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INTRODUCTION

The global rise of ecosystem-based management,
including coastal zone planning and the creation
of marine protected areas, has resulted in an in -
creased demand for understanding the population
struc ture of marine organisms (Hall & Mainprize

2004,  Crowder et al. 2006, Ciannelli et al. 2013). Sev-
eral approaches have been developed to examine
population structure and connectivity among in -
vertebrate and vertebrate marine fauna, including
molecular techniques, modeling egg and larval trans -
port, and applying artificial and natural tags to exam-
ine population connectivity. In reef fishes, results
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ABSTRACT: The objective of this study was to evaluate whether age-0 lane snapper Lutjanus
synagris otolith chemical signatures could serve as accurate proxies for those of its congener, red
snapper L. campechanus, among northern Gulf of Mexico (GOM) nursery regions. Red (n = 90)
and lane (n = 53) snappers were sampled from 3 regions of the northern GOM in fall 2005, and
their otolith chemistry was analyzed with sector field-inductively coupled plasma-mass spectrom-
etry (Ba:Ca, Mg:Ca, Mn:Ca, Sr:Ca, Li:Ca) or stable isotope ratio-mass spectrometry (δ13C and
δ18O). Chemical signatures were significantly different among regions (MANOVA, p < 0.001) and
between species (MANOVA, p = 0.029), with the species effect being driven by significant differ-
ences in 4 of the 7 constituents analyzed (ANOVA, p < 0.036). The significant region effect per-
sisted (MANOVA, p < 0.001), but the species effect was non-significant (MANOVA, p = 0.964)
when constituent values were normalized to species-specific means. Mean regional classification
accuracies from linear discriminant functions computed with otolith constituent data were 84% for
lane snapper and 80% for red snapper whether data were normalized or not. Maximum likelihood
models parameterized with normalized lane snapper otolith chemistry data estimated red snapper
regional composition reasonably well among mixed-region samples (mean error = 9.7% among
models). Therefore, it appears age-0 lane snapper otolith chemical signatures can serve as accu-
rate proxies for those of red snapper in the northern GOM. These results have broader implica-
tions for deriving natural tags based on otolith chemistry for fishes that may have low abundance
in parts of their range.
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from recent population genetics studies and oceano-
graphic transport modeling suggest self-recruitment
may be more widespread than previously thought
(Cowen et al. 2000, Swearer et al. 2002, van der Meer
et al. 2012, Ackiss et al. 2013). Furthermore, popula-
tion connectivity in some species may be driven by
post-settlement movement, rather than egg and lar-
val transport (Bolden 2000, Lindberg et al. 2006,
 Patterson 2007). Unfortunately, artificial tagging is
impractical for many reef fishes, and the ability to
estimate site fidelity or movement can be limited in
tagged fishes due to tag loss, uneven fishing effort, or
low reporting rates. Therefore, the need to develop
accurate, reliable natural tags is paramount to exam-
ine post-settlement movement and population con-
nectivity in reef fishes.

Otolith chemical signatures have been shown to be
effective natural tags in fishes, and examining popu-
lation connectivity and estimating nursery sources
with otolith chemical signatures has become wide-
spread in fish ecology (reviewed in Campana &
 Thorrold 2001, Elsdon et al. 2008, Chang & Geffen
2013). Employing otolith chemical signatures has
been particularly effective for examining recruitment
dynamics and population connectivity in estuarine-
dependent and diadromous fishes. This is due to
 typically high variability in water chemistry among
estuaries driving differences in otolith chemical sig-
natures, or a significant contrast existing between
the water chemistry fish experience as juveniles ver-
sus adults. Among reef fishes, otolith chemical signa-
tures have been demonstrated to distinguish nursery
areas or systems for a variety of estuarine-dependent
species (Gillanders & Kingsford 2003, Hanson et al.
2004). However, otolith chemical signatures have
also proven effective in distinguishing nursery areas
or regions in reef fishes that spend their entire life
cycle on the shelf (H. M. Patterson et al. 2005, Rutten-
berg et al. 2008). Among those is red snapper Lut-
janus campechanus (Patterson et al. 2008, Zapp Sluis
et al. 2012), a large (body mass to 25 kg and total
length to 1 m) lutjanid that is one of the more ecolog-
ically and economically important reef fishes in the
northern GOM.

Red snapper is the most targeted reef fish in US
waters of the GOM despite being estimated to be
severely overfished for over 30 yr (Porch 2007, SEDAR
2013). The stock has begun to recover in recent
years, principally due to increasingly restrictive man-
agement measures mandated by the re-authorization
of the Magnuson-Stevens Fishery Management and
Conservation Act, which was passed by the US Con-
gress in 2006. The GOM fishery began along the

west Florida shelf in the 1800s (Stearns 1883, Collins
1885), but by the turn of the 19th century the red
snapper population was commercially extinct in Flo -
rida waters (Porch et al. 2007). A clear sign of stock
recovery in recent years has been increasing catch
rates and abundance estimates in the eastern GOM
(SEDAR 2013). Artificial tagging data indicate some
young fish (<5 yr old) move from the north central
GOM to the west Florida shelf post-settlement (Pat-
terson 2007, Addis et al. 2013), but it is unknown
what percentage of the growing red snapper popula-
tion found there is locally produced versus recruits
from other regions of the GOM.

Zapp Sluis et al. (2012) examined age-0 red snap-
per otolith chemical signatures among 6 regions of
the GOM, including the west Florida shelf and 2
regions in Mexican waters, in an attempt to develop
natural tags to examine sources of recruits to rebuild-
ing red snapper populations in the northern GOM.
Despite significant sampling efforts, they collected
relatively few juvenile red snapper from the west
Florida shelf, and had no samples from that region for
1 of the 3 yr classes they examined. Lane snapper
Lutjanus synagris, however, are abundant on the
west Florida shelf, thus the question arose as to
whether lane snapper otolith chemical signatures
could serve as a proxy for those of red snapper, given
similarities in ecology, early life history, and GOM
habitats between these 2 congeners (Workman et al.
2002, Mikulas & Rooker 2008, Wells et al. 2008). To
test this question, age-0 red and lane snapper juve-
niles were sampled concurrently among 3 northern
GOM regions, and differences in otolith chemical
signatures between species were tested. Then, the
ability of lane snapper otolith chemical signatures to
accurately distinguish mixed-region red snapper
samples was examined.

METHODS

Age-0 red and lane snappers were sampled in
October and November 2005 from 3 regions in the
northern GOM during the National Oceanic and
Atmo spheric Administration (NOAA) Fisheries Fall
Groundfish Survey (FGS): north central Gulf (NCG),
northwest Gulf (NWG), and southwest Gulf (SWG)
(Fig. 1). Following Patterson et al. (2008), the bound-
ary between NWG and NCG regions was longitude
89.0° W, and the boundary between NWG region
and SWG regions was 94.5° W. Fish were placed in
 plastic bags, frozen onboard the research vessel, and
then transferred to the laboratory for processing. Fish
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were thawed, measured to the nearest mm total
length (TL) and wet mass recorded to the nearest
0.01 g. Right and left sagittae were extracted with acid-
leached glass probes and Teflon forceps and rinsed
with ultrapure (18.3 MΩ cm−1) water. Each otolith was
cleaned with 1% ultrapure HNO3 for 30 s to remove
any surface tissue, rinsed repeatedly with ultrapure
water to remove acid, and then placed under a Class
10 laminar flow hood to air dry for at least 24 h.

Whole otoliths were analyzed for chemical consti-
tutes such that otolith chemical signatures were inte-
grated over the entire nursery period experienced by
juveniles prior to sampling. Right otoliths were pro-
cessed for elemental analysis by dissolving them in
1% ultrapure HNO3 at a dilution factor of approxi-
mately 1000×; exact dilution factors were determined
by mass. Aliquots (5 ml) of otolith solutions were ana-
lyzed with a ThermoFisher Element 2 sector field-
inductively coupled plasma-mass spectrometer (SF-
ICP-MS) in the Department of Marine Science at the
University of Southern Mississippi. Otolith solutions
were spiked with indium at a concentration of 2.5
parts per billion (ppb) as an internal standard, and
then analyzed for 137Ba, 48Ca, 7Li, 55Mn, 24Mg, and
88Sr, with concentrations of individual elements ex -
pressed as molar ratios to Ca. All elements were ana-
lyzed in medium resolution mode, except for Ba, Li,
and Mn, which were analyzed in low resolution.
Blanks of 1% ultrapure HNO3 were processed through
the same stages of preparation as sample solutions.
Blanks were analyzed concurrently with sample
solutions to estimate instrument limits of detection
(LOD), which were estimated as 3 standard devia-
tions of mean blank values. Instrument performance
and matrix effects were checked by assaying ele-
mental concentrations of an otolith standard refer-
ence material (SRM; FEBS-1) prepared from adult

red snapper otoliths (Sturgeon et al. 2005). SRM
 solutions were prepared with the exact protocols as
otolith samples.

Left otoliths were processed for stable isotope ana -
lysis by pulverizing samples to a fine, homogenized
powder with acid-leached glass mortars and pestles
and then transferred to microcentrifuge tubes. Sub-
samples (>1 mg) of pulverized otoliths were analyzed
at the Stable Isotope Laboratory in the Department of
Geology at the University of California at Davis with
a Finnigan MAT 251 isotope ratio mass spectrometer
(IR-MS). Instrument calibration was conducted against
the International Atomic Energy Agency’s carbonate
standard, NBS-19. Analytical run accuracies were
measured through routine analysis of an in-house
check standard which had been stringently calibrated
against NBS-19. Results of IR-MS analysis are re -
ported in δ-notation {δX = [(Rsample / Rstandard) − 1] ×
1000, where X = 13C or 18O and R = 13C / 12C or 18O /
16O}, and are expressed as per mil (‰) relative to
the international carbonate standard Vienna Peedee
Belemnite (V-PDB).

Parametric assumptions of element:Ca and stable
isotope data were tested prior to statistical analysis;
all statistical tests were conducted with an experiment-
wise error rate (α) of 0.05. Normality was tested
with Ryan-Joiner tests and homogeneity of variances
was tested with Fmax tests. Constituents that violated
parametric assumptions were either ln-transformed
or reciprocal-transformed prior to statistical analysis.
Species-specific relationships between TL and ele-
ment:Ca or stable isotope values were tested with
correlation analysis. Differences in otolith chemical
signatures were tested with a 2-factor multivariate
ana lysis of variance (MANOVA), with species and re -
gion main effects. These effects also were tested with
ANOVA for individual constituents (i.e. element:Ca
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or stable isotope ratios) (SAS Institute 2009). Follow-
ing initial analysis of otolith chemical signatures,
data were normalized for each constituent by divid-
ing individual values by the species-specific mean
among regions. Species and region effects then were
retested with MANOVA and ANOVA as indicated
above.

Linear discriminant function (LDF) analysis was
conducted with non-normalized and normalized data
for both red and lane snappers to evaluate whether
juveniles could be distinguished among northern
GOM regions with otolith chemical signatures (SAS
Institute 2009). Lastly, maximum likelihood stock
mixing models were parameterized with normalized
lane snapper data to test whether the regional com-
position of unknown red snapper samples could be
estimated accurately based on lane snapper otolith
chemical signatures (Millar 1990). Regional composi-
tion of unknown red snapper samples included 100%
from a single region (n = 30), 50% from 1 region and
25% randomly selected from each of the other 2
regions (n = 60), and 33% from each region (n = 90).

RESULTS

A total of 143 age-0 red (n = 90) and lane (n = 53)
snapper juveniles was sampled among northern
GOM regions (Fig. 1, Table 1). Samples were drawn
from a broad geographic range within each region,
although FGS stations produced fewer lane than red
snapper samples. The range in TL was similar among
regions within each species, but mean TL was be -
tween 17 and 32 mm greater for lane snapper than
for red snapper sampled in the same region (Table 1).
There was no significant difference in red snapper
TL among regions (ANOVA, p = 0.589), but TL was
significantly different among regions for lane snap-
per (ANOVA, p = 0.006).

Elemental concentrations were at least 2 orders of
magnitude above LODs for each element analyzed
with SF-ICP-MS, and analysis of the FEBS-1 SRM
yielded concentration estimates within 5% of certified
values. Values for δ13C and δ18O in the carbonate stan-
dard were within 1% of certified values during IR-MS
analysis. All element:Ca ratios were  ln-transformed
and both stable isotope ratios were reciprocal-
transformed to meet parametric assumptions.

The only constituent that was significantly corre-
lated to TL for either species was Mn:Ca (p < 0.04, r =
−0.362 for lane snapper and r = −0.328 for red snap-
per). However, the correlations were weak and re -
moving the effect of TL from ln-transformed Mn:Ca
had no effect on subsequent statistical analyses.

Otolith chemical signatures were significantly differ-
ent among regions and between species (MANOVA,
p < 0.001; Table 2, Fig. 2). The region effect was sig-
nificant for all constituents except Ba:Ca and Sr:Ca
(ANOVA, p ≥ 0.053), and the species effect was sig-
nificant for all constituents except Mg:Ca, Mn:Ca,
and δ13C (ANOVA, p ≥ 0.057; Table 2, Fig. 2). Despite
the significant species effect for most constituents,
trends in mean constituent values were similar be -
tween species. The significant region effect persisted
(MANOVA, p < 0.001; Table 3, Fig. 3) but the species
effect was non-significant (MANOVA, p = 0.964)
when constituent values were normalized to species-
specific means. The removal of the species effect
is also reflected in results from ANOVAs run on indi-
vidual constituents (Table 3).

Mean region-specific jackknifed classification
accuracies from LDFs computed with oto lith con-
stituent data were 84% for lane  snapper and 80% for
red snapper (Fig. 4). Identical results were produced
with nor malized data, thus indicating the  variance-
covariance structure of otolith chemical signatures
was unaffected by normalizing the data. Maximum
likelihood models parameterized with normalized
lane snapper otolith chemistry data estimated red
snapper regional com position reasonably well among
mixed-region samples (Table 4). The mean error was
9.7% among models; however, results were least
accurate for models in which red snapper samples
were derived 100% from a single region.

DISCUSSION

Several criteria must be met for nursery-specific
otolith chemical signatures of one fish species to be
effectively employed as proxies for another species.
Chemical signatures must be sufficiently different

Species Region n Stations Mean ± SE
total length (mm)

L. campechanus NCG 30 12 110.0 ± 3.2
NWG 30 13 112.5 ± 3.2
SWG 30 10 110.3 ± 3.2

L. synagris NCG 16 7 127.4 ± 4.4
NWG 18 9 144.8 ± 4.2
SWG 19 9 137.1 ± 4.1

Table 1. Descriptive statistics of Lutjanus campechanus and
L. synagris sampled from the 3 regions in the northern Gulf
of Mexico (Gulf) in fall 2005. NCG = north central Gulf, 

NWG = northwest Gulf, SWG = southwest Gulf
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among nursery areas or regions for each species,
high species-specific classification accuracy from sta-
tistical models computed with chemical signatures
must exist, and nursery origin of a sample of juve-
niles from the second species must be accurately esti-
mated based on a rule function derived from signa-
tures of the first species. Based on these criteria,
results of the current study suggest that  region-
specific otolith chemical signatures of lane snapper
can be employed as accurate proxies for those of its
congener, red snapper, in the northern GOM.

Otolith chemical signatures clearly were signifi-
cantly different among regions for both red and lane
snapper juveniles (see Patterson et al. 2008 and Zapp
Sluis et al. 2012 for interpretation of regional differ-
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Model Statistic F-value df prob. > F
value

MANOVA
Region 0.804 12.78 14,264 <0.001
Species 0.490 17.99 7,131 <0.001
Region × Species 0.283 3.11 14,264 <0.001

Ba:Ca ANOVA
Region 0.003 0.03 2,142 0.971
Species 0.379 4.49 1,142 0.036
Region × Species 0.137 1.63 2,142 0.200

Li:Ca ANOVA
Region 0.214 18.81 2,142 <0.001
Species 0.067 5.90 1,142 0.016
Region × Species 0.038 3.30 2,142 0.040

Mg:Ca ANOVA
Region 0.363 21.50 2,142 <0.001
Species 0.062 3.69 1,142 0.057
Region × Species 0.009 0.51 2,142 0.600

Mn:Ca ANOVA
Region 0.913 9.45 2,142 <0.001
Species 0.093 0.97 1,142 0.328
Region × Species 0.209 2.16 2,142 0.119

Sr:Ca ANOVA
Region 0.014 3.00 2,142 0.053
Species 0.052 11.09 1,142 0.001
Region × Species 0.019 4.14 2,142 0.018

δ13C ANOVA
Region 0.026 36.63 2,142 <0.001
Species 0.001 0.57 1,142 0.453
Region × Species 0.005 6.54 2,142 0.002

δ18O ANOVA
Region 0.115 3.62 2,142 0.030
Species 2.996 77.23 1,142 <0.001
Region × Species 0.053 1.35 2,142 0.262

Table 2. Results of MANOVA and ANOVA models com-
puted to test for differences in otolith chemical signatures
between age-0 Lutjanus campechanus and L. synagris
among Gulf of Mexico regions. The statistic computed in the
MANOVA model was Pillai’s Trace and mean square error 

(from Type III sum of squares) in ANOVA models
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ences). Chemical signatures also were significantly
different between species when tested with  non-
normalized data, which was driven by significant dif-
ferences in the individual constituents, Ba:Ca, Li:Ca,
Sr:Ca, and δ18O. However, patterns among regions
were similar between species even for constituents
for which the species effect was significant. Normal-
izing the data to species-specific mean values effec-
tively removed the species effect from MANOVA
and ANOVA models while preserving the variance
structure of the data with respect to the regional
effect, as inferred from nearly identical results for the
region effect for the models computed with normal-
ized data. Normalizing the data also had no effect on
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Model Statistic F-value df prob. > F
value

MANOVA
Region 0.808 12.78  14,264  <0.001
Species 0.014 0.27 7,131 0.964
Region × Species 0.285 3.14 14,264  <0.001

Ba:Ca ANOVA
Region 0.003 0.03 2,142 0.971
Species 0.018 0.22 1,142 0.643
Region × Species 0.137 1.63 2,142 0.200

Li:Ca ANOVA
Region 0.214 18.81  2,142 <0.001
Species 0.001 0.12 1,142 0.730
Region × Species 0.038 3.30 2,142 0.040

Mg:Ca ANOVA
Region 0.363 21.50  2,142 <0.001
Species 0.001 0.01 1,142 0.932
Region × Species 0.009 0.51 2,142 0.600

Mn:Ca ANOVA
Region 0.913 9.45 2,142 <0.001
Species 0.016 0.16 1,142 0.685
Region × Species 0.209 2.16 2,142 0.119

Sr:Ca ANOVA
Region 0.014 3.00 2,142 0.053
Species 0.001 0.01 1,142 0.984
Region × Species 0.019 4.14 2,142 0.018

δ13C ANOVA
Region 0.398 36.42  2,142 <0.001
Species 0.001 0.07 1,142 0.787
Region × Species 0.070 6.40 2,142 0.002

δ18O ANOVA
Region 0.232 3.62 2,142 0.030
Species 0.056 0.88 1,142 0.351
Region × Species 0.093 1.46 2,142 0.237

Table 3. Results of MANOVA and ANOVA models com-
puted to test for differences in normalized otolith chemical
signatures between age-0 Lutjanus campechanus and L.
synagris among Gulf of Mexico regions. The statistic com-
puted in the MANOVA model was Pillai’s Trace and mean
square error (from Type III sum of squares) in ANOVA models
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high (≥80%) jackknifed nursery region classification
accuracies from LDFs computed for either lane or red
snapper. However, the ultimate test of lane snapper
otolith chemical signatures serving as proxies is their
ability to distinguish red snapper nursery sources,
and maximum likelihood models parameterized with
normalized lane snapper otolith chemical signatures
accurately (mean error <10%) predicted nursery
region of mixed-source red snapper samples.

Authors of other studies have reported significant
differences in otolith chemical signatures among
species sampled from the same nursery habitats or
systems (Gillanders & Kingsford 2003, Hamer &

Jenkins 2007, Reis-Santos et al. 2008, 2012). Typi-
cally, co-located species which are more closely
related phylogenetically and ecologically tend to
have more similar otolith chemical signatures
(reviewed in Chang & Geffen 2013). For example,
Brown (2006) reported otolith elemental composition
was similar between juvenile flatfishes English
sole Pleuronectes vetulus and speckled sanddab
Citharichthys stigmaeus co-located among 3 regions
along the coast of California, and that mean region-
specific LDF classification accuracies differed little
when species were modeled separately (78 and 79%,
respectively) versus jointly (77%). Swearer et al.
(2003) also reported that otolith signatures more sim-
ilar among southern California estuaries for fishes
that were more closely related phylogenetically and
ecologically. Among species they examined, the flat-
fishes Paralichthys californicus and Hypsopsetta gut-
tulata had otolith chemical signatures more similar to
each other than to the other species sampled, as did
the gobies Clevelandia ios and Ilypnus gilberti. Fur-
thermore, chemical signatures were more similar be -
tween the flatfishes and gobies than between these
benthic fishes and the mid-water topsmelt Atherinops
affinis. It also should be noted that the flatfishes were
juveniles of estuarine-dependent species that even-
tually emigrate out of estuaries to shelf environ-
ments, while the gobies were adults that typically
have restricted (10s of m2) home ranges (Swearer et
al. 2003). Therefore, other factors such as life stage,
growth rate, and feeding ecology also may have
affected observed interspecific differences.

The 2 species examined in the current study be -
long to the subfamily Lutjaninae within the family
Lutjanidae. Not only are they closely related phylo-
genetically (Gold et al. 2011), they also have very
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Model percentage Estimated percentage Difference
NCG NWG SWG NCG NWG SWG NCG NWG SWG

100  0 0 72.5 9.1 18.4 −27.5  9.1 18.4
0 100  0 0.0 77.1 22.9 0.0 −22.9  22.9
0 0 100  11.3 18.3 70.4 11.3 18.3 −29.6  

33 33 33 26.3 36.1 37.6 −6.7 3.1 4.6
50 50 0 33.8 44.9 21.2 −16.2  −5.1 21.2
50 0 50 41.9 13.7 44.4 −8.1 13.7 −5.6
0 50 50 3.2 48.5 47.3 3.2 −1.5 −2.7

50 25 25 41.7 31.8 26.7 −8.3 6.8 1.7
25 50 25 22.0 50.9 28.8 −3.0 0.9 3.8
25 25 50 34.1 24.7 45.9 9.1 −0.3 −4.1

Table 4. Maximum likelihood regional composition estimates of mixed-region age-0 Lutjanus campechanus samples from the
northern Gulf of Mexico. Models were parameterized with region-specific otolith chemical signatures of L. synagris. Model
percentage indicates the regional composition of L. campechanus mixed-region samples. See Table 1 for region abbreviations
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similar ecologies in the northern GOM, especially
during early life. Both species spawn during spring
and summer months and juveniles settle out in a vari-
ety of shelf habitats, although they are most concen-
trated in shell rubble habitat (Workman et al. 2002,
Mikulas & Rooker 2008, Wells et al. 2008). Juveniles
typically spend at least their first year of life associ-
ated with these habitats prior to recruiting to reefs
later in their second year of life, and their feeding
ecologies overlap as well, with juvenile diets consist-
ing principally of zooplankton, benthic invertebrates,
squids, and transitioning to greater piscivory with
ontogeny (Franks & VanderKooy 2000, W. F. Patter-
son et al. 2005, McCawley & Cowan 2007, Mikulas &
Rooker 2008). Therefore, few species are as similar
phylogenetically and ecologically in the northern
GOM as red and lane snappers, factors that Swearer
et al. (2003) and Chang & Geffen (2013) concluded
had great influence on the similarity of otolith chem-
ical signatures between species.

A variety of factors, such as salinity, temperature,
growth, or food, can affect the incorporation of con-
stituents examined in red and lane snapper otoliths
(Elsdon et al. 2008, Chang & Geffen 2013). For ex -
ample, Sr and Ba concentrations in otoliths of several
species, including gray snapper Lutjanus griseus,
have been shown to reflect ambient concentrations in
water, although their incorporation into otoliths may
be affected to a lesser extent by water temperature
and growth rate (Bath et al. 2000, Elsdon & Gil -
landers 2002, Martin & Wuenschel 2006, Walther &
Thorrold 2006). Red and lane snappers have over -
lapping spawning seasons in the northern GOM,
thus juveniles likely were present on the shelf and
exposed to ambient conditions over the same time
period. The large size for lane snapper juveniles may
result from faster growth, as their mean growth rate
tends to be on the upper end of the range observed
for red snapper juveniles (Mikulas & Rooker 2008,
Wells et al. 2008).

Differential growth rate could have implications for
δ18C but it is unlikely to cause differences observed in
δ18O (Thorrold et al. 1997, Høie et al. 2003). Re gional
patterns in δ18O were similar between snapper spe-
cies, with fish sampled in the NWG having the lowest
and fish in the SWG having the highest δ18O values,
which likely resulted from lower δ18O in Mississippi
River water relative to GOM water and relatively
little freshwater input onto the shelf from Texas rivers
(Bowen & Wilkinson 2002, Dutton et al. 2005, Wagner
& Slowey 2011). The inter-specific difference in
δ18O, however, is more difficult to explain. Within a
species, δ18O has been shown to be incorporated into

otoliths in close equilibrium with ambient water, with
fractionation driven by water temperature and inde-
pendent of growth or metabolic effects (Thorrold et
al. 1997, Høie et al. 2003). However, differences in
δ18O fractionation have been reported among species
such that a universal equation relating water temper-
ature to δ18O in otoliths has been elusive (Patterson
et al. 1993, Thorrold et al. 1997, Høie et al. 2004). Dif-
ferences in δ18O observed between red and lane
snappers ranged from 0.40 to 0.71‰ among GOM re-
gions. This is within the range in otolith δ18O re ported
among species for a given water temperature (Høie et
al. 2004), although it is unclear if one should expect
such a difference in δ18O for 2 species as closely re-
lated as red and lane snappers without the fish
having experienced different water temperatures.

The last otolith constituent for which there was a
significant difference between snapper species was
Li:Ca. Lithium is typically 2 orders of magnitude
more concentrated in oceanic than riverine waters,
and that is true of the Mississippi River, the predom-
inant freshwater source in the northern GOM (Huh
et al. 1998). The volume of Mississippi River water on
the shelf in the NWG likely explains the lower otolith
Li:Ca in that region. However, the incorporation of Li
into otoliths is poorly understood so no definitive
inference can be drawn either with respect to Li:Ca
among regions or between snapper species. Further-
more, it should be noted that Li:Ca values were simi-
lar for red and lane snapper juveniles in the NWG
and SWG, but the significant species effect was
driven by Li:Ca being approximately 10% higher for
red snapper in the NCG.

Overall, results from this study suggest that juve-
nile lane snapper otolith chemical signatures can
serve as effective proxies for those of red snapper
among northern GOM nursery regions. Signifi cant
differences were apparent between species as well
as among regions when non-normalized data were
analyzed, but normalizing the data effectively re -
moved the species effect. Therefore, if juvenile red
snapper samples were unavailable or lacking from
GOM regions then lane snapper otolith chemical sig-
natures could be utilized to produce proxies for red
snapper. Such an approach could be em ployed on
the west Florida shelf where juvenile red snapper
currently are rarely encountered. This would be
 critical for parameterizing maximum likelihood or
Bayesian assignment models computed to estimate
source regions for adults because without west Flo -
rida juvenile signatures or proxies, models could
never predict local self-recruitment. Beyond red
snapper, our results may have implications for other
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closely related species as well, especially if one spe-
cies is relatively rare in some part of its range, but the
proxy approach should be validated by controlled
experiments to examine what factors affect con-
stituents of interest in otoliths of these species.
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