reef fish. Zeng et
al. (2016) found that S. marmoratus
was negatively influenced by chl a at
levels >50 mg l−1. All these negative
correlations between chl a and fish di-
versity were likely the result of a lack
of food for the fishes, because Ma’an
Archipelago is located in an upwelling
core area in an environment where
zooplankton are not abundant even
though the chl a is high (He et al. 1984).
The highest levels of S, H’, and D at
25°C were expected, since the preferred
temperature of these warm water fish
is higher than 20°C.

Reef fish diversity (including S, H’ and
D) varied among months and bottom
types. Higher diversity was found in
May and November along the coast of
Ma’an Archipelago. This may be a re-
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sult of the inshore−offshore movement of reef fish
during different life stages, such as the movement of
adult S. marmoratus to offshore areas for foraging and
gestation during spring, fall, and winter; this species
would not be caught by the gillnet survey conducted
in the inshore areas during these times (Massutí et al.
2001, Mitamura et al. 2009, Wu et al. 2012). The higher
reef fish diversity in November was likely due to the
inshore movement of reef fish for recruitment, as the
average total length of fish caught during November
was 3.1 cm (much smaller than their mature length)
(Wu et al. 2012, Ji 2014). Bottom type also significantly
influenced S; rock bottoms were associated with the
highest S, as reef fish prefer rocky habitats (Aburto-
Oropeza & Balart 2001, Barros 2005). Kelp also pro-
vides feeding and spawning ground for most species
of reef fish that inhabit rocky reefs (Zhao et al. 2013).

The interaction between depth and DO was the
most important habitat variable for S (Table 3). The
highest S occurred in areas with shallower depths
and lower DO. A decrease in reef fish density and
richness with increasing depth was also found in
Kimbe Bay, Papua New Guinea (MacDonald et al.
2016). This depth-related decline was expected be -
cause the biological coverage (e.g. kelp) decreased
with depth in Ma’an Archipelago (Bi et al. 2013), and
shallow reef areas can act as fish nurseries (Parsons
et al. 2016). The negative correlation between DO and
fish diversity identified in our study was consistent
with a previous study in Ma’an Archipelago (Zhao et
al. 2013). These negative correlations may be caused
by the large number of mussel farms operating along
the coast of Ma’an Archipelago. The aquaculture
infrastructure leads to lower DO in the water, but can
also provide shelter for reef fish (Zhao et al. 2013).

The higher S observed in the southern Ma’an
Archipelago was also consistent with a previous
study (Zhao et al. 2013). This association was likely
due to the higher kelp coverage in the southern part
of the study area (Zhang et al. 2008), which provides
a feeding ground for reef fish (Wang et al. 2013). A
positive correlation between reef fish and macro-
algae has been acknowledged in temperate rocky
reefs (Parsons et al. 2016). Therefore, the kelp cover-
age may be a potential contributor to the southern
concentration of reef fish in Ma’an Archipelago.

4.2.  Habitat effects on reef fish 
community composition

Effects of habitat variables on species composition
are important for diverse fish assemblages when

multiple species respond to these factors. In this
study, the JSDM indicated that there was a minor
shared response to habitat variables (Fig. 7), with
multiple species responding to month, depth, bottom
type, and location (interaction of longitude and lati-
tude) (Table 4). These habitat factors explained only
18% of the variation in species composition among
survey sites, which indicates that the reef fish com-
position was weakly influenced by our candidate
habitat variables. This result, combined with the
residual correlation between species derived from
the JSDM, suggests that the reef fish community may
be influenced by other habitat factors such as habitat
complexity (which can influence the habitat use of
reef fish; Bassett et al. 2018, Higgins & Mehta 2018)
or species interactions (which can also have an
effect on community structure; Collie & DeLong
1999, Shin & Cury 2001, Collie et al. 2008). Thus,
future studies examining the effects of habitat on
reef fish composition should consider habitat com-
plexity and species interactions. Additionally, the
small sample size in this study may not have encom-
passed the entire distribution of reef fish, which
resulted in no shared environmental responses. Our
results suggest that the spatial scale of the reef sites
examined here can be considered as one type of reef,
with insufficient patterns in reef fish composition to
distinguish clear reef ‘zones’ based on their habitat
characteristics.

4.3.  Management implications

One goal of EBFM is to enhance fish diversity and
richness by conserving their potential habitats and
other ecosystem factors (Link 2002). EBFM requires a
robust understanding of community structure and
the habitat associations of targeted fish species. Our
habitat models identified the most significant habitat
variables driving reef fish diversity and community
composition, and also identified the most suitable
environment for them. Although the data were based
on historical sampling (in 2009), our results revealed
insights into patterns of species’ interactions and
spatial distributions. The absence of data concern-
ing reef fish has motivated a recent interest in
examination of the historical record (Hilary 2013)
because it can be useful for guiding future manage-
ment decisions (Bennion et al. 2004, Stoddard et
al. 2006).

MPAs are a conservation tool used worldwide, and
evidence has shown that zoning has a significant
influence on their effectiveness (Ban et al. 2017,

Zeng et al.: Effects of habitat on reef fishes
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Hargreaves-Allen et al. 2017). MPA zoning is based
on habitat characteristics, the distribution of the tar-
geted species, and conservation objectives (La Mesa
et al. 2010). Associations between species and habi-
tats will provide information about the essential
habitat of targeted species, which is vital for MPA
zoning. There is no specific zone for reef fish in the
Ma’an Archipelago MPA, as their protection was not
a primary objective of this MPA (Fig. 8). Given the
environmental pressures and commercial value of
reef fish, conservation is needed for these species.
The southern study area can be given priority as a
conservation zone for reef fish because reef fish
aggregate in this area (Fig. 3). In Ma’an Archipelago,
the fishing season is closed from 1 May to 1 Septem-
ber. According to our study, to protect reef fish, fish-
ing activities should also be restricted in November.
Our findings are also valuable for artificial reef
research. Artificial reefs were deployed in Ma’an
Archipelago as a part of a fisheries enhancement
program. However, there is considerable uncertainty

about how their design and location will influence
the associated fish assemblage. Our results suggest
that the increased ability to host kelp and the shallow
depth of artificial reefs will increase the total number
of associated reef fish.
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