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ABSTRACT: Field observations were made from 2012 to 2014 at an integrated multi-trophic aqua-
culture (IMTA) site in Sanggou Bay (SGB), China, to characterize the nutrients associated with
aquaculture activities, and to assess the effects of aquaculture on nutrient cycles in the bay. Dis-
solved inorganic and organic nutrient levels were measured in rivers, groundwater, and SGB. Sea-
sonal variations in nutrient concentrations were detected in the rivers, particularly enrichment of
dissolved inorganic nitrogen (DIN) and silicate (DSi). Nutrient concentrations showed considerable
seasonal variation, with higher and significantly different concentrations occurring in autumn than
in the other seasons. The composition and distribution of nutrients were also affected by the
species being cultured. Dissolved organic nitrogen and phosphorus (DON and DOP) accounted for
27 to 87 % of total dissolved nitrogen and 34 to 81 % of total dissolved phosphorus, respectively.
Phosphorus may be a potentially limiting nutrient for phytoplankton growth in summer. Nutrient
budgets were developed based on a simple steady-state box model. These showed that bivalve
aquaculture was the major source of PO,*~ (contributing 64 % of total influx) and led to increased
riverine fluxes of PO,%". The results indicated that substantial quantities of nitrogen and DSi accu-
mulated in sediments or were transformed into other forms (e.g. phytoplankton cell composition or
particles). Large quantities of DIN and PO, were removed from the bay through harvesting of
seaweeds and bivalves, which represented up to 64 and 81 % of total outflux, respectively. The
results show that aquaculture activities play the most important role in nutrient cycling in SGB.
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INTRODUCTION

With an annual average increase of 8.7 % over the
past 40 yr, aquaculture is the fastest-growing food
production sector in the world, and is overtaking cap-
ture fisheries as a source of food fish (Herbeck et al.

*Corresponding author: sumeiliu@ouc.edu.cn

2013). The rapid growth of aquaculture has given
rise to a wide variety of environmental problems,
including ecosystem degradation and water pollution
(Neori et al. 2004). One of the largest of impacts of
aquaculture effluents to local ecosystems is im-
balance created in nutrient dynamics and eutrophic
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conditions (Marinho-Soriano et al. 2009, Bouwman et
al. 2011). In addition, excess nutrients cause stress in
the cultivated organisms, with deleterious effects
including smaller size, reduced production, and mass
mortality (Newell 2004, Mao et al. 2006). Due to in-
creasing concerns about the environmental impacts
of aquaculture, a new method of aquaculture with a
smaller ecological footprint has been developed.
Integrated multi-trophic aquaculture (IMTA) has the
potential to mitigate the environmental impacts of
aquaculture (Buschmann et al. 2008).

IMTA is described as the cultivation of aquatic
species from different trophic levels within a shared
water system (Bostock et al. 2010). Such systems sig-
nificantly increase the sustainability of aquaculture
and recycle waste nutrients from high trophic-level
species into production of lower trophic-level crops
of commercial value (Troell et al. 2009). Seaweeds
are used in IMTA systems for their nutrient-absorb-
ing and sequestering properties. Nutrients excreted
and egested by bivalves can be absorbed by macro-
algae and recycled into valuable biomass (Newell
2004, Buschmann et al. 2008), and this amount of
nutrient waste can be effectively removed from the
ecosystem. In addition, a number of studies have
confirmed that suspension-feeding bivalves can
exert top-down control on phytoplankton (Newell &
Koch 2004, Wall et al. 2008); larger nanoplankton
will be removed in comparison with smaller (<3 pm
diameter) picoplankton species, thereby reducing
turbidity (Newell 2004). The resulting increased light
penetration can potentially enhance the production
of benthic plants (Newell & Koch 2004). If high levels
of dissolved inorganic nitrogen (DIN) regenerated by
bivalves are sufficient to allow the relatively slow-
growing nanoplankton to grow fast enough to over-
come grazer control, primary production can be stim-
ulated through recycling of nitrogen (Smaal et al.
2001). Some marine IMTA systems have been com-
mercially successful at industrial scales, especially in
Asia (China) (Troell et al. 2009).

China is the largest aquaculture producer in the
world, with a total production of 34.1 million tons,
which accounts for 62% of total global production
and 51 % of the global value (Yang et al. 2005, FAO
2010, Yuan et al. 2010, Yu et al. 2012). The area
devoted to aquaculture increased from 11.2 x 10* ha
in 1977 t0 218 x 10* ha in 2012 (The People's Republic
of China Ministry of Agriculture Fisheries Bureau
2013). The rapid growth of aquaculture has led to
eutrophication of coastal waters (Wu et al. 2014), and
to the occurrence of aquatic diseases that have
resulted in major economic losses (Fei 2004); for

example, in 1998, more than 10 billion Chinese Yuan
(approximately US$ 1.5 billion) were lost because of
mariculture disease (Fei 2004). To improve the envi-
ronmental sustainability of aquaculture and benefit
the local economy, IMTA was developed in China.
Sea-ranching and suspended aquaculture are the 2
main forms of IMTA in China, and the latter is used
in Sanggou Bay.

Sanggou Bay (SGB) is located in northern China
and has been used for aquaculture for over 30 yr
(Zhang et al. 2009). It has been estimated that more
than 300 t of inorganic nitrogen have been excreted
into the bay by cultivated and fouling animals (Troell
et al. 2009). Studies of core sediments also indicated
that the total nitrogen (TN) content has increased
in recent decades as a consequence of aquaculture
activities (Song et al. 2012). Bivalves clear seston
particles >3 pm in diameter from natural water and
are not supplied with additional feed in the bay. The
absolute and relative abundances of dinoflagellate
cells in the bay are lower inside the scallop culture
area than outside (Zhang et al. 2005), and the phyto-
plankton community has changed as a result; mean-
while, the reduction in phytoplankton biomass has a
negative impact on bivalve growth (Duarte et al.
2003, Shi et al. 2011a). In addition, kelp can compete
with phytoplankton for nutrients, and 80000 t of
dried kelp can be produced annually through uptake
of inorganic nitrogen from the bay (Zhang et al.
2009). In pursuing high levels of productivity, SGB
has been subject to a rapid growth in aquaculture,
with long-line culture of kelp having expanded to
areas more than 8 km away from the coast, where the
water depth is between 20 and 30 m (Troell et al.
2009, Fu et al. 2013).

Much attention has been focused on the carrying
capacity of shellfish and kelp mariculture (Bacher et
al. 2003, Nunes et al. 2003, Shi et al. 2011a), ecology
(Song et al. 2007, Hao et al. 2012), nutrient levels
(Wang 2012, Zhang et al. 2012), and nutrient fluxes
at the sediment-water interface (Jiang et al. 2007,
Sun et al. 2010) in SGB, but the effects of aquaculture
activities on nutrient cycling have not been well
studied in the bay. The objective of this study was to
determine the amounts and composition of dis-
solved nutrients in the bay and associated rivers and
groundwater, to assess the sources and transporta-
tion of nutrients, to evaluate the impact of aqua-
culture activities on nutrient cycling, and to discrimi-
nate the importance of internal nutrient inputs vs.
physical transport, based on the land-ocean inter-
actions in the coastal zone (LOICZ) nutrient model
(Gordon et al. 1996).
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MATERIALS AND METHODS
Study area

SGB (Fig. 1) is a semi-enclosed water body of
approximately 144 km? at the eastern end of Shan-
dong Peninsula, and has an average depth of 7.5 m
(Zhang et al. 2009). The bay is characterized by semi-
diurnal tides having an average tidal range of 2 m,
and is connected to the Yellow Sea through an
11.5 km wide channel (Mao et al. 2006, Jiang et al.
2007). It is dominated by land-ocean climate, with
water temperatures ranging from 2 to 26°C (Kuang et
al. 1996). Approximately 73.3 % of annual precipita-
tion in the area (819.6 mm) occurs during the wet
season, from June to September. The average river
discharge into the bay is 1.7-2.3 x 10 m® yr!, and
this carries an annual sediment load of 17.1 x 10* t.

More than 70 % of the area of SGB is currently used
for aquaculture (Zhang et al. 2009, 2010, Fu et al.
2013). It is one of the largest aquaculture production
sites in China, and is extensively used for the culture
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Fig. 1. Location of Sanggou Bay, China, and aquaculture

activities, showing the regions of kelp (Saccharina japonica)

monoculture; scallop, oyster, and fish monoculture; and multi-
species aquaculture

of scallops (Chlamys farreri), Pacific oyster Crass-
ostrea gigas, and seaweeds (Saccharina japonica and
Gracilaria lemaneiformis) (Zhang et al. 2009). These
species are grown in both monoculture and polycul-
ture, from suspended longlines (Fang et al. 1996a)
(Fig. 1). S. japonica monoculture occurs mainly near
the mouth of the bay, bivalves are mainly cultured in
the western part of the bay, and kelp and bivalve
polyculture occurs in the middle part of the bay
(Fig. 1). The co-cultivation of abalone Haliotis discus
hannai with kelp (S. japonica) has also been devel-
oped, with the abalones held in lantern nets hanging
vertically from the longlines. In 2012, production
included approximately 84500 t dry weight of S.
japonica, 25410 t wet weight of G. lemaneiformis,
and approximately 15000 and 60000 t wet weight
of C. farreri and C. gigas, respectively (data from
Rongcheng Fishery Technology Extension Station).
The main cultured species has shifted from scallop to
oyster since 1996 because of reduced scallop produc-
tion as a consequence of disease (Zhang et al. 2009).

To increase production, aquaculture has expanded
from the bay to the open sea since the 1990s (Fang et
al. 1996a). However, the total aquaculture production
of kelp has not increased (Shi et al. 2011a). This may
be related to a reduced supply of nutrients resulting
from a decrease in the water exchange rate, which
has been a consequence of reduced circulation be-
cause of the increase in aquaculture activities (Fang
et al. 1996b). The hydrodynamic conditions have
changed significantly because of the presence of sus-
pended aquaculture (Shi et al. 2011a). Current speeds
can be reduced by aquaculture facilities including
rafts, and ropes impose drag (Grant & Bacher 2001,
Duarte et al. 2003). The renewal of suspended parti-
cles for bivalve culture and nutrient regeneration for
kelp have also been reduced (Grant & Bacher 2001,
Duarte et al. 2003). Compared with the period of
farming activities up to 1983, tidal currents had
decreased by 50% by 1994 because of large-scale
cultivation (Zhao et al. 1996). Based on a 2-dimen-
sional model, Grant & Bacher (2001) estimated a
reduction of 41 % in the water exchange rate in SGB
because of increased bottom friction with expansion
of intensive suspended aquaculture. The vertical cur-
rent has also changed because of suspended aqua-
culture (Fan & Wei 2010).

Sample collection

Sampling took place during 31 May to 4 June
2012 (early summer), 20 September to 2 October
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2012 (early autumn), 22 to 25 April 2013 (spring),
21 to 25 July 2013 (summer), 16 to 17 October
2013 (autumn), and 15 to 17 January 2014 (winter)
(Fig. 2). Two anchor stations for monitoring over
complete tidal cycles of 25 h were established, one
in April 2013 in the northern mouth of the bay (D1),
and the other in October 2013 in the southern
mouth (D2) (Fig. 2), respectively. At each station,
surface water samples were collected by submers-
ing a 11 acid-cleaned polyethylene bottle from a
boat, and bottom water samples were collected
using a 5 1 polymethyl methacrylate water sampler.
River water samples were collected from the river
edge in 0.5 1 acid-cleaned polyethylene bottles,
and groundwater was collected from wells around
the bay (Fig. 2).

Water temperature and salinity were measured in
situ using a WTW MultiLine F/Set3 multi-parameter

probe. Each water sample was immediately filtered
through a 0.45 pm pore size cellulose acetate filters
(pre-cleaned with hydrochloric acid, pH = 2) into a
polyethylene bottle that had previously been rinsed 3
times with some of the filtered water sample. The fil-
trates were fixed by the addition of saturated HgCl,
solution (Liu et al. 2005), and the filters were dried at
45°C and weighed to determine the mass of sus-
pended particulate matter (SPM).

Chemical analysis

Dissolved nutrient concentrations were measured
in the laboratory using an Auto Analyzer 3 (Seal
Analytical). Total dissolved nitrogen (TDN) and total
dissolved phosphorus (TDP) were measured accord-
ing to the methods of Grasshoff et al. (1999). The DIN
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Fig. 2. Sampling stations in Sanggou Bay for the cruises during 2012 to 2014. (¢) River stations; (A) groundwater stations
(BH: Bahe; GH: Guhe; SLH: Shilihe; SGH: Sanggouhe; YTH: Yatouhe); (®) bay stations; (A) anchor stations
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concentration was determined as the sum of the
NO;~, NO,~, and NH,* concentrations. The concen-
trations of dissolved organic nitrogen (DON) and dis-
solved organic phosphorus (DOP) were estimated by
subtracting DIN from TDN and PO,% from TDP,
respectively. The analytical precision of NO3;~, NO,7,
NH,*, PO,*", dissolved silicate (DSi), TDN, and TDP
was <5 %.

Statistical analysis

Statistical analyses were performed using the soft-
ware SPSS 20.0 by IBM. One-way ANOVAs were
used to analyze the individual effects of seasons and
particular cultivation area on variations in SPM, and
2-way ANOVAs were used to analyze the combined
effects of seasons and cultivation area on variations
in SPM. Two-way ANOVAs were also used to ana-
lyze the effects of surface/bottom and seasons on
variations in nutrient concentrations. Based on a
posteriori homogeneity tests, Tukey's HSD or Tam-
hane's T2 comparisons were applied to assess the
statistical significance of differences (p < 0.05) fol-
lowing ANOVA.

Nutrient budgets

Dissolved nutrient budgets for the study system
were constructed based on the LOICZ box model
(Gordon et al. 1996). This model has been widely
used to construct nutrient budgets defining the inter-
nal biogeochemical processes and external nutrient
inputs of estuarine and coastal ecosystems (Savchuk
2005, Liu et al. 2009). For our model, we assumed
that the study system was in a steady state, and the
bay was treated as a single well-mixed box. The
water mass balance, salinity balance, and the non-
conservative fluxes of nutrient elements based on
nutrient concentrations and water budgets were esti-
mated according to Egs. (1) to (3), respectively:

Ve=Vin= Vou=-Vo-Vp Ve —Viy + Vg (1
VX(Sl - S) =S W (2)

AY = outflux — influx = VRCR + VXCX - VQCQ - VP Cp
- VoG- VwCw 3)

where Vg is the residual flow, and Vg, Vp, Vi, Vi, Ve,
Vinr Vourr Vi, and AY are the river discharge, precipi-
tation, groundwater, wastewater, evaporation, inflow
of water to the system of interest, outflow of water
from the system of interest, the mixing flow between
the 2 systems and nonconservative flux of nutrients,
respectively. The volume of aquaculture effluent dis-
charged directly into the system of interest was not
considered, as the data were limited. We assumed
that the salinity of fresh water (Vq, Vp, and Vi) was 0.
In Eq. (2), Sg = (S1+Sy)/2, where S; and S, are the
average salinity of the system of interest and the
adjacent system, respectively. The total water ex-
change time (1) of the system of interest was esti-
mated from the ratio of Vg5 to (Vg + Vx), where Vs is
the volume of the system. In Eq. (3), Cq, Cp, Cg, Cw,
Cr, and Cx are the average concentrations of nutri-
ents in the river discharge, the precipitation, ground-
water, wastewater, the residual flow, and the mixing
flow, respectively. Cy and Cx equate to (C; + G;)/2
and (C; — (), respectively. C; and C, are the average
concentrations of nutrients in the system of interest
and the adjacent system, respectively. Outflux and
influx are the total nutrient flux out of and into the
system of interest, respectively. A negative or posi-
tive sign for AY indicates that the system of interest
was a sink or a source, respectively.

RESULTS
Hydrographical chacteristics
The surface water temperature (Table 1) reflected

the seasonality of this temperate system. The surface
water temperature decreased from the mouth to the

Table 1. Seasonal variations in temperature, salinity, and suspended particulate matter (SPM) in Sanggou Bay, China, during
the study. Mean values are given in parentheses

Season Temperature (°C) Salinity SPM (mg 171

Surface Bottom Surface Bottom Surface Bottom
Spring 6.00-9.60 (7.60) 6.10-9.90 (7.80) 30.2-31.3 (30.8) 30.1-31.4 (30.7) 3.91-31.9 (13.6) 3.59-40.5 (14.9)
Summer 13.3-25.9 (20.0)  13.5-20.6 (17.0) 28.2-30.8 (30.0) 30.2-30.7 (30.4) 3.78-26.4 (13.9) 5.61-92.0 (37.6)
Autumn 17.7-25.0 (20.1)  16.6-23.3 (19.3) 29.1-30.0 (29.6) 29.3-29.9 (29.5) 5.75-29.3 (15.5) 11.9-67.8 (27.4)
Winter 1.80-5.70 (3.50)  0.90-5.30 (3.15) 29.2-30.6 (30.0) 29.2-30.4 (29.9) 2.27-54.0 (15.8) 3.04-54.7 (13.5)




290 Aquacult Environ Interact 8: 285-309, 2016

west of the bay in spring and summer, but increased
in this direction in autumn and winter. The horizontal
distribution of temperature in the near-bottom layer
was similar to that in surface water, but the tem-
peratures were generally lower. The salinity of both
surface and bottom water gradually increased from
the west of the bay to mouth, except in winter. The
salinity was lowest in autumn (Table 1).

The SPM concentrations varied considerably among
seasons and cultivation areas, as evidenced by the
large ranges shown in Table 1 and Fig. 3. The aver-
age concentration of SPM showed minor differences
between surface and bottom waters in spring and
winter, but was significantly less in surface water
than in the bottom layer in both summer and autumn
between different cultivation areas, especially those
involving oyster and scallop monoculture (Fig. 3). A
1-way ANOVA indicated very significant differences
in SPM concentration in bottom water of the bay in
different seasons (p < 0.05). The subsequent post hoc
Tamhane's T2 test showed that the concentrations of
SPM in bottom water in summer and autumn differed
significantly from those in spring and winter. In addi-
tion, a 1-way ANOVA indicated highly significant
differences between different cultivation areas (p <
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0.05). The subsequent post hoc Tamhane's T2 test
showed that the values of SPM in both bottom and
surface waters in the fish, oyster, and scallop cultiva-
tion areas differed significantly from those in the
kelp, offshore, and bivalve and kelp areas.

Nutrients in rivers

Nutrient concentrations in rivers adjacent to SGB
varied greatly during the study period (Table 2). The
rivers were generally enriched with DIN relative to
PO,3" (Table 2). The DIN was dominated by NO3",
which accounted for 73 to 98 % of DIN among all sea-
sons. The NO,™ concentrations in rivers were gen-
erally >2 pM except Bahe river (0.14-1.13 pM;
Table 2). The PO,*" concentration ranged from 0.08
to 6.02 pM in the rivers, with an annual average of
1.45 nM. Seasonal variation of PO, in the Bahe river
was similar to that in the Guhe river, and the PO,*"
concentrations in the Bahe and Guhe rivers were
lower than in the Shilihe and Sanggouhe rivers
(Table 2). The DSi concentrations were high in our
study rivers (average 182 pM; Table 2), indicating a
high weathering rate associated with rivers adjacent
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Fig. 3. Suspended particulate matter (SPM) concentrations (mg 1~}; mean + SD) in various cultivation areas in different seasons
during the study periods
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Table 2. Nutrient concentrations (1M) and molar ratios in

surface water in rivers adjacent to Sanggou Bay, China, in

different seasons during the study. DSi: dissolved silicate.
Dates are given as year-month

River =~ NH,* NO,» NO,~ PO, DSi NP SiN

Bahe

2012-06 2.53 0.15 0.48 0.17 29.0 18 9.0
2012-09 0.65 0.04 025 0.17 164 55 176
2013-04 291 0.32 289 223 479 14 0.4
2013-07 0.65 1.13 88.6 0.32 90.4 21 1.0
2013-10 141 0.15 10.5 056 246 21 20
2014-01 1.68 0.12 18,5 1.78 142 11 7.0

Guhe

2012-06 36.3 175 309 0.19 723 1905 0.2
2012-09 9.86 104 530 0.08 102 7157 0.2
2013-04 225 5.18 288 1.80 556 175 0.2
2013-07 2.56 760 590 0.16 208 122 0.3
2013-10 126 6.40 240 - 143 - 0.6
2014-01 571 3.05 455 050 130 927 0.3
Shilihe

2012-06 103 4.38 283 323 364 121 09
2012-09 178 6.70 600 0.22 282 2821 0.5
2013-04 93.0 170 503 289 243 212 04
2013-07 30.3 10.2 199 3.60 199 63 0.3

Sanggouhe

2012-06 154 226 169 0.12 172 1505 09
2012-09 4.00 175 508 2.60 182 204 0.3
2013-04 8.23 102 351 144 166 256 0.5
2013-07 25.0 16.6 382 6.02 382 106 04
2013-10 2.73 4.40 362 - 318 - 0.9
2014-01 725 565 569 200 236 291 04
Yatouhe

2013-10 4.68 3.20 420 - 189 - -
2014-01 6.50 4.36 687 036 211 - -

to the SGB. Except for Bahe river, the DIN:PO,3-
molar ratios in the rivers were significantly higher
than the Redfield ratio (Table 2), indicating that
phytoplankton might be limited by phosphorus
despite high NO;~ values, especially in summer in
the Bahe and Gubhe rivers. The high concentrations
of DIN led to DSi:DIN ratios that were less than or
approached a value of 1.

Spatial and temporal variations of nutrients in SGB

The concentrations of dissolved inorganic nutrients
decreased gradually from offshore to the inner part
of SGB in spring (April 2013; Fig. 4a), while the DON
and DOP concentrations showed the opposite hori-
zontal distribution (Fig. 4a). The concentrations of
NO;3;™ accounted for 53-92 % and 56—89 % of the DIN
in surface and near-bottom layers, respectively. DON
contributed 27-46 % of TDN in surface water outside
the bay, where kelp monoculture occurs, and ac-

counted for 46-87 % of TDN inside of the bay. DON
represented 40-84% of TDN in the near-bottom
layer. For phosphorus compounds, PO,*~ and DOP
accounted for approximately 66 and 34 % of TDP in
the bay, respectively. The molar ratios of DIN:PO,*"
ranged from 7.8 to 31 (average 19 + 7.9 SD) in surface
water, and from 9.4 to 69 in the near-bottom layer,
respectively. The average DSi:DIN ratio was higher
than the Redfield ratio in both surface (1.3 + 0.8) and
bottom (1.2 + 0.6) waters. Studies of nutrient uptake
kinetics have shown that the threshold values for
phytoplankton growth are 1.0 pM DIN and 0.1 pM
PO,*" (Justi et al. 1995). In the western part of the
bay, DIP concentrations were lower than the thresh-
old values for phytoplankton growth (Fig. 4a). This
suggests that phosphorus may be the most limiting
element for phytoplankton growth in the following
season.

During June 2012 (Fig. 4b), the levels of dissolved
inorganic nutrients were lower than those in spring
(Fig. 4a). The NO3~, NO,~, and NH,* concentrations
decreased gradually from offshore to the inner part of
the bay, while PO,*~ and DSi concentrations showed
the opposite horizontal distribution. With respect to
nitrogen compounds, NO3;~ comprised 24-78 % of DIN
in surface water and 34-72 % in bottom water. Sur-
face water was depleted in PO,*" (0.03-0.17 puM),
which led to the DIN:PO,*" ratios being significantly
higher than the Redfield ratio. The DIN:DSi molar
ratios ranged from 0.4 to 3.2 (average 1.6 + 0.7). In
July 2013, nutrient concentrations increased signifi-
cantly from the mouth of the bay to the inner part
(Fig. 4c), and were higher in the near-bottom layer
than in surface water. The DIN was dominated by
NH,*, which contributed 32-89% (mean 62 %) and
32-69 % (mean 52%) to DIN in surface water and
the near-bottom layer, respectively. DON comprised
57-88 % of the TDN in the entire bay, and DOP ac-
counted for 34-75% and 46-81 % of the TDP in sur-
face water and the near-bottom layer, respectively.
The molar ratios of DIN:PO,3~ were higher than the
Redfield ratio in surface water, and the DSi:DIN ratios
were higher than or comparable to the Redfield ratio.
The PO,* concentrations in surface water at 70 % of
the stations in June 2012 (Fig. 4b), and in the south-
eastern part of the bay in July 2013 (Fig. 4c), were
lower than the threshold values. This suggested that
phytoplankton growth might be limited by P in sum-
mer. In the western part of the bay (the main area for
bivalve culture) the DIN concentrations were lower
than or comparable to the threshold values, suggest-
ing that N might be potentially limiting for phyto-
plankton growth in this part of the bay.
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During the September—October 2012 study period,
NO;™ and NH,* concentrations decreased from south
to north in the bay; NO,~, DSi, and DOP increased
gradually from west to east, and the PO,*" concentra-
tion increased from northeast to southwest (Fig. 4d).
Throughout the entire bay, NO3;~ comprised 52-86 %
of DIN, and NH,* comprised 6-38%. In October
2013, the NO3;~, NO,~, DON, DIP, and DSi concentra-
tions decreased from the mouth to the southwestern
part of the bay (Fig. 4e). Throughout the entire bay,
NOj;™ accounted for 55-84 % of DIN. DON comprised

27-48% of TDN inside the bay, and 51-61% in the
kelp monoculture area. DOP contributed to 12-36 %
and 16-50 % of TDP in surface water and the bottom
layer, respectively. In autumn in both 2012 and 2013,
the average DIN:PO,* ratios were higher than the
Redfield ratio, while the DSi:DIN ratios in the water
column were comparable to the Redfield ratio.

In winter, the horizontal distribution of nutrients
was similar to that in spring (except for the NO,™ and
NH,* concentrations), with higher concentrations in
the near-bottom layer than in surface water (Fig. 4f).
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In the entire bay, NO3;™ accounted for 66-92% of
DIN. DON was the dominant species of TDN, which
represented 53-81% of TDN in the water column,
and DOP represented 35-67% of TDP. The molar
ratios of DIN:PO,3~ ranged from 20 to 62 and 17 to 46
in surface and bottom waters, respectively. The aver-
age DSi:DIN ratio in surface and bottom waters was
comparable and significantly lower than the Redfield
ratio. The results suggest that phosphorus may be a
limiting element for phytoplankton growth in winter.

Seasonality in nutrient concentrations was evident
in SGB (Figs. 4 & 5). At all sites, the NO;~, PO,*", and
DSi concentrations were significantly higher in
autumn than in the other seasons. The average NO3~
concentrations in surface (9.44 + 4.00 ptM) and bot-
tom (9.72 = 4.48 pM) waters in autumn exceeded
those in summer by factors of 7.4 and 5.3, respectively.
DIN was dominated by NO;~, except in summer. The
DON concentrations in winter (16.0 + 1.67 pM) were
comparable to those in summer, and were signifi-
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cantly higher than the concentrations in spring and
autumn (Fig. 4). TDN was dominated by DON
(59-82 %), except in autumn (approximately 40 %).
Two-way ANOVA indicated highly significant differ-
ences in nutrient concentrations among seasons and
layers (p < 0.01). The subsequent post hoc Tukey's
HSD test showed that the nutrient concentrations in
autumn differed significantly from those in other sea-
sons (p < 0.01). Two-way ANOVA also indicated
highly significant differences in nutrient concentra-
tions among seasons and cultivation areas (Fig. 6; p <
0.01), suggesting that aquaculture activities signifi-
cantly affect the nutrient composition in SGB.

Nutrients at the anchor stations

In April 2013, all nutrients changed during the tidal
cycle at Stn D1 (Fig. 7a). The maximum concentra-
tions usually occurred during high tide, indicating
the outer bay as a nutrient source. The vertical pro-
files for concentrations of all dissolved inorganic
nutrients at Stn D1 showed that the water column
was well mixed (Fig. 7a). High concentrations of
DON (9.01-13.8 pM) were found throughout the
water column, and comprised up to 50 % of TDN. The
DIN:PO4*" ratio ranged from 23 to 74 in surface water
and from 30 to 132 in near-bottom water, and the
DSi:DIN ratio ranged from 0.5 to 0.8 in surface water
and from 0.4 to 0.9 in near-bottom water. At Stn D2,
the nutrient concentrations were higher in near-
bottom waters than in surface water, the excep-
tion being NH,* and DOP (Fig. 7a). The DON (8.26—

10.5 uM) comprised 66—87 % of TDN. The concentra-
tions of DOP (0.08-0.35 pM) represented 25-73 % of
TDP, and indicated a well-mixed profile. The
DIN:PO,%" ratio increased from 8.0-20 in surface
water to 11-37 in near-bottom water, while the
DSi:DIN ratio decreased from 1.6-3.2 in surface
water to 1.0-1.5 in near-bottom water. The nutrient
concentrations at Stn D1 were higher than at D2.

Analysis of the concentrations of all nutrients dur-
ing 18-19 October 2013 showed that the water col-
umn at Stn D1 was well mixed (Fig. 7b). No parame-
ter showed significant differences between day and
night, indicating that tidal mixing was the main fac-
tor affecting concentration changes. The concentra-
tions of DON were 5.38-10.5 pM, which comprised
26-83% of TDN. The DOP concentrations were
0.05-0.34 pM, which represented 8-39% of TDP.
The DIN:PO,*" ratio was 23-36 (average 27) in sur-
face water, and 22-51 (average 28) in bottom water.
The DSi:DIN ratio was 0.7-1.0 (average 0.9) in sur-
face water and 0.5-1.0 (average 0.8) in bottom water.
At Stn D2, the concentrations of all nutrients in sur-
face water showed a general decrease with increas-
ing tide height. The DIN:PO4*~ and DSi:DIN ratios in
surface water ranged from 22 to 32 and 0.8 to 1.0,
respectively. The nutrient concentrations at Stn D1
were lower than at D2.

Water and nutrient budgets in SGB

Domestic wastewater is discharged directly into
rivers adjacent to SGB, and so in developing a water
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budget for the bay, sewage discharge
was included in river discharges. The
Gubhe is the largest major river that di-
rectly empties into SGB. In developing
the water budget (Fig. 8), we used the
average discharge (Vq) of the Guhe dur-
ing 2011. The submarine groundwater
discharge (SGD) was estimated based
on submarine groundwater measure-
ments made in June 2012. The ground-
water discharge into SGB was calculated
to be (2.59-3.07) x 10’ m® d7', based on
the naturally occurring 2*Ra isotope
(Wang et al. 2014). Generally, recircu-
lated seawater accounts for 75 to 90 % of
total SGD (Moore 1996). Based on Ra
isotopes, Beck et al. (2008) reported that
recirculated seawater could account for
approximately 90% of total SGD, and
could increase as a consequence of pre-
cipitation (Guo et al. 2008). In our study,
groundwater samples were collected
during a summer in which substantial
rainfall occurred. Based on the assump-
tion that recirculated seawater could ac-
count for 90 % of total SGD in SGB, the
SGD was estimated to be (2.59-3.07) x
10° m® d~!. As the volume (Vi) of SGB is
10.8 x 108 m?, the total water exchange
time (1) for SGB, estimated from the
ratio Vs/(Vr + V), was 22.4 d.

Scallop (Chlamys farreri) and oyster
(Crassostrea gigas) are the main shellfish
cultured in SGB. Aquaculture waste-
water effluents are discharged directly
into the bay. The minimum individual
wet weight of oysters and scallops at har-
vest are 40 and 23 g (Nunes et al. 2003),
respectively, and 60000 t of oyster (wet
weight) and 15000 t of scallop are har-
vested annually from the bay (data from
Rongcheng Fishery Technology Exten-
sion Station). Based on these data, we es-
timated that bivalve cultivation involved
approximately 2.15 x 10° individuals
during 2012. Based on excretion rates
determined for bivalves and oysters in
Sishili Bay (China) (Zhou et al. 2002a),
the quantities of DIN and phosphate
excreted by scallops were 3.84 and
0.21 umol h~!ind. ", respectively, and by
oysters were 3.57 and 0.25 pmol h!
ind.”!, respectively. The bivalve growth
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Fig. 7 (continued)

periods were mainly from May in one year
to November in the following year (ap-
proximately 500 d). Hence, the total DIN
and phosphate excreted by scallops and
oysters in SGB amounted to 70.9 x 10% and
4.19 x 10°mol yr !, respectively. Nutrients
are removed from the bay as a conse-
quence of bivalve harvest. The dry weight
nitrogen content of the soft tissue and shell
of C. gigasis 8.19 and 0.12% (Zhou et al.
2002b), respectively, while the phosphorus
contentis 0.379 and 62.1 x 10™* % (Zhou et
al. 2002b), respectively. The dry weight
nitrogen and phosphorus content of the
soft tissue of C. farreriis 12.36 and 0.839 %
(Zhou et al. 2002b), respectively, and in the
shellis 0.09 and 62.1 x 107 %, respectively.
Therefore, in total the harvest of C. farreri
and C. gigasremoves 304 t of nitrogen and
16.7 t of phosphorus from the bay.
Saccharina japonica and Gracilaria le-
maneiformis are the main algae cultivated
in SGB. The weight of individual kelp
plants at seeding is 1.2 g, and the culti-
vation area and density are 3331 ha and
12 ind. m2, respectively (Nunes et al.
2003). The dry weight:wet weight ratio of
kelp is 1:10 (Tang et al. 2013). Hence, the
dry weight of kelp at seeding is 48 t, while
87040 t of dried kelp are produced annu-
ally in the bay (data from Rongcheng Fish-
ery Technology Extension Station). The
dry weight nitrogen and phosphorus con-
tent of kelp is 1.63 and 0.38 % (Zhou et al.
2002b), respectively. Hence, 1419 t of ni-
trogen and 331 t of phosphorus are re-
moved from the bay as a consequence of
kelp harvest. Similarly, 25410 t wet weight
of G. lemaneiformisare produced annually
in the bay (data from Rongcheng Fishery
Technology Extension Station). Therefore,
41.4 t of nitrogen and 9.66 t of phosphorus
are removed from the bay as a conse-
quence of G. lemaneiformisharvesting.
The nutrient transport fluxes from rivers
and groundwater into SGB were deter-
mined from surveys undertaken during
the period 2012 to 2014. The nutrient
concentrations in rainwater were based
on measurements at Qianliyan Island, in
the western Yellow Sea (Han et al. 2013).
Benthic fluxes in SGB were based on sur-
veys undertaken during the same period
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Fig. 8. Water and salt budgets for Sanggou Bay (SGB).
Units: water volume, 107 m®; water and salt fluxes, 107 m?
and 107 psu m® mo™, respectively. Vo, Vp, Vg, Vo Vs, Vi,
and Vx are the mean flow rate of river water, precipitation,
evaporation, groundwater, the volume of the system of
interest, the residual flow, and the mixing flow between the
system of interest and the adjacent system, respectively. For
comparison, salinity of the adjacent system = 32.23

(Ning et al. 2016, this Theme Section). For the nutri-
ent budget, estimates of DSi removed through kelp
and bivalve harvesting were not included, as no data
were available.

The nutrient budgets showed that SGB behaved
as a source of PO,% and as a sink of DSi and DIN
(Table 3). The model results indicated that PO,*~ was
mainly derived from bivalve excretion, which ac-
counted for 65% of total influx, while benthic flux
contributed 16% of total influx. Bivalve excretion
may be an important source of PO,*~ when phyto-
plankton growth is phophorus-limited in the bay.
The DSi load in the bay was mainly from river input
and benthic flux, which contributed 47 and 34 % of
total influx (Table 3), respectively. Groundwater was
the major source of DIN entering SGB, accounting for

41 % of total influx. In addition, bivalve excretion ac-
counted for 19% of total DIN influx. DIN and PO,*"
were mainly removed through kelp harvesting, which
represented up to 64 and 81 % of total outflux, re-
spectively. The results show that aquaculture activi-
ties play an important role in nutrient cycling in SGB.

DISCUSSION
Nutrient transport in rivers

Nutrient levels in rivers varied widely (Table 2).
The DIN concentrations in the rivers fell between
those for polluted waters (110 pM) and severely pol-
luted waters (350 pm) (Smith et al. 2003), except for
the Bahe river. The DIN concentrations in the studied
rivers were also higher than in most other small to
medium-sized rivers in temperate China (Liu et al.
2009), and high relative to major Chinese rivers
including the Yellow, Yangtze, and Pearl rivers (Liu
et al. 2009). The extremely high DIN concentrations
resulted in the high DIN:PO,3" ratios in these rivers.

The DIN loading to streams is directly related to
the extent of agriculture in the catchment (Heggie &
Savage 2009). The high NO3~ concentrations, which
dominated the DIN in rivers, is primarily attributable
to anthropogenic nutrient sources, particularly to
washout of fertilizers not used by target plants (Bellos
et al. 2004). Rivers in the study area flow through vil-
lages and Rongcheng City, then discharge directly
into SGB. Untreated industrial and domestic sewage
is also discharged directly into rivers. The drainage

Table 3. Nutrient budgets for Sanggou Bay, China. VxCy: residual nutrient transport out of the system of interest (Eq. 1); VxCx:

mixing exchange flux of nutrients (Eq. 2); influx (outflux): total nutrient flux into (out of) the system of interest. A (=Zoutﬂux -

Zinﬂux) is the non-conservative flux of nutrients. Negative and positive signs of A indicate that the system is a sink or a source,
respectively. DIP (DIN): dissolved inorganic phosphorus (nitrogen), DSi: dissolved silicate (units: 10% mol)

DIP DSi DIN Reference
River input (Vo Cq) 0.29 22.4 83.2 Present study
Atmospheric deposition (VpCp) 0.41 0.87 14.6 Han et al. (2003)
Groundwater discharge (V5Cg) 0.55 8.27 155 Wang et al. (2014)
Benthic fluxes 1.05 16.3 57.8 Ning et al. (2016)
Bivalve excretion 4.19 70.9 Zhou et al. (2002a,b)
Influx 6.49 47.8 382
Kelp harvest -10.7 -101 Zhou et al. (2002a,b)
Gracilaria lemaneiformis harvest -0.32 -2.96 Zhou et al. (2002a,b)
Bivalve harvest -1.19 -21.7 Zhou et al. (2002a,b), Zhang et al. (2013)
Residual flow (VR Cy) -0.38 -8.26 -7.31 Present study
Mixing exchange (VxCx) -0.65 -16.1 -26.2 Present study
Outflux 13.2 24.4 159
AY (=Y outflux - Y influx) 6.71 -23.4 223
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areas of the Yatouhe, Sanggouhe, and Shilihe rivers
are small (<30 km? and are therefore readily
affected by human activities. We conclude that the
high NOj™ concentrations in rivers are derived from
agriculture, urban, and industrial wastewater in their
drainage basins, as well as surface runoff from
Rongcheng City.

The concentrations of PO,%" in the Bahe and Guhe
rivers were between those for pristine (0.5 ptM) and
clean (1.4 uM) water, and apparently lower than in
the Shilihe and Sanggouhe rivers (Table 2). The high
PO,% concentration (up to 6.02 pM) in the Sang-
gouhe, and industrial and domestic sewage, might be
the most important sources of PO,*" to water bodies.
DSi is little affected by human activities (Jennerjahn
et al. 2009) and mainly originates from natural
sources. The high DSilevels in rivers adjacent to SGB
may be related to the underlying rock types and
weathering rates.

Rain events can result in nutrient inputs derived
from hinterland areas. Approximately 73.3% of an-
nual precipitation occurs during summer (June to
September), and the annual rainfall in Rongcheng
City is 819.6 mm. River discharges can be enhanced
by rainfall, and weathering rates are affected by
precipitation and temperature (Liu et al. 2011),
which can lead to higher nutrient values during the
wet seasons. High nutrient concentrations (espe-
cially dissolved silicate) but low salinities were found
in the bay (Fig. 4), suggesting that rainfall might
be an important factor affecting nutrient supply to
SGB in summer.

Nutrient fluxes from the bay to the Yellow Sea

In this study, nutrient budgets were developed to
provide an overview of nutrient cycles under the
impact of aquaculture activities. Despite some uncer-
tainties, the nutrient budgets indicated that large
quantities of nitrogen and silicate would probably be
buried in the sediment or transformed into other
forms in the bay (Table 3). Seaweeds can absorb
large amounts of nutrients from the water column,
resulting in the removal of these nutrients from the
system when the plants are harvested (Schneider et
al. 2005). The budgets indicated that a large propor-
tion of DIN and DIP were removed during seaweed
and bivalve harvesting (Table 3), demonstrating that
aquaculture activities are a significant sink for nutri-
ents in the bay.

Based on the budgets, nutrient fluxes from SGB
to the Yellow Sea were estimated as the sum of the

net residual flux (VRCr) and mixing flux (VxCx)
(Table 3). With the exception of DIN, nutrient fluxes
to the Yellow Sea were 1.1 to 3.6 times the riverine
input (Fpoedel = VCq), indicating that nutrient cycling
in the bay (including regeneration, aquaculture
effluents) may magnify the riverine fluxes, especially
bivalve excretion, which contributed to 65% of the
total DIP influx. Additionally, the molar ratios of
DIN:PO,*" and DSi:DIN were approximately 49 and
0.2 in all external nutrient inputs to the studied sys-
tem, respectively, while the corresponding flux ratios
in the output waters to the Yellow Sea were approxi-
mately 35 and 0.7. These ratios deviated significantly
from the Redfield ratio, indicating that aquaculture
activities have significantly influenced nutrient cycling
in the bay.

Wang et al. (2014) estimated that approximately
4,76 x 107 mol mo~! of DIN and 5.58 x 10° mol mo~! of
PO,%" are input from fertilizer and feed, based on pro-
tein data of shellfish and kelp in the bay during sum-
mer being used to construct a mass balance. Based on
their data, fertilizer and feed would be the major
source of nutrients in the bay. By visiting local
farming households, we confirmed that fertilizers
were used; however, fertilizer and feed are only used
in fish farming during summer in SGB, thus the
amounts might be far below the estimated values. If
fertilizer and feed for fish farming were taken into ac-
count, the uncertainty might rise. Hence, nutrient in-
put from feed was ignored in the box model. Further-
more, aquaculture effluents were not taken into
account. Consequently, more studies on nutrient cy-
cling in relation to aquaculture activities in SGB are
needed to improve our understanding of the nutrient
sink or source function of the bay.

Effects of aquaculture activities on nutrient
biogeochemical cycles

The nutrient concentrations varied significantly
among seasons in SGB. The dissolved inorganic nu-
trient levels in SGB in summer were quite low com-
pared with other seasons; they increased from sum-
mer to autumn and reached the highest values in
October (Figs. 4 & 5), indicating a shift from consump-
tion to autumn accumulation. These seasonal varia-
tions corresponded with aquaculture activities in the
bay, and this was confirmed by statistical analysis.
Zhang et al. (2012) reported that nutrient biogeo-
chemical processes and cycles were significantly af-
fected by intensive kelp and bivalve aquaculture ac-
tivities in SGB. Shi et al. (2011a) also reported that
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Saccharina japonica assimilates substantial nutrients
in spring. During the growth period of kelp from No-
vember to May, the NO;~ and PO,*" concentrations
decreased rapidly because of assimilation by kelp
(Fig. 6). Nitrogen removed through kelp harvesting
accounted for 64 % of total outflux (Table 3). Kelp was
a net sink for nutrients during winter and spring, and
competed with phytoplankton for nutrient utilization
during kelp seeding; as a consequence, phytoplank-
ton growth was restrained. Following the kelp
harvest in late May, phytoplankton could grow fast
because of adequate solar radiation and temperature.
As a result, the dissolved inorganic nutrient concen-
trations continued to decrease (Figs. 4-6).

Shellfish aquaculture generally commences in
May, during the period when kelp is harvested.
Bivalves in turn become another source of nutrients
through excretion. During early summer, the bi-
valves are in the early growth stage, and produce
only low levels of nutrients. The dissolved nutrients
released through bivalve excretion have the poten-
tial to stimulate phytoplankton production at local
scales and promote the risk of harmful algal blooms
(Pietros & Rice 2003, Buschmann et al. 2008). The
highest concentrations of chlorophyll a have been
reported in summer (Hao et al. 2012). The dissolved
nutrients in aquaculture effluents, coupled with high
solar radiation, result in high phytoplankton pro-
duction in summer (Shpigel 2005). At this time, Gra-
cilaria lemaneiformis replaces kelp, and is cultivated
from June to October in SGB; because it can use
available nitrogen efficiently (Buschmann et al. 2008),
it absorbs nutrients from seawater and probably
reduces the nutrient levels in summer. This probably
leads to the nutrient levels dropping rapidly to the
lowest level in summer (Fig. 6).

In September, the bivalves are in active growth
stages and generate large quantities of metabolic
byproducts. The maximum metabolic rates for oysters
are recorded in July and August (Mao et al. 2006),
and lead to high nutrient concentrations in seawater
(Fig. 5). Bivalves filter phytoplankton larger than 3
pm in size, thereby reducing their biomass in the wa-
ter column (Newell, 2004). Phytoplankton growth is
also limited by the level of solar radiation (Shi et al.
2011b). Thus, as nutrient utilization by phytoplankton
decreased, the dissolved inorganic nutrient concen-
trations increased as a result, and increased to a
greater extent in regions where bivalve monoculture
occurred. Based on the nutrient budget in our study,
phosphorus released from bivalve excretion could ac-
count for 65% of total influx to SGB. Hence, from
June to October, prior to kelp seeding, bivalves and

fish excretion may constitute an important nutrient
source in SGB, leading to increased nutrient levels.
Particulate waste material (feces or pseudofeces)
from bivalves and phytoplankton are consumed by
bivalves, and the nutrients involved may be removed
through bivalve harvesting (Shpigel 2005, Troell et
al. 2009). As top-down grazers, bivalves filter phyto-
plankton, which results in a reduction in the nutrient
turnover time and speeds up nutrient cycling.
Nutrients can be produced indirectly via reminer-
alization and subsequent release from enriched sedi-
ments (Forrest et al. 2009). Nutrient release from sed-
iment is also a common phenomenon occurring
beneath bivalve farms in SGB (Cai et al. 2004, Sun et
al. 2010). The nutrient budgets also show that ben-
thic flux is another important source of nutrients in
SGB, especially for DIP and DSi (Table 3), and that
this is significantly affected by aquaculture activities
in the bay (Ning et al. 2016). Based on studies of
other bivalve culture systems and natural or restored
oyster reefs, it is evident that benthic fluxes are
determined by processes involving filter feeding and
excretion of dissolved nutrients, as well as biodeposi-
tion and sediment remineralization of nutrients
(Newell 2004, Forrest et al. 2009). The TDN in SGB
was dominated by DON in both summer and winter
(Figs. 4 & 5), as observed in landbased aquaculture
(Jackson et al. 2003, Herbeck et al. 2013). Burford &
Williams (2001) reported that most of the dissolved
nitrogen leaching from feed and shrimp feces was in
organic rather than in inorganic forms. Hence, DON
leaching from feces or pseudofeces might be an
important source of DON in the bivalve cultivation
regions in SGB (Fig. 6). Furthermore, increased sedi-
mentation of organic matter from feces and pseudo-
feces underneath mussel farms can have significant
ecosystem effects on the biogeochemical cycles of
nitrogen and phosphorus (Stadmark & Conley 2011).
Biogeochemical cycling of DSi can be affected by
diatom dissolution, sediment resuspension, and ter-
rigenous input. In our study, the average concentra-
tions of DSi increased by 9.0 ptM from July to Octo-
ber, and decreased rapidly from 14.2 to 4.76 pM in
January. Phytoplankton abundance was tightly con-
trolled by filter feeding of oysters (Hyun et al. 2013),
so the high metabolic rates of oysters may result in a
reduction of diatom biomass, leading to high levels of
DSiin autumn. In addition, as the water depth in SGB
is £20 m, sediment resuspension and diatom dissolu-
tion might be important sources of DSi during the
summer to autumn period. The dissolution of diatom
frustules depends on a variety of factors, including
microbial activity (Olli et al. 2008). Bacteria can
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attack the organic matrix protecting the diatom frus-
tule, exposing biogenic silica, and substantially in-
crease the dissolution rate (Bidle & Azam 1999). The
maximum biomass in SGB occurred in autumn (Chen
2001), and diatoms dominated in the bay in summer.
Consequently, dissolution of diatom frustules may be
an important source of DSi in the bay.

Although the aquaculture area and quantities of
effluents released in SGB were high (Table 3), nutri-
ent levels in the bay were not significantly elevated
compared with other bays used for aquaculture,
including Jiaozhou Bay (Liu et al. 2007) and Sishili
Bay (Zhou et al. 2002b). This is attributed to the fact
that nutrients released from shellfish are taken up by
seaweeds during their growth periods. Large-scale
kelp cultivation plays an important role in keeping
nutrients at low levels and maintaining relatively
good water quality.

Eifects of physical factors on nutrient changes

The marine IMTA culture system used in SGB is
suspended aquaculture. Water exchange between
SGB and the Yellow Sea could be hindered by kelp
(S. japonica), especially during kelp harvesting
(Zeng et al. 2015). Our depth study showed that
nutrien changes over the tidal cycle generally closely
followed changes in water depth at Stn D2 (Fig. 7),
indicating that water exchange is greater at Stn D1
(in the northern mouth of SGB), and weaker at
Stn D2. Furthermore, in April 2013, the nutrients
were well mixed at Stn D1, while at Stn D2, the nutri-
ent concentrations were higher in bottom water than
in the surface water (Fig. 7). This indicates that the
current was affected by the aquaculture facilities and
kelp at Stn D2, which may have led to higher nutrient
concentrations in the bottom water than in the sur-
face water. These results are consistent with the in
situ measurements of Zeng et al. (2015), which
showed that the vertical tidal flux at the northern
entrance of SGB was much larger than at the south-
ern entrance. In addition, the current structure in
SGB has been significantly changed by the presence
of aquaculture activities (Shi et al. 2011a). The tidal
current in the surface layer is only half that in the
middle layer when kelp is at its maximum length (Shi
etal. 2011a). As a result, particulate matter and nutri-
ents in bottom waters are constrained from entering
the upper water layers because of the influence of
aquaculture facilities and species (Wei et al. 2010).

The current flow generally tends to decrease in
suspended aquaculture areas because of the extra

drag caused by the presence of aquaculture facilities.
In SGB, bivalves and fish are grown in cages, nets, or
other containers hung from floats or rafts. Based on a
3-dimensional physical-biological coupled aquacul-
ture model (Shi et al. 2011a), the average current
flow speed can be reduced by approximately 63 % by
aquaculture facilities and cultured species. More-
over, Grant & Bacher (2001) reported a 20 % reduc-
tion in current speed in the main navigation channel
in SGB, and a 54 % reduction in the middle of the cul-
ture area because of the effects of suspended aqua-
culture. Nutrients are likely to be retained in the bay
because of the weaker current in the bivalve culture
areas. The nutrient budgets showed that bivalve ex-
cretion was an important source of nutrients
(Table 3). Large quantities of nutrients could accu-
mulate in the west of the bay, and red tides have
occurred in SGB in recent years (Zhang et al. 2012).
The effects of consequent shading and competition
pressure from the increased algae biomass on the
valuable habitats involved may negatively affect the
seagrass meadows in the southwest of the bay, and
the production of bivalves may be reduced. To con-
serve the natural services provided by the bay, aqua-
culture effluents should be treated before they are
released into natural water bodies.

Water exchange can also cause differences in
nutrient species inside and outside SGB. Wei et al.
(2010) observed that the flow speed declined by
approximately 70% from the mouth to the south-
western part of the bay, and the outflow was slowed
by the increased aquaculture activities and infra-
structure (Fan & Wei 2010). Thus, movement of nutri-
ents from the southwest of the bay to the open sea
may be impeded, which was suggested by the high
concentrations of nutrients found in this part of the
bay in summer and autumn (Fig. 4).

Long-term trends of nutrients in SGB

Fig. 9 shows compiled data for DIN, DSi, and PO,*-
in SGB, based on historical data and our observations
(Song et al. 1996, P. Sun et al. 2007, S. Sun et al. 2010,
Zhang et al. 2010, 2012, this study), reflecting the
long-term variations for the period 1983 to 2014. No
trends in the PO,*" concentrations were evident
because of the high variability in this parameter (Fig.
9). In contrast, the DIN concentrations increased over
time and were significantly higher in 2003 to 2011
than in previous years (Fig. 9). Prior to the 1980s,
kelp was the main aquaculture species, and the DIN
concentration was low in the bay (Fang et al. 19964,
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Fig. 9. Long-term changes in (a) the concentrations of dissolved inor-
ganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dis-
solved silicate (DSi) concentrations, and (b) the DIN:PO,*~ and DSi:DIN

ratios for the period 1983 to 2013

Ning et al. 2016). Polyculture was introduced into the
bay for economic reasons (Fang et al. 1996a), and its
rapid development may have been responsible for
increasing levels of nutrients in the bay, and resulted
in long-term alterations to the nutrient conditions
(Shietal. 2011a, Zhang et al. 2012). In SGB, nutrient-
rich aquaculture effluents are released into the natu-
ral water body without prior treatment. The high con-
centrations of nitrogen in aquaculture effluents
mainly originate from excess feed or from excretion
from the farmed animals (Burford & Williams 2001).

As a result of the increased nitrogen levels, the
DIN:DIP ratios in SGB shifted from severe nitrogen
limitation in 1983 to the ecologically desirable Red-
field ratio (16) in summer 1994, and continued to in-
crease until summer 2006, when the DIN:PO,®" ratio
reached 105; phytoplankton growth is now limited by
phosphorus in summer. The increase in the DIN:PO,*"
ratios in SGB is a common phenomenon observed
in long-term studies of estuarine and coastal areas
affected by human activities, and also in semi-closed

1983 1984 1994 2003 2004 2006 2007 2011 2012 2013

observed in April 2011 (Zhang et al. 2012),
and were apparent in small areas in 2013. In
addition, an increase in the DIN concentra-
tion will lower the DSi:DIN ratio, and could
change ecosystem structure of the bay
(Billen & Garnier 2007).

Because of its combination of environ-
mental, economic, and social benefits (All-
sopp et al. 2008, Nobre et al. 2010), IMTA
has been gaining recognition as a sustain-
able approach to aquaculture, and the water
quality in SGB has remained in good condi-
tion compared with other bays affected by
aquaculture activities. Environmental man-
agement strategies will need to include both
reduction of nutrient pollution and monitor-
ing of the relative abundance of nutrients.
The ecological and economic health of SGB
should be tightly monitored to ensure a
rapid response to critical changes.

20

DSi:DIN

CONCLUSION

We have reported on the nutrient dynamics of SGB,
which represents a typical watershed for IMTA. The
results of our investigation show that aquaculture
activities play an important role in nutrient cycling in
SGB. Nutrients showed considerable seasonal varia-
tion in the bay, and nutrient composition and distri-
bution were also affected by the cultured species
in the bay. The nutrient budgets showed that SGB
behaved as a source of PO,3~ and as a sink of DSi and
DIN. The model results indicated that PO,*~ was
mainly derived from bivalve excretion. Bivalve
excretion may be an important source of PO, when
phytoplankton growth is phosphorus-limited in the
bay. Seaweed and bivalve harvesting play an impor-
tant role in removing DIN and PO,*" from the bay.
Under the combined effects of natural processes and
aquaculture activities, nutrient biogeochemistry in
the bay has been affected.
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