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1.  INTRODUCTION 

Mangrove forests are widely distributed in the 
intertidal zones of the tropical and subtropical coas -
tal areas. They are found in over 123 countries and 
comprise around 73 species (Spalding 2010, Giri et 
al. 2011). Mangrove forests are one of the most eco-
logically valuable ecosystems in the world (Costanza 
et al. 2014) and serve as nurseries for several marine 
and terrestrial species that support coastal liveli-
hoods (Nagelkerken et al. 2008, Alongi 2012). Man-

groves also provide several critical services such as 
fisheries support, water quality maintenance, flood 
protection, mitigating coastal erosion, and storm pro-
tection (Walters et al. 2008, Zhang et al. 2012, Marois 
& Mitsch 2015, Carrasquilla-Henao & Juanes 2017, 
Menéndez et al. 2020). Despite their importance, 
mangrove forests continue to decline globally due to 
both natural and anthropogenic causes, and these 
ecosystems have become more fragmented (Binks et 
al. 2019, Bryan-Brown et al. 2020). The estimated 
global area of mangrove forests was 152 604 km2 in 
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1996 and 147 359 km2 in 2020 and — although there 
was an overall decline in mangrove cover — on the 
positive side, deforestation rates in this 24 yr period 
had also decreased (Bunting et al. 2022). In Thailand, 
mangroves are found on the coastlines of both the 
Gulf of Thailand and Andaman Sea and cover ap -
proximately 1761 km2 of the Andaman coastline and 
693 km2 of the Gulf of Thailand (Lange et al. 2019). 
Mangrove forests in the country have suffered de -
struction by conversion to agriculture, aquaculture, 
industrial expansion, and urban area extension (Pu -
mijumnong 2014). They decreased drastically from 
3679 km2 in 1961 to 2296 km2 in 2007 (Aksomkoae 
1993, Pumijumnong 2014). 

Upriver orange mangrove Bruguiera sexangula is 
one of the important species of mangrove forests in 
Thailand. This species belongs to Rhizophoraceae, a 
true mangrove family, and is mostly distributed in 
the Indo-West Pacific region (Duke & Ge 2011). 
Upriver orange mangrove is an economically impor-
tant mangrove species. The wood of this species is 
utilized for fuelwood, charcoal production, and house 
construction, and the bark is used as a source of tan-
nin. Moreover, the fruit and the roots of B. sexangula 
can be used for medicinal purposes (Hanum & Van 
der Maesen 1997). However, the genetic diversity 
and population structure of upriver orange man-
groves in Thailand have not previously been exam-
ined. Understanding genetic variations within and 
between populations is crucial to conservation man-
agement (Toro & Caballero 2005), as these pa -
rameters significantly influence fitness and popula-
tion viability (Frankham 2010). The evaluation of 
genetic parameters in mangrove species helps to 
identify populations that are at risk of extinction, pri-
oritize them for conservation efforts, and guide man-
agement interventions (Wee et al. 2019). For exam-
ple, populations exhibiting high levels of gen etic 
variation are of particular conservation importance 
due to their enhanced ability to adapt to alterations 
in the environment. Conversely, populations that ex -
hibit low diversity or show signs of inbreeding may 
require genetic management interventions, such as 
the promotion of enhanced gene flow (Frank ham et 
al. 2019). Overall, genetic analyses can provide in -
formation that helps ensure that conservation efforts 
are targeted and effective, thereby preventing the 
extinction of mangrove species. 

Molecular markers provide an accurate and effec-
tive tool for estimating the genetic diversity and popu-
lation structure of a plant species (Porth & El-Kassaby 
2014). Several studies have been conducted to 
analyze the genetic diversity and structure of man-

grove species using different types of molecular 
markers: Simple Sequence Repeat (SSR) for Rhi-
zophora apiculate (Azman et al. 2020), Sonneratia 
alba (Wee et al. 2017) and Rhizophora stylosa (Islam 
et al. 2014); Inter-Simple Sequence Repeat (ISSR) for 
Nypa fruticans (Jian et al. 2010) and Rhizophora man-
gle (Chablé Iuit et al. 2020); Random Amplified Poly-
morphic DNA (RAPD) for Bruguiera gymnorrhiza and 
Heritiera fomes (Dasgupta et al. 2015); nuclear gene 
for B. gymnorrhiza (Minobe et al. 2010) and Rhi-
zophora species (Chen et al. 2015); and chloroplast 
DNA for Ceriops species (Huang et al. 2008), Ex-
coecaria agallocha (Guo et al. 2018), and R. stylosa (Is-
lam et al. 2014). Among different types of markers, 
single nucleotide polymorphisms (SNPs) have proved 
to be the most abundant type of molecular marker, 
and their high density provides a better insight into 
the genetic basis of a population (Howe et al. 2013). 
The restriction site-associated DNA sequencing 
(RAD-seq) is one of the reduced-representation 
library sequencing techniques, facilitating the rapid 
discovery of a large set of genome-wide SNP markers 
across many individuals (Davey & Blaxter 2010, 
Davey et al. 2011). This approach combines restriction 
enzyme digestion of the genome with high-through-
put sequencing and represents a cost-effective and 
powerful genotyping method that is applicable to 
both model organisms and non-model species with no 
existing genomic resources (Miller et al. 2007, Davey 
et al. 2011). Consequently, RAD-seq has increasingly 
been applied to identify and genotype genome-wide 
SNP markers in several plant species, including man-
grove species, to study genetic diversity (Gao et al. 
2017, Tsujimoto et al. 2019, Cai et al. 2020, Hsu et al. 
2022, Khanbo et al. 2022, Nagano et al. 2022, Ruang-
areerate et al. 2022, Naktang et al. 2023). 

In this study, we characterized 101 B. sexangula 
accessions from a number of mangrove forests in 
Thailand using SNP markers obtained by the RAD-
seq approach. We aimed to reveal the genetic diver-
sity and structure of B. sexangula populations, 
understand the level of genetic variation, and pro-
vide useful genetic information to support mangrove 
forest conservation. 

2.  MATERIALS AND METHODS 

2.1.  Plant materials and DNA extraction 

Leaf samples were collected from Bruguiera sexan-
gula individuals in 8 provinces of Thailand along the 
coasts of the Gulf of Thailand (Chum phon: CMP; 

32



Khanbo et al.: Genetic diversity and structure of Bruguiera sexangula

Nakhon Si Thammarat: NST; Surat 
Thani: SNI; Trat: TRT; Chanthaburi: 
CTI) and the Andaman Sea (Satun: 
STN; Trang: TRG; Ranong: RNG) be -
tween 2020 and 2021 (Fig. 1). We col-
lected a total of 101 individuals, com-
prising 7 individuals from CMP, 11 
individuals from CTI, 9 individuals 
from NST, 19 individuals from RNG, 
17 individuals from SNI, 15 individu-
als from STN, 5 individuals from TRG, 
and 18 individuals from TRT (Table 1). 
Different numbers of samples were 
collected at each of the 8 sites since 
the population sizes and distribution 
characteristics varied among the 8 
sites. The individuals were selected at 
a distance of at least 20 m from each 
other to avoid collecting closely re -
lated individuals and to maximize the 
likelihood of collecting diverse geno-
types (Ngeve et al. 2017, Triest et al. 
2020, Canty et al. 2022). Total geno -
mic DNA was isolated from fresh 
young leaves using the cetyl rimethyl 
ammonium bromide (CTAB) method 
followed by a cleanup using a DNeasy 
Plant Mini Kit (Qiagen). The con -
centration of the isolated genomic 
DNA was quantified using the Qubit 
fluoro meter (Thermo Fisher Scientific) 
and a Qubit dsDNA BR Assay kit 
(Invitrogen). 

2.2.  RAD library construction and 
SNP calling 

The libraries for RAD-seq were 
 constructed using the MGIEasy RAD 
library preparation kit (MGI Tech) fol-
lowing the manufacturer’s protocols. 
Briefly, gen omic DNA was digested 
with the Taq I restriction enzyme and 
DNA fragments were ligated with uniquely bar-
coded adapter pairs. Following polymerase chain 
reaction (PCR) and quantification, the samples were 
pooled in an equimolar manner. Pair-end sequencing 
with a read length of 150 bp was conducted on the 
MGISEQ-2000RS according to the manufacturer’s 
instructions (MGI Tech). 

The RAD-seq data were processed using the Gen -
ome Analysis Toolkit (GATK) (McKenna et al. 2010) 

pipeline. The sequences of each sample were sorted 
depending on the barcodes. Sequenced reads were 
aligned with the reference genome of B. sexangula 
(GenBank accession number JAHLGP000000000) 
using Burrows-Wheeler Alignment mapping algo-
rithm (Li & Durbin 2009). For SNPs calling, GATK 
HaplotypeCaller (McKenna et al. 2010) was utilized. 
The SNP calls from the GATK were filtered using the 
following criteria: (1) depth coverage between 10X−
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Fig. 1. The geographical location of 101 Bruguiera sexangula accessions in 
Thailand. Accessions were collected from mangrove forests on the Gulf of 
Thailand coast (Chumphon: CMP; Chanthaburi: CTI; Nakhon Si Thammarat: 
NST; Surat Thani: SNI; Trat: TRT) and the Andaman Sea coast (Trang: TRG; 
Ranong: RNG; Satun: STN), respectively. Red dots represent sites at which the  

accessions were collected
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200X; (2) fewer than 5% missing data; and (3) a 
minor allele frequency > 0.05. 

We obtained a total of 1 518 523 970 raw reads, 
ranging from 1 062 916 (TRT_16) to 72 417 948 (SNI
_09), with an average of 15 034 890 reads per sample 
(see Table S1 in the Supplement at www.int-res.com/
articles/suppl/b032p031_supp.xlsx). An average of 
13 205 970 reads (86.36%) were successfully mapped 
onto a reference genome (Pootakham et al. 2022b), 
with the highest (94.59%) mapping rate for SNI_04. 
A total of 2 823 114 SNP loci were initially identified 
by the GATK pipeline. After filtering, 3482 high-
quality SNP loci were used for downstream analyses 
and we found that the polymorphism information 
content (PIC) value of SNP markers ranged from 0.09 
to 0.50, with an average PIC value of 0.241. The 
minor allele frequency distribution ranged from 0.05 
to 0.50 with an average of 0.218. The PIC values are 
a good indication of informative markers which can 
be utilized for studying genetic diversity (Soumya et 
al. 2021). Similar results were also found in other 
studies (Pootakham et al. 2022c, Ruang-areerate et 
al. 2022), supporting the fact that our PIC values are 
acceptable in mangrove species and suitable for fur-
ther analysis. 

2.3.  Population structure and genetic diversity 
assessment 

To infer the genetic structure of B. sexangula pop-
ulations, we applied 3 methods. First, a Bayesian 
approach implemented in the program STRUCTURE 
v.2.3.4 (Pritchard et al. 2000) was used to determine 
population structure. We performed 20 replicates for 
each K value (K = 1−10), with a burn-in period of 
10 000 and a run length of 10 000 iterations. The opti-
mal K value was calculated using the ΔK method 
(Evanno et al. 2005) in the web-based STRUCTURE 
HARVESTER software (Earl & vonHoldt 2012). The 

average cluster membership proportions for the 
10 000 replicates of a given K value were estimated 
using CLUMPP v.1.1.2 (Jakobsson & Rosenberg 
2007). The analysis of molecular variance (AMOVA) 
was performed on the groups obtained by STRUC-
TURE, using ARLEQUIN v.3.5 (Excoffier et al. 2005) 
with 100 000 permutations. Population differentia-
tion (FST) was also estimated using Arlequin. Second, 
a principal components analysis (PCA) was per-
formed to explore group conformation within the 
population using TASSEL v.5.2 (Bradbury et al. 
2007), and data were plotted based on the first 3 prin-
cipal components. Third, the phylogenetic tree was 
constructed based on a maximum likelihood (ML) 
method under the 1000 bootstrap replicates with 
MEGA X (Tamura et al. 2021) to further assess the 
relationship between the accessions. 

Genetic diversity was assessed across groups de -
fined by STRUCTURE using GenAlEx v.6.502 (Peak -
all & Smouse 2012) to estimate the number of effec-
tive alleles (Ne), Shannon’s information index (I), 
ob served heterozygosity (Ho), expected heterozygos-
ity (He), and the inbreeding coefficient (FIS). Gene 
flow (Nm) across 2 populations was estimated using 
the following formula: Nm = [(1/FST) − 1]/4. The PIC 
values for SNP markers were calculated using Power -
Marker v.3.25 (Liu & Muse 2005). 

3.  RESULTS 

3.1.  Genetic structure of Bruguiera sexangula 

SNPs generated from RAD-seq were utilized to 
infer the genetic structure of the B. sexangula pop -
ulation. Genetic structure was evaluated using 
STRUCTURE, principal components analysis (PCA), 
and ML tree. For the STRUCTURE analysis results 
based on 3482 SNPs, the distribution of ΔK re -
vealed that the optimal K value was K = 2 (Fig. 2a). 
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Coast region                      Province (abbreviation)                       Date of collection                                                 Sample size 
 
Gulf of Thailand                Chumphon (CMP)                               3 August 2021−4 October 2021                                   7 
Gulf of Thailand                Chanthaburi (CTI)                               1 March 2021−17 May 2021                                       11 
Gulf of Thailand                Nakhon Si Thammarat (NST)             17 May 2021−11 October 2021                                    9 
Andaman Sea                    Ranong (RNG)                                      26 October 2020−14 February 2021                           19 
Gulf of Thailand                Surat Thani (SNI)                                 26 October 2020−28 February 2021                           17 
Andaman Sea                    Satun (STN)                                          12 October 2020−25 January 2021                             15 
Andaman Sea                    Trang (TRG)                                         17 July 2021−31 July 2021                                           5 
Gulf of Thailand                Trat (TRT)                                             24 November 2020−1 February 2021                         18

Table 1. Information of population samples used in this study

https://www.int-res.com/articles/suppl/b032p031_supp.xlsx
https://www.int-res.com/articles/suppl/b032p031_supp.xlsx
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Fig. 2. Population structure and phylogeny of B. sexangula. (a) Number of subpopulations indicated by the highest ΔK; (b) 
population structure of B. sexangula accessions estimated by STRUCTURE and the maximum likelihood (ML) phylogenetic 
tree. (c) principal components analysis (PCA) plots of the first 3 components of B. sexangula accessions. Accessions in green  

and blue were collected from mangrove forests on the Gulf of Thailand and the Andaman coasts, respectively
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When K = 2, most of the accessions from the Gulf of 
Thailand coast were grouped together into a first 
cluster, and a second cluster comprising mainly of 
accessions from the Andaman Sea coast (Fig. 2b). 
The first cluster, the largest group with 58 accessions, 
was collected from Chumphon (CMP), Chanthaburi 
(CTI), Nakhon Si Thammarat (NST), Surat Thani 
(SNI), Trat (TRT), and Ranong (RNG); the second 
cluster consisted of 36 accessions collected from 
RNG, Satun (STN), Trang (TRG), NST, and TRT. Most 
of the accessions from the same geographic region 
fell under the same cluster classification. However, 
some accessions were genetically mixed with a 
membership probability (q-values) of less than 0.6 in 
2 clusters. Seven of the accessions were considered 
to be admixtures, and they originated from CMP, 
TRT, SNI, and RNG. The classification of K = 2 re -
flected the separation of accessions corresponding to 
their geographical re gions and was supported by the 
results of a PCA. Based on 3482 SNP markers, the 
PCA also revealed 2 distinct groups of B. sexangula 
accessions and 3 principal components, accounting 
for 39% of the total variation observed (Fig. 2c). 
Additionally, the ML tree showed that the 101 B. 
sexangula accessions were clustered into 2 clades 
(Fig. 2b). Clade 1 in cluded 67 accessions, mainly 
from the Gulf of Thailand, of which 7 were from the 
Andaman Sea coast. Clade 2 contained 34 acces-
sions, including 32 from the Andaman Sea coast and 
2 from the Gulf of Thailand coast. These results were 
consistent with the STRUCTURE analysis. 

Based on the 2 genetic clusters from the STRUC-
TURE and AMOVA outputs, variation among clus-
ters accounted for 12.23% of the total genetic varia-
tion while a larger amount of variation (87.77%) was 
found within clusters (Table 2). The measure of pop-
ulation differentiation (FST) among the clusters was 
0.122, at p < 0.001, and the estimated gene flow 
among populations (Nm) was 1.799. 

3.2.  Genetic diversity of B. sexangula 

Genetic diversity parameters were calculated for 
the entire population and separately for each cluster 
(Table 3). Mean values were Ne = 1.491, I = 0.458, Ho = 
0.416, and He = 0.295. All diversity parameters were 
similar in the 2 cluster. Negative values of the 
inbreeding coefficient (FIS) were found in both clus-
ters (-0.295 in cluster 1 and -0.291 in cluster 2), indi-
cating an excess of heterozygosity. 

4.  DISCUSSION 

Mangrove areas in Thailand have declined dra-
matically as a result of anthropogenic disturbance, 
primarily through conversion to shrimp aquaculture 
(Pumijumnong 2014). Therefore, the evaluation of 
genetic diversity and population structure of man-
groves represents the first step to understanding the 
current status of mangrove species biodiversity, 
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Source of variation                df             Sum of squares         Variance component          Percentage of variation         p-value 
 
Among clusters                      1                    6571.36                            63.84                                      12.23                         <0.001 
Within clusters                     200                 91616.25                          458.08                                     87.77 
Total                                      201                 98187.61                          521.92 
FST                                       0.122 
Nm                                      1.799

Table 2. Analysis of molecular variance (AMOVA) among and within 2 clusters of Bruguiera sexangula according to  
STRUCTURE analysis using 3482 SNPs. df: degrees of freedom; FST: genetic differentiation; Nm: gene flow

Population               N                      Ne                              I                              Ho                             He                             FIS 
 
Cluster 1                  62             1.485 ± 0.006          0.447 ± 0.003           0.417 ± 0.005           0.288 ± 0.003          –0.295 ± 0.006 
Cluster 2                  39             1.495 ± 0.006          0.456 ± 0.003           0.416 ± 0.005           0.295 ± 0.003          –0.291 ± 0.006 
Total                       101            1.491 ± 0.006          0.458 ± 0.003           0.416 ± 0.005           0.295 ± 0.003          –0.284 ± 0.006

Table 3. Genetic diversity indices for the 2 clusters of B. sexangula based on 3482 SNPs. N : number of samples; Ne: number of 
effective alleles; I : Shannon’s information index; Ho: observed heterozygosity; He: expected heterozygosity; FIS: inbreeding  

coefficient
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which is of importance to the protection of mangrove 
genetic resources in Thailand. The present study 
sheds light on the genetic diversity of Bruguiera 
sexangula, which is an important mangrove species 
with ecological and economic significance. Our study 
is the first research on the genetic diversity of B. 
sexangula, and it contributes to the existing body of 
knowledge by using a novel set of SNP markers and 
analyzing populations from a wide geographic 
range. 

The assessment of genetic structure revealed that 
the B. sexangula population was composed of 2 
genetic populations. One population consists mainly 
of accessions located on the Gulf of Thailand coast 
and the other population includes mainly accessions 
on the Andaman Sea coast. The PCA results coin-
cided with the STRUCTURE results. Moreover, the 
ML tree gave similar results that were clustered into 
2 clades. These clustering patterns corresponded 
with their geographic regions, the Gulf of Thailand 
and Andaman Sea coasts. Our findings are consistent 
with the previously reported population structures of 
mangrove species in Thailand, including Bruguiera 
parviflora (Pootakham et al. 2022c), Bruguiera cylin-
drica (Khanbo et al. 2022), Ceriops tagal (Pootakham 
et al. 2022a), Rhizophora apiculata (Inomata et al. 
2009, Ruang-areerate et al. 2022), Bruguiera gym -
nor rhiza (Ruang-areerate et al. 2023), and Rhizo -
phora mucronata (Inomata et al. 2009). These species 
appear to exhibit geographical separation, specifi-
cally along the Gulf of Thailand and Andaman Sea 
coasts. Additionally, population structures of several 
species within the same regions have been exten-
sively studied. For instance, genetic differentiation 
was observed between populations from the western 
and eastern coasts of the Malay Peninsula for B. 
gymnorrhiza (Minobe et al. 2010, Urashi et al. 2013), 
C. tagal (Ge & Sun 2001, Liao et al. 2007), R. mucro -
nata, Rhizophora stylosa (Wee et al. 2015), Sonnera-
tia alba (Yang et al. 2017), and Avicennia marina 
(Triest et al. 2021). According to Wright (1965), pop-
ulations are considered to have low genetic differ-
entiation when FST ≤ 0.05, moderate differentiation 
when 0.05 < FST ≤ 0.15, and high differentiation when 
FST > 0.15. The FST value ob tained for differentiation 
between the 2 populations of B. sexangula was mod-
erate (FST = 0.122, p < 0.001), indicating that these 2 
populations were genetically differentiated. In addi-
tion, our results revealed a high gene flow (Nm = 
1.799) between the 2 populations. Consequently, the 
high genetic flux among populations led to their low 
or moderate genetic differentiation. Other mangrove 
studies also showed moderate to high population dif-

ferentiations, such as R. apiculata in Malaysia (FST = 
0.315) (Azman et al. 2020), C. tagal in the Indo-West-
ern Pacific (FST = 0.267) (He et al. 2019), A. marina 
along the coastline of Western Australia (FST = 0.174) 
(Binks et al. 2019), R. mangle along West and East 
Florida (FST = 0.19) (Kennedy et al. 2017), and B. gym-
norrhiza in Japan (FST = 0.089) (Islam et al. 2012). 
One possible explanation for the differences in the 
genetic structure of B. sexangula is the presence of a 
land barrier that prevents gene flow between man-
grove species oc curring along the coasts of the 
Andaman Sea and Gulf of Thailand, leading to popu-
lation differentiation between the coasts. This is con-
sistent with the land barrier hypothesis of the Malay 
Peninsula that prevented gene flow between the 
East and West coasts (Duke et al. 2002). The Malay 
Peninsula has been reported as a land barrier for sev-
eral mangrove species, such as R. apiculata (Ng et al. 
2015), B. gymnorrhiza (Minobe et al. 2010, Urashi et 
al. 2013, Wee et al. 2020), Xylocarpus granatum 
(Tomizawa et al. 2017), C. tagal (Liao et al. 2007, 
Huang et al. 2008), Avicennia alba (Wee et al. 2020), 
and S. alba (Wee et al. 2017, Yang et al. 2017). This 
barrier prevented interregional seawater exchange, 
which blocked the movement of sea-drifted gene 
flow between the 2 regions. Ocean currents have 
also been reported to act as a barrier to propagule 
dispersal and play an important role in preventing 
gene flow (Wee et al. 2014), although the constraints 
may vary among species depending on the mobility 
and survivability of the propagules (Duke et al. 
2002). Additionally, the adaptation to different envi-
ronments, such as sea level and climatic changes, 
may also result in a different spatial genetic structure 
in the B. sexangula population. 

In the STRUCTURE analysis, admixtures were 
found among 2 clusters in population structure. 
Gene tic admixture of the 2 clusters in the B. sexan-
gula population might occur from the genetic 
exchange between isolated populations. As has been 
observed for other mangroves (Li et al. 2016, Yang et 
al. 2017, Banerjee et al. 2020), the oceanic circulation 
pattern may allow for infrequent long-distance dis-
persal detouring around the Malacca Strait, which 
could explain genetic admixture across the land bar-
rier (Rizal et al. 2012). In addition, anthropogenic fac-
tors, such as human-mediated movement of prop -
agules or seedlings for mangrove reforestation, could 
be a possible factor that contributed towards the 
gene tic admixture between the 2 regions. 

The genetic diversity of the B. sexangula popula-
tion from mangrove forests along coastlines in Thai-
land was assessed. Moderate levels of genetic diver-
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sity (mean Ho = 0.416 and He = 0.295, Table 3) were 
observed in the present study. This result is compara-
ble to other mangrove species such as R. apiculata in 
Thailand (Ho = 0.48, He = 0.36) (Ruang-areerate et al. 
2022), Kandelia obovata in China (He = 0.363) (Chen et 
al. 2010), and A. marina worldwide (Ho = 0.407, He = 
0.494) (Maguire et al. 2000). However, a low level 
of genetic diversity was also reported in several stud-
ies on mangrove species, such as R. apiculata in 
Malaysia (Ho = 0.299, He = 0.352) (Azman et al. 2020), 
S. alba in the Indo-West Pacific (Ho = 0.271, He = 
0.327) (Wee et al. 2017), R. mucronata (Ho = 0.306, 
He  = 0.354) and R. stylosa in the Indo-West Pacific 
(Ho = 0.327, He = 0.321) (Yan et al. 2016), and Nypa 
fruticans in Southeast Asia (He = 0.0279) (Jian et al. 
2010). In Bruguiera species populations, the average 
Ho value was greater in the B. sexangula population 
than in B. cylindrica and B. parviflora populations 
(Khanbo et al. 2022, Pootakham et al. 2022c), sug-
gesting that the B. sexangula population studied 
here may have experienced less inbreeding than the 
B. cylindrica and B. parviflora populations investi-
gated. It is generally established that genetic diver-
sity plays a pivotal role in natural populations, 
imparting significant ecological consequences such 
as the maintenance of evolutionary potential and an 
individual’s capacity to adapt and endure environ-
mental changes (Hughes et al. 2008). Increased 
genetic drift, inbreeding, and limited gene flow can 
greatly diminish the genetic variation within popula-
tions (Schlaepfer et al. 2018). 

Information on genetic diversity and differentia-
tion within and among populations has the poten-
tial to impact biodiversity conservation. This study 
provides crucial information that can enhance 
existing conservation strategies aimed at protecting 
dwindling populations and rehabilitating degraded 
habitats. Our analysis revealed a moderate level of 
genetic variation and identified 2 distinct genetic 
structures within B. sexangula populations. Accord-
ing to the delineated genetic structure, we recom-
mend treating each population as an independent 
conservation unit. Since the majority of genetic 
variation occurs within populations, it is crucial to 
implement preferential in situ conservation for 
populations. Conservation efforts should focus on 
maintaining habitat integrity and promoting gene 
flow and preserve overall genetic diversity. Fur-
thermore, reforestation plans should carefully con-
sider the geographic origins of the propagules and 
seedlings to ensure appropriate genetic represen-
tation and minimize the potential risks associated 
with mixing genetically distinct populations. Incor-

porating these genetic findings into conservation 
and management strategies will aid in the preser-
vation of mangrove ecosystems and ensure the 
survival of this species. 

5.  CONCLUSIONS 

This study is the first report on the level of genetic 
diversity and population structure of Bruguiera 
sexangula. A moderate level of genetic diversity of B. 
sexangula was observed. The genetic structure of B. 
sexangula population can be clustered into 2 possi-
ble genetic clusters corresponding to the geographi-
cal regions of the Andaman Sea and Gulf of Thai-
land, and the level of genetic differentiation between 
the groups was moderate. The genetic structure was 
explained mainly by the presence of a land barrier. 
Genetic variation within the population was greater 
than between population. The establishment of on-
site protection zones for this species to reduce the 
impact of human activities would enable natural 
regeneration of its habitats. The information ob -
tained in this study revealed the genetic status of B. 
sexangula in Thailand, which should be useful in 
developing management and conservation guide-
lines for the species in the long term. 
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