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INTRODUCTION

The sub-Antarctic Prince Edward Islands (46° 50’  S,
37° 50’ E) form an isolated island group with a climate
that is driven by prevailing regional atmospheric cir-
culation patterns (Rouault et al. 2005). Changes in lo-
cal climatic conditions that have been documented
for one of the 2 islands in the group, Marion Island
(Smith 2002, le Roux & McGeoch 2008), may be
linked to changes in the semi-annual oscillation
event in the southern hemisphere (Rouault et al.
2005) or changes in large-scale ocean dynamics (Hall
& Visbeck 2002), among other factors. These changes
in atmospheric circulation patterns and large-scale
ocean dynamics are reflected in changing sea-
surface temperature gradients at midlatitudes (Sim-
monds & Jones 1998, Mo 2000). Although it may be

obvious in its manifestation (le Roux & McGeoch
2008), the exact consequences of these changes in
oceanographic conditions for highly mobile marine
mammals are difficult to predict and require long-
term studies to define and understand foraging
ranges and habitats (Simmonds & Isaac 2007). Age-
and sex-related responses to environmental variables
also need to be considered in order to make accurate
predictions about the consequences of environmental
variability on a species, especially for sexually dimor-
phic species that may display sex-related segregation
in some behaviours, such as the selection of foraging
grounds and diving behaviour (McIntyre et al. 2010).

Several studies correlated foraging movements of
both northern and southern elephant seals Mirounga
spp. and variability in regional oceanographic condi-
tions (Crocker et al. 2006, Biuw et al. 2007, 2010).
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Southern elephant seals M. leonina make long sea-
sonal migrations to find suitable foraging areas
(McConnell et al. 1992, Campagna et al. 2000, Brad-
shaw et al. 2004, Bailleul et al. 2007, Tosh et al. 2009).
Different populations of southern elephant seals evi-
dently use different areas of the Southern Ocean
depending on where they haul out to breed and
moult (Campagna et al. 2006, Biuw et al. 2007).
Recently weaned pups and 1 yr olds (i.e. yearlings)
appear to forage closest to their birth sites (Borne-
mann et al. 2000, McConnell et al. 2002, van den Hoff
et al. 2002). Sexual dimorphism is not yet apparent in
young seals, but young seals are more limited in their
foraging abilities than adults (Stewart 1997, van den
Hoff et al. 2002). The foraging movements of weaned
pups and yearlings is important because survival of
these age classes is generally low (Hindell et al. 1991,
Pistorius & Bester 2002, McMahon et al. 2003) and
may be more sensitive to variability in oceanographic
conditions, prey distribution and abundance than
older age classes (Field et al. 2007). All juvenile
southern elephant seals perform an initial migration
after weaning; this migration is thought to be geneti-
cally programmed and occurs without any prior
knowledge of the surrounding region (Bornemann et
al. 2000). Juveniles at Marion Island may return to
their birth sites for a subsequent winter haul-out
(Kirkman et al. 2001) and will generally return to sea
before returning to moult early in the following sum-
mer (Kirkman et al. 2003).

Southern elephant seals born at Marion Island
must quickly learn to survive in a highly variable
environment. Oceanographic conditions surrounding
Marion Island are dominated by the Antarctic Cir-
cumpolar Current (ACC). The ACC is bounded in the
north by the Subantarctic Front (SAF) and in the
south by the Antarctic Polar Front (APF). These
frontal features are characterised by strong tempera-
ture, salinity and density gradients (Belkin & Gordon
1996, Bost et al. 2009). Increased vertical mixing due
to interactions between water masses and bathymet-
ric features is often observed close to frontal features
(Bost et al. 2009). The fronts of the ACC, in the vicin-
ity of the Southwest Indian Ridge (SWIR), close to
Marion Island, are considered to be variable in terms
of structure and position (Durgadoo et al. 2010).

The region west of Marion Island is also charac-
terised by higher than average kinetic energy cre-
ated by the presence of eddies arising from interac-
tion of the ACC with the regional bottom topography
(Ansorge et al. 1999, Ansorge & Lutjeharms 2005).
Mesoscale eddies are counter-current waterbodies
within greater currents and are responsible for the

transfer of the physical energy of the ocean water to
trophic energy (Bakun 2006). The physical flow prop-
erties of eddies in relation to the surrounding water
masses can cause enrichment, concentration and
retention of resources, creating favourable foraging
grounds for ocean predators (Bakun 2006), such as
birds (Nel et al. 2001, Cotté et al. 2007), sea-turtles
(Polovina et al. 2006), fur seals (de Bruyn et al. 2009a)
and southern elephant seals (Campagna et al. 2006,
Bailleul et al. 2010, Dragon et al. 2010).

Movements of juvenile elephant seals have been
previously studied at Macquarie Island (Hindell et al.
1999, McConnell et al. 2002, van den Hoff et al. 2002,
Field et al. 2005) and at King George Island off
the Antarctic Peninsula (Bornemann et al. 2000). At
Macquarie Island, young seals foraged near the APF
(McConnell et al. 2002) and the Campbell Plateau
(van den Hoff et al. 2002). At King George Island,
weaned pups showed no individual variation, all
 foraging in the open sea west of the De Gerlache
Seamounts that lie to the west of the Antarctic Pe -
ninsula. Our study at Marion Island covers 6 yr and
assesses the variability in foraging movements of
young seals in a heterogeneous and variable ocean
environment.

The present study describes the movements of
juvenile southern elephant seals from Marion Island.
Generalised mixed effects models are used to inves-
tigate the relationship between behavioural states,
namely searching or transiting, in relation to selected
environmental covariates that could potentially influ-
ence feeding conditions. This research focussed on
the influence of bathymetric features, frontal features
and sea-surface temperatures on the behavioural
state of juvenile southern elephant seals during their
migrations from Marion Island.

MATERIALS AND METHODS

Telemetry data

Twenty-six satellite-linked data recorders were
attached to juvenile southern elephant seals at Mar-
ion Island from 2001 through 2006 (see Table 1). The
ages of seals were determined either by uniquely
numbered flipper tags (n = 24; de Bruyn et al. 2008)
or their body size and shape (n = 2; e.g. Campagna et
al. 2006). The results in the present study do not
include the first foraging trip made after weaning. All
of the animals tracked had already en gaged in at
least 1 foraging trip. Under-yearlings in the present
study are defined as animals that are 0.5 yr old, and
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yearlings have already turned 1. The birth date of all
elephant seals on Marion Island is 15 October, coin-
ciding with the maximum number of females present
during the elephant seal breeding season, which
lasts for 3 wk.

Seals were immobilised with intramuscular injec-
tions of ketamine hydrochloride (Bester 1988, Erick-
son & Bester 1993), and then telemetry instruments,
prepared with a base of gauze netting, were glued to
the pelage on the top of their heads using quick set-
ting epoxy resin (Araldite®, Ciba Geigy) following
Fedak et al. (1983). Transmitters were either re -
moved from sedated animals by shaving the pelage
under the device to detach the device or during the
moult, when devices are shed naturally with the
moulting pelage.

All data were collected via the ARGOS Data Col-
lection and Location Service and are archived and
available through the data library Publishing Net-
work for Geoscientific and Environmental Data
(PAN GAEA; www.pangaea.de). The list of relevant
DOIs is available from the corresponding author.

Raw ARGOS location data were modelled using
a state–space approach, outlined by Breed et al.
(2009). This model provides location estimates from
raw ARGOS location data that incorporate the in -
herent error associated with ARGOS location data as
well as estimating either a searching (Mode 1) or
travelling mode (Mode 0) at regular time intervals
(Jonsen et al. 2005). A time interval of 12 h was cho-
sen for the present study. The behaviour of satellite-
tracked animals is incorporated into animal move-
ment models based on the assumptions that when
searching, animals display slower swim speeds and
larger deviations in consecutive turning angles in
relation to the transiting portions of the tracks. The
correlated random walk model that was fit to individ-
ual tracks is explained in detail by Breed et al. (2009).
The model was fit by running 2 Markov chain Monte
Carlo (MCMC) chains for 10 000 iterations, with a
burn-in of 7000, sampling all model parameters and
each location estimate. Every fifth point of 3000
remaining samples was retained, resulting in a total
of 600 MCMC samples in each chain. A mean and a
variance were calculated for each location estimate
and model parameter from the 600 MCMC samples.

Movement parameters and behavioural states
were estimated from the modelled tracks. In cases
where double migrations were recorded, each
migration was analysed separately.

A series of generalised mixed effects models (lme4
package in R) with individual as a random effect
were constructed to test the influence of bathymetry

(IOC & IHO 2003), fronts and 1° gridded, weekly sea-
surface temperatures (Reynolds et al. 2002) on the
behavioural state of locations as predicted by the
state–space models (i.e. Mode 0 = travelling and
Mode 1 = searching). Bathymetry was included in the
model by categorising each location based on
whether or not the location fell within a 1° buffer
zone of the SWIR and the ABFZ. In addition to sea-
surface temperature values for each location, loca-
tions were also categorised based on whether or not
the location fell within 1° of frontal features, namely
the SAF and the APF. Buffers were drawn around
features, incorporating the distance represented by
1° of latitude and longitude to remain consistent with
the sea-surface temperature data. The models were
fit using a binomial distribution with a logit link
because of the binary nature of the response vari-
able, in this case ‘mode’. Models were selected using
a backward model selection process (Crawley 2007,
Zuur et al. 2009). Starting with a full additive model
(response ~ fixed effects + random intercept), the least
influential fixed effects were sequentially removed
from the model. Likelihood ratio tests were used to
test if there were significant differences between
models with individual fixed effects retained in the
final model and a NULL model. Models were run
using R v. 2.12.0 (R Development Core Team 2008).

RESULTS

Model performance

Of 26 juvenile seals tracked from Marion Island
(2001 to 2006), data from 16 individuals were
retained and tracks shorter than 40 d were not ana-
lysed. The state–space model detected both behav-
ioural states (0: travelling; 1: searching) in 22 of the
migrations analysed in the present study (n = 16 indi-
viduals) (Fig. 1). A total of 25 migrations were ana-
lysed, and 3 tracks only showed outward movements
ending before any searching behaviour was re -
corded. The model performed consistently across
individuals, with MCMC model runs converging for
all individuals. All model outputs for the state space
analysis are available from the corresponding author.

Spatial behaviour and oceanographic conditions

Seven seals (GG154, OO312, BB045, BB032, BB018,
BB193, BB125) (Table 1) showed outward movements
of 50 d or longer (range: 50 to 144 d) without return-
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ing to Marion Island. Searching behaviour was re -
corded for 4 of these animals; 3 animals (GG154,
OO312 and BB018) showed >65% searching be -
haviour, starting such behaviour immediately after
departure, whilst BB032 showed <10% searching
behaviour. Three of the animals did not display any
searching behaviour.

Nine seals were tracked for entire (double) migra-
tions, i.e. returning to Marion Island for the winter
haul-out after an initial foraging trip and completing
a second foraging trip thereafter (Table 1). Post-
moulting (under-yearlings and yearlings) migrations
were on average longer (104 ± 12 d) than post-winter
migrations (82 ± 19 d), with the exception of 2 ani-
mals (BB277 and TO340) tracked in 2004 that
recorded post-moulting trips of 62 and 42 d respec-
tively as opposed to post-winter trips of 151 and 137 d
respectively. Seven of the animals displayed search-
ing behaviour (Mode 1 locations as predicted by the
state–space analysis) in discrete bouts, flanked by
locations of active travelling. One animal (WW296)
re corded a complex track with 90% of locations
being Mode 1 locations that were scattered through-
out the track. One animal (BB277) did not display any
Mode 1 locations in the post-moult migration but
recorded 40% Mode 1 locations in the post-winter
migration. The animals that completed double mi -

gra  tions recorded an average of 39.63% searching
behaviour (range: 14 to 75%) commencing with this
be haviour on average 33 d (range: 0 to 88 d) after
departure.

The final model included 3 covariates, namely, the
presence or absence of a location within 1° of a
frontal zone, the presence or absence of a location
within 1° of the SWIR and the ABFZ, and the season
(Table 2). The effects of all covariates were signifi-
cant (p < 0.001). The final model had a marginally
better fit than the full model, which also included
sea-surface temperature. Both models were improve-
ments against the null model, which only included
‘individual’ as a random effect.

The probability of searching behaviour was posi-
tively influenced if a location occurred within 1° of a
frontal structure. Of the 60% of searching locations
found in close proximity to frontal zones, 67% were
found closer to the SAF, and 33% of locations were
closer to the APF. This result was not reflective of all
of the years, with most of the searching locations dur-
ing 2001 to 2002 and 2006 occurring in the vicinity of
the APF (2001 = 95%, 2002 = 51% and 2006 = 57%;
Fig. 2). The only year when the SAF was preferred,
2004 (88%), was the year with the greatest sample
of individuals, which skewed the overall results
(Fig. 3). The probability of searching behaviour was
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Fig. 1. State–space derived location estimates for juvenile southern elephant seals tracked from Marion Island (2001 to
2006) in relation to the bathymetry of the region. Major bathymetrical features, the Andrew Bain Fracture Zone (ABFZ)
and the Southwest Indian Ridge (SWIR), are surrounded by a 1° buffer. Marion Island (MI) and the Crozet Archipelago
(CA) are indicated on the map. Searching locations are indicated by different colours for each year, and travelling 

locations are indicated in black
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also positively influenced by season. Locations had a
higher probability of being searching locations if
recorded in spring and winter.

The strongest significant negative influence on the
probability of foraging behaviour was whether or not
a location was situated within 1° of either the SWIR or

the ABFZ. Of all analysed locations,
42% were within 1° of the SWIR and
the ABFZ, and of these, 75% were
travelling locations (Fig. 1).

DISCUSSION

The movements of the juvenile
seals tracked in the present study
were strongly influenced by frontal
and bathymetric features. Whilst
searching behaviour tended to be
associated with sea-surface tempera-
ture frontal structures, travelling
behaviour tended to be associated
with the ABFZ and the SWIR. Virtu-
ally all animals recorded searching
behaviour along frontal zones, which
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Tag            Sex       Age          Transmitter type                  Date               Migration     Duration   Time to first      Searching 
                (M/F)      (yr)                                                     deployed               stage              (d)           search (d)      locations (%)

GG154        F            1               Telonics-ST10               2001/04/16        Post-moult            50                  1                  100.00

GG039       M           1              Telonics-ST10               2001/04/19        Post-moult         115                28                    44.35
                                                                                         2001/09/06        Post-winter          73                23                      5.48

OO312        F          0.5             Telonics-ST10               2002/04/09        Post-moult            95                  1                    94.05

WW296      M           1              Telonics-ST10               2002/04/08        Post-moult           85                  1                    90.59
                                                                                         2002/08/12        Post-winter          49                  1                    91.84

YY428         F          0.5            Sirtrack Kiwisat             2004/04/13        Post-moult          120                29                    44.17

                                                Sirtrack Kiwisat             2004/08/14        Post-winter          69                43                    41.67

YY191         F          0.5             Telonics-ST10               2004/04/16        Post-moult         101                33                    82.46
                                                                                         2004/08/10        Post-winter        105                  5                    75.00

YY232        M         0.5    SMRU/Series 9000 SRDL     2004/04/15        Post-moult         102                26                    46.08
                                                                                         2004/08/04        Post-winter          93                15                    58.06

YY302        M         0.5             Telonics-ST10               2004/04/27        Post-moult           98                35                    36.73
                                                                                         2004/08/19        Post-winter          95                15                    64.21

BB277         F            1             Sirtrack Kiwisat             2004/04/13        Post-moult           62                nd                      0.00
                                                                                         2004/06/30        Post-winter        151                27                    39.74

BB045         F            1             Sirtrack Kiwisat             2004/04/15        Post-moult            57                27                    39.74

BB032         F            1             Sirtrack Kiwisat             2004/04/15        Post-moult          108                nd                      0.00

BB018         F            1             Sirtrack Kiwisat             2004/04/16        Post-moult          122                58                    10.53

BB193         F            1             Sirtrack Kiwisat             2004/04/17        Post-moult          144                32                    67.01

BB125         M           1               Telonics-ST10               2004/04/18        Post-moult            88                nd                      0.00

TO340        M           1     SMRU/Series 9000 SRDL     2004/04/18        Post-moult           42                nd                      0.00
                                                                                         2004/06/27        Post-winter        137                16                    14.29

RR078         M           1         Sirtrack/Kiwisat 101         2006/04/17        Post-moult         109                nd                      0.00
                                                                                         2006/09/03        Post-winter          89                39                      3.33

Table 1. Deployment summary for juvenile southern elephant seals from Marion Island. The migration stage, migration dura-
tion, time to first search location and the percentage of searching locations for each migration are given. Search locations were
identified using state-space models. Dates given as year/mm/dd. Animals recording double migrations are featured in bold. 

nd: not determined

Fixed effects                                      AIC           ΔAIC      Log likelihood     df

Null                                                4110.8       444.6           −2051.4            4
SST + Bathy + Front + Season±    3667.5         1.3           −1825               7
Bathy + Front + Season±               3666.2           0              −1826.1            6
SST                                                    4102          435.8           −2046               5
Bathy                                              4047.6       381.4           −2018.8            5
Front                                              3947.7       281.5           −1968.8            5

Table 2. The results of generalized linear mixed models comparing environ-
mental variables in 2 behavioural (0: travelling, 1: searching) modes identified
by state–space models. The environmental variables were (1) proximity to a
bathymetric feature (0: further than 1°, 1: within 1°) (Bathy); (2) proximity to a
frontal feature (0: further than 1°, 1: within 1°) (Front); (3) sea-surface temper-
ature (SST) and (4) Season. The null and full additive models are listed first,
and thereafter, the models as the least influential fixed effects are removed
until a model with all significant effects is achieved. Models with individual
fixed effects are listed. Akaike information criterion (AIC) and ΔAIC values
are given to compare models. ±indicates the top 2 models that did not differ 

from each other. All models differed from the null
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are characterised by higher abundances of second-
ary producers compared to the open ocean (Pakho-
mov & McQuaid 1996, Froneman et al. 2002, Consta-
ble et al. 2003, Bost et al. 2009). The importance of
frontal structures as foraging grounds around Marion
Island has been reported for subantarctic fur seals
Arctocephalus tropicalis (de Bruyn et al. 2009a), grey-
headed albatrosses Thalassarche chrysostoma (Nel
et al. 2001) and adult female southern elephant seals
(Jonker & Bester 1998), al though interfrontal zones
were also targeted in the latter study.

Seals tracked in 2004 ranged toward the SAF. In
2001, 2002 and 2006, seals ranged toward the APF
even though the APF was further south during these
years than in 2004. Ansorge et al. (1999) suggested
that availability of macrozooplankton associated with
the SAF would increase when the SAF is close to
Marion Island. However, when the SAF lies farther
north, the PFZ broadens, resulting in the dissipation
of advective forces, and trapped eddies are observed
over the shelf separating Prince Edward and Marion
islands (Perissinotto & Duncombe Rae 1990), possi-
bly resulting in higher chlorophyll a concentrations
(Hunt et al. 2001). Our study shows that juvenile
southern elephant seals used the SAF and did not
use the shelf between Prince Edward and Marion
islands when the front was situated further to the

north. This may be linked to the prey species that
are being targeted by juvenile southern elephant
seals from Marion Island. Lanternfish (Myctophidae)
and other larger prey items, such as the fish Mag-
nisudis prionosa and the squid Martialia hyadesi,
have been found in the diets of grey-headed alba-
tross Thalassarche chrysostoma from Marion Island
(Nel et al. 2001). Grey-headed albatross focused
 foraging effort along frontal zones and made con-
spicuous use of eddies (Nel et al. 2001). Although
the use of eddies is not addressed in our study, it is
likely that juvenile southern elephant seals from
Marion Island also use these features, and further
detailed studies are required for confirmation. Juve-
nile seals in 2004 may have been attracted to the
SAF owing to the development of an intense area of
heterogeneity known as the Subtropical Conver-
gence Zone (STC). The STC is created by the inter-
action between the SAF, the Subtropical Front (STF)
and the Agulhas Return Current and is a region of
unpredictable, en hanced pelagic biomass (Ba ran ge
et al. 1998) resulting from periodic blooms (Weeks
& Shillington 1996). Increased levels of chlorophyll
pigmentation (indicators of primary production) are
facilitated by strong frontal gradients that are created
by isotherms being in close proximity to each other
(Weeks & Shillington 1996).
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Fig. 2. State–space derived searching location estimates for juvenile seals tracked in 2001, 2002 and 2006. The Subantarctic
Front (SAF) and the Antarctic Polar Front (APF), buffered by a 1° zone, are indicated. Major bathymetrical features, the An-
drew Bain Fracture Zone (ABFZ) and the Southwest Indian Ridge (SWIR) are surrounded by a 1° buffer. Marion Island (MI) 

is indicated on the map
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The strong seasonal signals evident in juvenile
foraging patterns may be related to the seasonal
fluctuations in frontal locations or may be an arte-
fact of the yearly cycle that governs southern ele-
phant seal haul-out patterns (Kirkman et al. 2001,
2003). Juvenile seals (age = 0.5 or 1 yr) are known
to moult early in the season, well before older
seals at Marion Island (Kirkman et al. 2003). This
moulting period can last for up to a month (Condy
1979) from early December to January and would
explain the lack of foraging behaviour recorded
during summer. New devices were only deployed
on juvenile seals at the time of Marion Island relief
voyages (2001, 2002, 2004 and 2006), which take
place in autumn (April/May). This precluded the
collection of data during January, February and
March. Transiting behaviour was predominant
during autumn, representing the period when most
animals were travelling to their foraging areas.
Juvenile southern elephant seals from Marion
Island appear to behave similarly to juvenile seals
from Mac quarie Island, travelling in a general
direction and foraging opportunistically until a
suitable prey patch is found (Field et al. 2005).

The models could explain the behavioural states of
seals at only 50% of locations in the present study.
This may be an indication that the effects included in
the models did not take all the types of foraging

patches that are available to seals from Marion Island
into ac count. For example, while frontal zones may
be the most important foraging areas for juvenile
seals, seals might also rely on eddies created by the
flow of the ACC over the intersection of the SWIR
and the ABFZ (Froneman et al. 2002, Ansorge &
 Lutjeharms 2005, Bernard et al. 2007). Given that
their limited foraging experience and smaller body
size is likely to restrict their foraging ability (Irvine
et al. 2000), juvenile seals might also use dense prey
assemblages close to the sea surface and relatively
close to the island. Such alternatives were not taken
into account as model effects.

Of concern in tracking studies is the linkage be -
tween searching behaviour and foraging success.
While we can only assume that foraging actually
occurs in areas where searching behaviour has been
predicted using state–space models, we cannot
quantify the extent to which seals have been success-
ful. Foraging success could be quantified using div-
ing behaviour (e.g. Biuw et al. 2003, Thums et al.
2008), data measuring actual feeding behaviour
(Liebsch et al. 2007, Naito et al. 2010) or measure-
ment of body condition before and after foraging
trips (e.g. de Bruyn et al. 2009b). Such data are vital
if the links between animal movements, individual
success and population dynamics (e.g. Weimerskirch
et al. 2012) are to be made.
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Fig. 3. State–space derived searching locations for juvenile seals tracked in 2004 (individuals are indicated in different 
colours). See Fig. 2 for abbreviations of major features
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