It is commonly accepted that the morphology of a flatfish lowers its hydrodynamic drag; this is advantageous for a benthic mode of life since it decreases the tendency for a flatfish to be carried downstream by a current while maintaining station on the bottom (Arnold 1969, Arnold & Weihs 1978, Webb 1989). However, flatfish are capable of travelling significant distances in the water column. The plaice *Pleuronectes platessa*, found in the North Sea, can rapidly cover long distances by moving vertically from the seabed into mid-water (Metcalfe et al. 1993, Metcalfe & Arnold 1997). Conventional tagging experiments have shown that Japanese flounder *Paralichthys olivaceus* migrate after release 50 to 100 km during ~1 yr (Tominaga & Watanabe 1998). On the basis of results from a study that used electronic tags, Nashida (1997) hypothesized that the Japanese flounder could increase the distance it travels by repeatedly ascending and descending. In a previous study (Kawabe et al. 2004), we detected both glide and tail-beat swimming modes in free-swimming flounders using data loggers attached to the fish. Weihs (1973) predicted theoretically that fish with negative buoyancy, such as the skipjack tuna and flatfish, could use gliding behaviour to conserve energy. Given the large amplitude of the undulatory motion of the swimming mode in Heterostomata fish such as flounders, a powerless glide following upward swimming markedly enhances energy conservation (Lighthill 1971). Therefore, it appears that flounders may cover long distances by actively coupling glide and tail-beat swimming modes. Many studies have used electronic tagging to study the behaviour of highly migratory species such as tuna.
and marine mammals (Block et al. 1992, Williams et al. 2000, Davis et al. 2001, Royer et al. 2005). However, we believe that although electronic tagging technology can help us to estimate migration routes, the significance of fine-scale behaviour, such as manoeuvres, cannot be interpreted without a physical understanding of the mechanisms of the movement of fish from a biomechanical perspective. Consequently, analysis of both the kinetic data from electronic tags and the hydrodynamic properties of fish can provide insights that enable us to make theoretical predictions regarding kinetics and the efficiency of kinetic energy during movement.

The present study adopted a novel approach that integrates the analysis of field data measured by data loggers attached to free-ranging flounders with computational fluid dynamics (CFD) analyses of flounder movement. Since the latter numerical method can generally estimate the force and the moment acting on the fish body due to the current flow, the direction, speed, and kinetic energy of an individual can be estimated during movement. Therefore, a CFD analysis should be able to contribute to an understanding of the effect of flounder morphology on the ability of the fish to execute fine-scale manoeuvres efficiently and effectively.

In order to assess the swim-and-glide mechanism of the Japanese flounder for energy-efficient movement suitable for long-distance travel, we analysed the hydrodynamic properties of the flounder (such as drag, lift force, and rotational moment) and showed how, in its normal flat position, these properties are rationally designed for gliding.

MATERIALS AND METHODS

Ten flounders *Paralichthys olivaceus* (63.5 ± 3.1 cm total length [TL], 2.54 ± 0.4 kg body weight) were fitted with PD2G data loggers (Little Leonard). These devices measured ambient water temperature, swimming speed, depth, surge acceleration (in the direction of the body axis), and heave acceleration (perpendicular to the body axis). Swimming speed and depth were recorded at 1 s intervals, and heave and surge accelerations at 0.063 and 0.25 s intervals, respectively. In addition, 11 flounder (54.0 ± 4.0 cm TL, 1.55 ± 0.3 kg body weight) were fitted with conventional DT data loggers (Little Leonard) that measured the ambient water temperature and depth only. Depth recordings were conducted at 3 s intervals. More detailed specifications of the data loggers and the procedures for attaching the loggers to the fish are presented in Supplements 1 & 2 (see www.int-res.com/articles/suppl/b009p149_app.pdf).

The fish were released from October to November 2000 in the sea off the south coast of Hokkaido, Japan. Tail beating could be detected from the heave acceleration time-series data recorded by the PD2G loggers. This data, combined with that for the swimming speed and depth, revealed whether an individual was swimming or gliding. The body angle could be estimated from the component of the force of gravitation included in the surge acceleration. Although the DT data loggers were unable to detect the body angle or the tail-beating process, they provided time-series depth data indicating whether a flounder had left the seabed; this data could also be used to estimate the rate of descent. During gliding, the time-series depth data recorded an almost constant rate of descent. The mode of movement was defined as gliding when a flounder sank from over 2 m above the seabed at a nearly constant rate (see Supplements 1 & 2).

CFD analysis allowed us to modify the experimental parameters, such as flow speed and angle of attack (the angle between the longitudinal body axis and the flow direction of a given model). In order to obtain the surface profile of a flounder, we scanned the surface of an individual using a 3-dimensional (3D) non-contact laser surface profiler (VIVID910, Konica Minolta), generating digital data that were decomposed into more than 90 000 polygonal elements. This digitized surface was imported into the CFD programme contained in the SCRYU/Tetra version 7 software package (Software Cradle). The numerical model of the flounder (60 cm TL, 26 cm total height [TH]) was fixed in a rectangular calculation domain of size 3.0 m length × 1.6 m width × 1.6 m height, and the governing equations, the Navier-Stokes and continuity equations, for the fluid inside the domain were solved numerically by the CFD programme using the finite volume method (Rhee & Chow 1983, Ferziger & Peric 1999) (see Supplements 1 & 2).

Assuming that the fluid is incompressible, the Navier-Stokes (Eq. 1) and continuity equations (Eq. 2) can be expressed as follows:

\[
\frac{\partial U}{\partial t} + (U \cdot \nabla)U = F - \frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \nabla^2 U \tag{1}
\]

\[
\nabla \cdot U = 0 \tag{2}
\]

where \(U\) is the fluid velocity vector, \(F\) is the force vector, \(\rho\) is the fluid density, \(p\) is the pressure, and \(\mu\) is the coefficient of viscosity.

The pressure and viscosity stress on each element of the body surface of the model can be calculated by numerically solving the governing equation. Thus we obtained the drag \((F_D)\) and lift \((F_L)\) forces by integrating over the entire body surface; the coefficients of drag \((C_D)\) and lift \((C_L)\), which depend on body
shape, were then determined using the following equations:

\[
C_D = \frac{F_D}{0.5 \rho U^2 S} \quad (3)
\]

\[
C_L = \frac{F_L}{0.5 \rho U^2 S} \quad (4)
\]

where \(U\) is the flow speed of the steady flow in the domain and \(S\) is the surface area of the body.

The glide angle (\(\gamma\)), glide speed (\(V\)), and rate of sinking (\(S_R\)) can be estimated from the hydrodynamic coefficients under various conditions using CFD analysis as follows (see Supplement 1 & 2):

\[
\gamma = \tan^{-1}(C_D / C_L) \quad (5)
\]

\[
V^2 = \frac{W}{0.5 \rho S(C_L^2 + C_D^2)} \quad (6)
\]

\[
S_R = \frac{V}{W} \sin \gamma \quad (7)
\]

where \(W\) is the submerged weight. The lift/drag ratio \((C_L / C_D)\) is an important parameter that reflects gliding ability; this ratio changes with changes in the angle of attack. From Eqs. (5) to (7), Eq. (7) can be transformed into the following equation for calculating the non-dimensional rate of sinking, \(S_R^*\):

\[
S_R^* = S_R \sqrt{\frac{\rho S W}{2C_D}} \cdot \frac{\sqrt{2C_D}}{(C_L^2 + C_D^2)^{3/2}} \quad (8)
\]

Eq. (8) shows that \(S_R^*\) can be determined from measured values but also estimated uniquely from the CFD results using \(C_D\) and \(C_L\). Consequently, \(S_R^*\) from the field data can be compared with the theoretical value without any size effects.

Values are presented as mean ± SD unless otherwise indicated.

RESULTS

Two flounders (A1 and A2) fitted with PD2G data loggers were retrieved through commercial fishing. The TL and weight of both were ca. 60 cm and 2.2 kg, respectively. The duration of data logging was 1.4 and 5.2 d, respectively. Although the PD2G records showed that the flounders spent more than 90% of the time resting on the seabed, the data also showed that these fish either swam horizontally near the seabed by beating their tails continuously, or they entered a powerless glide without tail-beating following active upward swimming (Fig. 1). While gliding, the mean rate of sinking was 12.8 ± 8.5 and 8.4 ± 2.1 cm s\(^{-1}\), the mean body angle was –5.5 ± 4.9° and –5.8 ± 3.0° (Fig. 2a), and the mean glide speed was 34.1 ± 8.1 and 26.5 ± 7.6 cm s\(^{-1}\) for flounders A1 and A2, respectively (Kawabe et al. 2004).

Six individuals fitted with DT data loggers were also retrieved. Their TLs and weights ranged from 50.2 to
63.4 cm and 1.2 to 2.4 kg, respectively. The duration of data logging was 6.2 to 25.3 d (see Supplements 1 & 2). One individual moved away from the seabed by more than 2 m on only 2 occasions and was therefore not used in the analysis. For the remaining 5 individuals, the mean rate of sinking ranged from 7.7 ± 1.7 to 13.8 ± 5.0 cm s⁻¹. Values of S_R^* from the data measured by the PD2G and DT loggers are shown in Fig. 2b and averaged 0.96 ± 0.57 (n = 454); the mode of the distribution was 0.6 to 0.8.

In the CFD analysis, the drag and lift forces acting on the model flounder and the pitching moment of rotation around the centre of gravity in a steady flow were estimated while changing the angle of attack of the longitudinal body axis to the flow direction (Fig. 3).

The cross-section of the surface profile along the longitudinal body axis is similar to that of a cambered aerofoil. Consequently, this allows us to predict qualitatively that a gliding flounder can produce a lift force with its body, the magnitude of which is dependent on the angle of attack, but with less drag force due to the typically low angles of attack. The lift force at an angle of attack of 2° is 5 times greater than the drag (88 and 17% of the submerged weight, respectively) when the flow speed is 50 cm s⁻¹. When the angle of attack doubles, the lift force is sufficient to lift the body.

Fig. 3 clearly shows the angle of attack at which the flounder exhibits the longest glide distance. The glide distance is maximized at an angle of attack of approximately 4°, when C_L/C_D is greatest. At the maximum C_L/C_D, the rate of sinking, glide speed, and body angle can be estimated using Eqs. (5) to (8) through the CFD analysis; this analysis indicated that flounder A2 could attain a sinking rate of 7.7 cm s⁻¹, a glide speed of 45.0 cm s⁻¹, and a body angle of −5.7°.

Fig. 3 shows that the angle of attack when the moment of rotation was zero occurred at approximately 4° when C_L/C_D was at a maximum.

The theoretical value of the body angle for flounders A1 and A2 and S_R^* for all tagged flounders, obtained from Eqs. (5) and (8) when C_L/C_D is at a maximum, are $−5.7°$ and 0.69, respectively, and both are in the mode of the histogram of the field data as shown in Fig. 3.

DISCUSSION

When the theoretical values are compared with the field data, the good agreements for body angle and sinking rate suggest that flounder can glide for
long distances with its body flattened (as was the case for flounder A2). However, there was a notable difference in the theoretical rate of sinking of a given horizontal distance than continuous swimming. Swimming is energetically more efficient for flatfish, a powerless glide followed by active upward movement, and also supports the posture. This means that a gliding flounder exhibits both glide distance when the flounder adopts its normal flat morphology.

In order to maintain its body angle for steady gliding, the moment of rotation of the flounder must be almost zero, as any disturbance of this equilibrium will cause rotational motion. We therefore investigated the relationship between the pitching moment of rotation around the centre of gravity and the angle of attack in the CFD analysis (Fig. 3). Interestingly, the coincidence of the angle of attack when the cross point of the moment of rotation was zero and the lift/drag ratio was at a maximum suggests that the equilibrium body angle with respect to the angular moment results in the longest glide distance when the flounder adopts its normal flat posture. This means that a gliding flounder exhibits both stability and efficient movement, and also supports the hypothesis that for fish with negative buoyancy, such as flatfish, a powerless glide followed by active upward swimming is energetically more efficient for traversing a given horizontal distance than continuous swimming, as pointed out by Weihs (1973). The integrated analysis of CFD and bio-logging data will help us in future studies to elucidate the significance of the physical aspects of aquatic animal behaviour.

Acknowledgements. We thank Drs. D. Weihs and R. W. Davis for their helpful comments. We also thank Dr. T. Hiraishi for his assistance with the CFD application.

LITERATURE CITED

Editorial responsibility: Söhnke Johnsen,
Durham, North Carolina, USA

Submitted: May 15, 2009; Accepted: February 10, 2010
Proofs received from author(s): April 16, 2010