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INTRODUCTION

Atlantic salmon Salmo salar L. farming is typically
based upon a freshwater-rearing phase involving
egg hatching and smolt production (9 to 15 mo), fol-
lowed by rearing in sea cages until market size (12 to
24 mo). One of the challenges to the further develop-
ment of a sustainable aquaculture industry is escapes
that occur in both the freshwater (Clifford et al.

1998a) and marine stages of production (Lund et al.
1991, Crozier 1993, 2000, Clifford et al. 1998b, Glover
et al. 2008). Escapees represent a potential threat to
wild populations in the form of ecological interac-
tions (Jonsson & Jonsson 2006), disease transmission
(Madhun et al. 2015), spread of parasites (Nylund et
al. 1999, Naylor et al. 2005, Finstad & Bjørn 2011,
Krkošek et al. 2013) and genetic introgression
(Crozier 1993, Skaala et al. 2006, Bourret et al. 2011,
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ABSTRACT: Aquaculture escapees represent a threat to the genetic integrity of native popula-
tions, may spread infectious agents and display ecological interactions with wild fish. DNA-based
identification methods are well established for tracing Atlantic salmon escapees back to their
farms of origin. However, traditional genetic assignment approaches are not always able to single
out the farm of origin in cases where several potential farm sources rear fish from the same genetic
line, and display strongly overlapping allele frequencies. We investigated whether an alternative
statistical approach, which involves ad hoc identification of sibling relationships, circumvents the
challenge of overlapping allele frequencies. We analysed the following samples collected in 2013:
(1) 221 farmed escapees captured in several rivers in the Ryfylke region of Norway, (2) 139 farmed
escapees captured some 150 km away in an upstream fish migration trap in the River Etne, and (3)
779 farmed salmon sampled from 17 cages on 10 farms in Ryfylke. Siblingship tests increased the
precision of identification of escapees back to their farm of origin over genetic assignment and
population statistic approaches. Together with other non-genetic data, siblingship tests were also
able to connect 2 seemingly independent escape events, demonstrating that some of the salmon
escaping from 1 or 2 farms in Ryfylke took approximately 1 mo to migrate 150 km northwards
before entering the River Etne. Finally, we demonstrated that the genetic background of the
escapees captured in the River Etne during the course of an entire season was represented by the
3 major breeding programs in Norway.
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Glover et al. 2012, 2013a). Therefore, the monitoring
of escapees in time and space is of crucial impor-
tance.

In Norway, which is the world’s largest producer of
Atlantic salmon, farmers are legally obliged to report
escapes of farmed fish to the Norwegian Directorate
of Fisheries (NDF). Although tens to hundreds of
thousands of escapees are reported to the NDF annu-
ally, underreporting represents a challenge and the
true numbers of escapees have been estimated to be
2 to 4 times higher, putting these numbers in the mil-
lions in some years (Skilbrei et al. 2015a). Despite
efforts to minimise and monitor escapes, large num-
bers of farmed salmon have been observed in native
spawning populations in Norway for several decades
(Fiske et al. 2006), to the extent that in some rivers,
escaped farmed salmon have accounted for 50% of
the total brood stock across different years (Sægrov
et al. 1997, Fiske et al. 2006). Escapees have also
been observed in rivers located in countries where
salmon farming is not even practiced, thus demon-
strating their potential for long-distance dispersal
(Morris et al. 2008).

Farmed and wild salmon can be differentiated
based upon morphology and scale characteristics
(Lund & Hansen 1991). However, this information
alone does not permit identification of the farms
from which the escapees originated. This presents a
challenge given that salmon can disperse over large
distances after escaping (Hansen 2006, Skilbrei
2010, Skilbrei et al. 2015a). In order to address this
issue, Glover et al. (2008) developed a method
based upon genetic assignment statistics called the
‘DNA stand-by-method’, which permits the identifi-
cation of the farm of origin for salmon escapees.
This method has been under continuous develop-
ment since its successful implementation in 2007
(Glover et al. 2009, 2011b, 2013a, Glover 2010,
Zhang et al. 2013), and it is now commonly applied
in cases of unreported escapes of farmed fish in
Norway. However, it is sometimes not possible to
conclusively differentiate between 2 or more poten-
tial farm sources that rear fish with a similar genetic
background. This specific challenge results from the
commercial production of Atlantic salmon in Nor-
way being largely based upon fish arising from 3
commercial breeding programs; and while each
program typically has several or more breeding
strains, there is occasionally overlap in the genetic
profile (allele frequencies) between salmon reared
in neighbouring farms (e.g. Glover et al. 2011b),
especially if smolts have been purchased from the
same supplier (Glover 2010, his Fig. 2). Non-genetic

supplementary methods, such as fatty acid (Grahl-
Nielsen & Glover 2010) or pathogen profiling
(Glover et al. 2013b, Madhun et al. 2015) have been
successfully used as additional information to assist
the identification of the specific farm of origin when
the genetic background of several nearby farms is
very similar, and also to monitor the escape history
of the fish (Skilbrei et al. 2015b). However, thus far,
other statistical approaches using the available
genetic data to identify farms of origin for escapees,
e.g. siblingship reconstruction methods (Wang & San -
ture 2009), have not been fully evaluated. Hence, it
is possible that a more comprehensive analysis of
the available genetic data may increase the reso -
lution of identification even in challenging cases
where several farms rear fish with varying degrees
of overlapping allele frequencies.

In the summer of 2013, large numbers of presumed
escaped farmed salmon were captured by local
anglers in rivers located in the Ryfylke area, SW Nor-
way (Fig. 1). While farm escapees are commonly
observed in rivers in this region, some of the
escapees entered the rivers early in the season (July),
which is less common, many were silver in coloura-
tion (i.e. probably not sexually mature) and were in
the 1–3 kg category. Based upon experience, these
factors suggested that the fish may have escaped
recently, and, potentially, from a single farm. How-
ever, none of the farming companies operating in the
area that had salmon of similar size reported having
lost fish in this period; therefore, the NDF decided to
implement the DNA stand-by method to identify the
source. This process involved taking samples of
salmon from cages and farms in the region that could
represent the potential origin of the escapees, in
addition to the extensive sampling conducted by
local fishermen in the rivers.

In the following months, a number of escaped
farmed salmon that were very similar in appearance
and size to the escapees recaptured in Ryfylke were
observed some 150 km away, ascending an upstream
migration trap in the River Etne, outer Hardanger-
fjord (Fig. 1). The question was whether these were 2
independent escape events, or whether the fish
escaping from Ryfylke had also dispersed north to
the Hardangerfjord, and thereafter entered the River
Etne. The large number of samples gathered in
 connection with these 2 cases offered a unique
opportunity to: (1) evaluate the potential of sibling-
ship statistical methods to increase the precision of
identification of escapees to farms and (2) investigate
the potential connection between 2 geographically
distinct observations of farm escapees.
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MATERIALS AND METHODS

Samples from the Ryfylke case

A total of 313 fish ranging mostly between 1 and
3 kg (∼50–65 cm long) and suspected of being of farm
origin (based upon the anglers’ preliminary observa-
tions) were captured in 7 rivers located in Ryfylke
(SW Norway, Fig. 1) from 15 July to 23 November
2013. The NDF decided to try and identify the origin
of these putative escapees using the ‘DNA stand-by-
method’ (Glover et al. 2008, Glover 2010) and com-
missioned the Norwegian consultancy company Råd-
givende Biologer AS to read the fish scales in order to
verify these fish as escapees or wild. A total of 221 of
the fish were identified as farm escapees based upon
scale growth characteristics (Lund & Hansen 1991)
and were retained for genetic analyses. Of these con-
firmed escapees, 75% were recaptured in the River
Suldalslågen. To identify the putative source of these

escapees, the NDF sampled salmon from the farms in
the area that had fish overlapping in size with the
escapees. These samples, which included fish from
17 cage samples on 10 farms, are referred to as the
‘baseline samples’ and consisted of ~47 individuals
per cage sample (see Table 1). These farmed salmon
originated from 3 different breeding strains: Aqua-
Gen (cage samples 2B, 6A, 8A, 9A, 9B and 9C), Mowi
(cage samples 1A, 1B, 2A, 2C, 2D, 3A, 4A and 131A)
and SalmoBreed (cage samples 5A, 7A and 8B). The
names of the companies operating the investigated
farms remain anonymous for legal reasons.

Samples from the Etne case

In a similar time frame to the Ryfylke case (14 June
to 24 November 2013), 168 salmon, also thought to be
escapees, were captured in the upstream migration
trap (Resistance Border Weir) located in the River
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Fig. 1. Study area at the SW Norwegian coast. (d) Rivers where the escapees were collected and (j) farms selected for analy-
sis. The size of the red circles is directly proportional to the number of escaped fish caught in the corresponding river. Upper
right insert: upstream fish migration trap (Resistance Border Weir) operating in the River Etne. Pie charts: frequency and num-
ber of escapees assigned per breeding line in each of the escape events (Etne above and Ryfylke below). Breeding lines: (––––)
AquaGen, (––––) Mowi, (––––) SalmoBreed, (––––) ‘Unknown’. (- - - - -) Hypothetical migration routes of the escapees from 

Ryfylke towards the River Etne
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Etne (Fig. 1). After scale inspection, 139 of these fish
were confirmed as farm escapees, and retained for
genetic analyses. In spite of this river being a mini-
mum of ~150 km by sea from the Ryfylke region, the
same baseline samples were used to explore the pos-
sibility of these escapees having their origin in the
aforementioned farms in the Ryfylke area. Post
escape, they could have migrated northwards either
west of Karmøy or through the narrow Karmøysun-
det, turned east into the Hardangerfjord and there-
after entered the River Etne.

Genotyping

DNA extraction was performed in 96-well plates
using the Qiagen DNeasy 96 Blood & Tissue Kit; each
plate contained 2 or more negative controls. A total
of 18 loci were amplified in 3 multiplex reactions
(full genotyping conditions available from authors
upon request): SSsp3016 (GenBank no. AY372820),
SSsp2210, SSspG7, SSsp2201, SSsp1605, SSsp2216
(Paterson et al. 2004), Ssa197, Ssa171, Ssa202
(O’Reilly et al. 1996), SsaD157, SsaD486, SsaD144
(King et al. 2005), Ssa289, Ssa14 (McConnell et al.
1995), SsaF43 (Sánchez et al. 1996), SsaOsl85 (Slet-
tan et al. 1995), MHC I (Grimholt et al. 2002) and
MHC II (Stet et al. 2002). PCR products were ana-
lysed on an ABI 3730 Genetic Analyser and sized by
a 500LIZTM size standard. Automatically binned alle-
les were manually checked by 2 researchers prior to
exporting data for statistical analyses. No genotyping
errors were observed among these re-analysed sam-
ples. The monomorphic locus SsaD486 was removed
from the data set; hence, data from 17 loci were used
for the analyses.

Statistical analysis

Total number of alleles and allelic richness were
calculated with Microsatellite Analyser (MSA) (Dierin -
ger & Schlötterer 2003), whereas observed heterozy-
gosity (Ho) was computed with GenAlEx (Peakall
& Smouse 2006). The genotype distribution of each
locus per year class and its direction (heterozygote
deficit or excess) was compared with the expected
Hardy-Weinberg distribution using the program
GENEPOP 7 (Rousset 2008), as was the linkage dis-
equilibrium. Effective population size (Ne) per sam-
ple together with the 95% confidence interval was
obtained by the jackknife method using LDNE
(Waples & Do 2008), implementing the following

threshold values of lowest allele frequency: 0.05, 0.02
and 0.01.

STRUCTURE v.2.3.4 (Pritchard et al. 2000) was
used to identify genetic groups under a model
assuming admixture and correlated allele frequen-
cies without using population information. Ten runs
with a burn-in period consisting of 100 000 replica-
tions and a run length of 1000 000 Markov Chain
Monte Carlo (MCMC) iterations were performed for
a number of clusters ranging from K = 1 to K = 5.
STRUCTURE Harvester (Earl & von Holdt 2012) runs
was thereafter used to calculate the Evanno et al.
(2005) ad hoc summary statistic ΔK, which is based
on the rate of change of the ‘estimated likelihood’
between successive K values and allows determina-
tion of the uppermost hierarchical level of structure
in the data. Runs were averaged with CLUMPP v.1.1.1
(Jakobsson & Rosenberg 2007) using the LargeK-
Greedy algorithm and the G’ pairwise matrix simi -
larity statistic, and was graphically displayed using
barplots.

The individual assignment of the escapees to their
potential source farms was conducted with the pro-
gram GeneClass 2 (Piry et al. 2004) using the Ran-
nala & Mountain (1997) method of computation. A
combination of direct genetic assignment and exclu-
sion of every escaped fish from each farm source
with significance thresholds of α = 0.05 and α =
0.001 was used to identify individual probabilities
of fitting in with the genetic profile of each of the 17
cage  samples in the baseline. Furthermore, the col-
lective inference from STRUCTURE and GeneClass
allowed escapees to be classified into 4 different
categories: AquaGen, Mowi and SalmoBreed genetic
strains and ‘Unknown’. Fish placed into the ‘Un -
known’ category originated from farms that were
not sampled to establish the genetic baseline, and
although such escapees probably belonged to 1 of
the 3 aforementioned strains (due to the fact that
these strains overwhelmingly dominate Norwegian
production), they could not be unequivocally identi-
fied to strain as they did not necessarily exactly
resemble the reference samples. This could be
caused, for example, by these fish belonging to dif-
ferent year classes to those sampled here and thus
displaying large genetic differences also within
strains (Glover et al. 2011b). The frequency of indi-
viduals being classified into each of the aforemen-
tioned categories was assessed in relation to the
time of sampling and in connection with their size.
This specific analysis was limited to the escapees
captured in the Suldalslågen and Etne rivers due to
the fact that the other rivers sampled in Ryfylke did
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not produce high enough numbers to provide sta -
tistical power.

The number of individuals hosted in a cage on a
commercial farm can exceed tens of thousands; how-
ever, the number of families represented is often lim-
ited. Therefore, a complementary method to assess
the likelihood of escaped individuals coming from a
specific source is to analyse the sibling relationships
between them. We used the software COLONY
v.2.0.5.1 (Jones & Wang 2010), which implements
full-pedigree likelihood methods to simultaneously
infer siblingship and parentage among individuals
using multilocus genotype data, to compute the num-
ber of full-sibling dyads between farmed fish and
escapees. Analyses were run with no information on
parental genotypes, assuming both male and female
polygamy as well as possible inbreeding. The full-
likelihood model was chosen with run length and
precision set to medium. In the Ryfylke case, we
investigated the possible relationships between the
escaped individuals and all of the baseline farms.
Likewise, in the Etne case, we also aimed to deter-
mine whether some of the escapees could possibly
have originated from the escape event in Ryfylke.
Hence, the escapees captured in the upstream
migration trap in the River Etne were tested against
the Ryfylke farm samples as well as the escapees
captured in Ryfylke using this siblingship analysis
approach.

Fatty acid analysis and classification according to
dietary history

The dietary history of a fish is mirrored in its fatty
acid profile. Fatty acid profiling permits the classifi-
cation of farm escapees into early or recent. The con-
tent of triacylglycerols in the adipose fin of the
escapees was analysed for a subset of individuals: 36
from the River Suldalslågen and 114 from the River
Etne. This analysis followed the methodology de -
tailed by Olsen et al. (2013). In short, total lipids were
extracted and depot lipids (triacylglycerols) were
separated using slight modifications of the methods
of Folch et al. (1957) and Olsen & Henderson (1989).
Fish were then classified into either early escapees or
newly escaped fish according to the content of the
signature fatty acid 18:2(n-6). The level of this fatty
acid is normally below 2.5% in sea-run and farmed
salmon that has escaped early in life, and approxi-
mately 10 to 12% in fish feed and recently escaped
farmed salmon (Jónsson et al. 1997, Olsen & Skilbrei
2010). According to the method described by Skilbrei

et al. (2015b), the fish here were classified into 2 cat-
egories based on the level of the fatty acid 18:2(n-6):
recently escaped (i.e. the same year as capture)
farmed salmon with 18:2(n-6) > 7% and farmed
salmon believed to have escaped at an early age (i.e.
1–2 yr prior to capture) with levels of 18:2(n-6) ≤ 7%.

RESULTS

Summary statistics

The level of genetic variation measured as total
number of alleles and allelic richness ranged
between 106 and 6.1 in cage sample 5A, and 154 and
8.8 in cage sample 8A, respectively (Table 1). The
scope of variation per cage sample can be explained
by the number of families placed in each, as well as
whether they contain fish of single or mixed origin. In
contrast, the observed level of genetic variation in
the samples of the escapees captured in the rivers
was much higher than in any of the cage samples
of the farms (218 and 10.8 in Etne; and 208 and 9.0
in Ryfylke, respectively), which suggests that the
escapees in the rivers originated from multiple
sources. This idea is further corroborated by the high
effective population size found in the sample of
escapees in the River Etne (Table 1) in comparison
with any of the cage samples.

Identification of escapees

Based upon the results from STRUCTURE, samples
from the farms were predominantly placed into each
of the 3 genetic clusters matching the 3 breeding
lines in Norway (Fig. 2). However, not all the cage
samples belonged exclusively to 1 cluster; e.g. cage
sample 1A showed signs of clustering to both Mowi
and SalmoBreed genetic groups (which could sug-
gest genetic mixing). STRUCTURE analysis also
demonstrated that the escapees captured in Ryfylke
were mainly of SalmoBreed origin, while the escapees
captured in the River Etne were more evenly distrib-
uted among the 3 breeding strains.

GeneClass directly assigned most of the Ryfylke
escapees into 2 farms rearing the SalmoBreed strain:
7A (59.7%) and 5A (15.8%); whereas the remaining
ones were assigned to the rest of the cage samples in
very low proportions (Fig. 3a). In addition, 31 to 35%
of the escapees could not be excluded from cage
samples 5A and 8B, whereas 73% could not be ex -
cluded from cage sample 7A. In contrast, most of the
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escapees captured in Etne were assigned to 3 cage
samples producing each of the breeding strains in
even proportions (Fig. 3b): 1A, 7A and 8A (12.9 to
15.8%), followed by cage samples rearing Mowi: 3A
and 2C (10.1 to 11.5%).

Using the collective inference provided by STRUC-
TURE and GeneClass, escapees were classified into
4 groups according to their origin (i.e. AquaGen,
SalmoBreed, Mowi or ‘Unknown’). The Ryfylke
escapees (pie chart in Fig. 1) mostly belonged to the
SalmoBreed strain (77%) in contrast to Mowi (10%)

and AquaGen (4%). On the other hand, escapees
captured in the River Etne (pie chart in Fig. 1) were
more evenly distributed among the strains, ranging
between 14% (AquaGen) and 30% (Mowi). When
looking specifically at the escapees that were
excluded from all cage samples at a significance
threshold of α = 0.001, the proportion of individuals
of ‘Unknown’ origin was 3.6-fold higher in Etne
(36%) than in Ryfylke (10%). At this stage, the
genetic analyses strongly pointed towards different
profiles of escapees in each of the regions.
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Sample Type N No. AR Ho No. dev. No. dev. Ne (95% CI)
alleles (mean ± SE) HWE (0.05) LD (0.05) 0.05 0.02 0.01

131A Baseline 46 122 7.0 0.724 ± 0.045 1 8 50.8 (35.1−81.8) 69.4 (51.6−101.1) 83.4 (59.7−130.2)
1A Baseline 47 143 8.2 0.759 ± 0.053 1 17 41.5 (31.9−56.2) 66.9 (52.8−88.7) 73.3 (58.5−96)
1B Baseline 46 125 7.2 0.693 ± 0.039 1 21 35.9 (27.5−48.8) 41.9 (33.6−53.8) 48.2 (38.1−63.5)
2A Baseline 46 120 6.9 0.701 ± 0.035 3 15 38.3 (28.9−53.2) 53.7 (40.1−76.6) 71.2 (52.9−103.8)
2B Baseline 47 151 8.7 0.757 ± 0.047 0 15 57.5 (44.7−77.8) 63.4 (51.6−80.5) 75.9 (61.5−97)
2C Baseline 47 132 7.6 0.732 ± 0.046 0 12 61 (44.3−91.7) 73.7 (56.8−101.5) 93.5 (69.7−136.5)
2D Baseline 46 127 7.3 0.731 ± 0.032 2 18 42.2 (29.9−64.8) 57.9 (42.3−85.8) 52.4 (40.2−72)
3A Baseline 39 134 7.9 0.695 ± 0.043 2 16 54.1 (38.1−85.6) 67.2 (48.7−102.6) 85.7 (62.4−130.7)
4A Baseline 47 115 6.6 0.710 ± 0.034 0 15 34.4 (25.6−48.5) 46.4 (36.2−62) 63.4 (47.5−90.7)
5A Baseline 47 106 6.1 0.859 ± 0.031 8 14 51.9 (35.7−84) 66.3 (48.2−99.6) 107 (71.9−191.9)
6A Baseline 45 142 8.2 0.766 ± 0.059 0 15 48.6 (37.8−65.2) 64 (51−83.7) 69.4 (56.4−88.5)
7A Baseline 47 124 7.1 0.746 ± 0.037 1 37 15 (12.4−18.1) 22.8 (19.5−26.8) 30.8 (26.5−36.1)
8A Baseline 46 154 8.8 0.747 ± 0.038 1 12 27 (23.2−31.6) 51.7 (44.8−60.6) 72.4 (61.2−87.7)
8B Baseline 46 113 6.5 0.753 ± 0.029 2 21 39.2 (30−53.2) 56.1 (43−77.4) 58.8 (45.7−79.5)
9A Baseline 45 135 7.8 0.724 ± 0.051 2 14 42 (33.6−54.1) 56.6 (46.2−71.7) 72.6 (57.7−95.6)
9B Baseline 47 133 7.6 0.797 ± 0.045 0 24 36.4 (27.7−49.9) 48.1 (38.8−61.4) 55.7 (45.1−71.1)
9C Baseline 45 140 8.1 0.731 ± 0.047 0 12 37.4 (31.1−45.7) 64.3 (52.4−81.6) 73.4 (59.5−93.8)
Ryfylke Escapees 221 208 9.0 0.745 ± 0.030 13 108 32.5 (28.3−37.2) 40.9 (36.4−46.1) 48.1 (44.1−52.5)
Etne Escapees 139 218 10.8 0.749 ± 0.035 7 33 70.8 (62.2−81.1) 96.4 (86.4−108.3) 110 (98.6−123.6)

Table 1. Summary statistics per sample: number of individuals (N); number of alleles; allelic richness (AR, based on a minimum sample of
39 diploid individuals); observed heterozygosity (Ho); number of deviations (dev.) from Hardy-Weinberg equilibrium (HWE) at α = 0.05;
number of deviations from linkage disequilibrium (LD) at α = 0.05; and effective population size (Ne) with 95% confidence interval 

obtained by the jackknife method (in brackets) calculated using 3 different values of lowest allele frequency (0.05, 0.02 and 0.01)

Fig. 2. Bayesian clustering of baseline cage samples ordered according to breeding lines (–––– AquaGen, –––– Mowi, ––––
SalmoBreed) and escapees (Ryfylke and Etne cases). The number of clusters that best fitted the data was K = 3 after Evanno’s
test (ΔK = 1320.36). Inferred ancestry of individuals was calculated after averaging 10 STRUCTURE runs with CLUMPP at K = 3
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Time and space analysis of escapees

The proportion of escapees belonging to each of
the 4 genetic categories was analysed separately at
different time periods in both cases. In the River Sul-
dalslågen in Ryfylke (Fig. 4a), SalmoBreed indi -
viduals dominated the whole temporal frame of the
investigation (frequency ranging from 76 to 89%
from September to November), even during the first
period of sampling (July and August), although at a
lower frequency (38%). Significantly, in the River
Etne (Fig. 4b), SalmoBreed individuals were first
recorded 1 mo later than in Ryfylke (i.e. in Septem-
ber) and kept discrete proportions for the remaining
period of time (12 to 25%). In contrast, a constant and
high presence of individuals of ‘Unknown’ origin was

registered in the River Etne, in particular from June
to September when they accounted for 53 to 60% of
the total.

Fish-length analyses showed that the proportion
of escapees belonging to the largest size category
was some 4 times larger in Etne than in Suldalslå-
gen (in numbers: 56 vs. 21, Fig. 4c,d). Interestingly,
the escapees that were genetically identified as of
SalmoBreed origin were of the same size in both
rivers (<50 to 65 cm) and these coinciding lengths,
together with the delay of almost 1 mo that occurred
between the first record of SalmoBreed escapees in
Suldalslågen and Etne, suggested that these fish
may have escaped from the same farms, and some
of them migrated north, ultimately ascending the
River Etne.
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         Fig. 3. Assignment of escapees to each of the cage samples in the (a) Ryfylke and (b) Etne cases. (Black bars) Number of indi-
viduals directly assigned to each baseline cage sample, (dark grey bars) number of escapees not excluded at p < 0.05 and 

(light grey bars) at p < 0.001
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Siblingship reconstruction

COLONY analyses provided important further in -
sights linking the escapees captured in Ryfylke with 2
of the cage samples to which the majority of the es -
capees had already been assigned using the genetic
assignment methods described above (Table 2). A to-
tal of 32 dyads of full-sibling escapees were ob served
for cage sample 7A, accounting for 29 unique es-
capees. Of those, 28 were classified as SalmoBreed,
whereas the remaining 1 (RF-199) was classified as
‘Unknown’ despite having shown inferred member-
ship of the SalmoBreed STRUCTURE cluster of 0.983,
as it was excluded from all cage samples at p < 0.001
by GeneClass. Cage sample 5A shared a slighter
lower number of full siblings with the escapees: 22
pairs involving 11 unique escaped individuals, all of
them assigned to the SalmoBreed strain. No full sib-
lings were recorded between es capees and cage sam-
ple 8B. Similarly, no full siblings were registered in
any pair-wise comparison between cage samples.

The sibling relationships between the escapees
captured in Etne and SalmoBreed-rearing farms
were also examined (Table 2). Cage sample 7A
shared 4 dyads of full siblings with the escapees,
accounting for 4 unique escaped individuals.
Again, 3 of them were classified as SalmoBreed,
whereas the remaining 1 (RF-341) was classified as
‘Unknown’, despite showing inferred membership
of the SalmoBreed STRUCTURE cluster of 0.985,
as it was ex cluded from all cage samples at p <
0.001 by GeneClass. Cage sample 5A and the Etne
escapees shared 6 dyads, which accounted for 3
unique escaped individuals, all of them Salmo-
Breed. Again, no full siblings were recorded be -
tween the escapees captured in Etne and cage
sample 8B.

Importantly, COLONY further supported the hypo -
thesis that SalmoBreed escapees trapped in Etne
originated from the Ryfylke escape, as 22 dyads
accounting for 31 unique individuals were detected
between both sets of escaped salmon (Table 2).
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Lipid profiles

Mean content of fatty acid 18:2(n-6) was 1.38%
(±0.33 SD) in fish classified as early escapees and
11.07% (±1.37) in recently escaped fish. In both
episodes, almost all of the individuals identified to
the SalmoBreed strain were categorised as recent
escapees based upon their fatty acid profiles; i.e.
94% in Suldalslågen and 100% in Etne (Fig. 5a,b).
There were very few individuals of ‘Unknown’ origin
with a fatty acids profile in Ryfylke, all of them were
categorised to have escaped recently, but in River
Etne, this group was quite evenly distributed across
time (63% early escapees vs. 37% recent ones).

DISCUSSION

The use of DNA analysis to identify the farm(s) of
origin of escaped fish is a well developed technique
that is routinely used in the management and regula-
tion of Atlantic salmon farming in Norway (Glover
2010). In addition, DNA methods have been success-
fully tested and implemented to identify escapees
back to their farms of origin for a range of other aqua-
culture species, including rainbow trout Oncorhyn-
chus mykiss (Glover 2008, Consuegra et al. 2011),
European seabass Dicentrarchus labrax (Brown et al.
2015), Asian sea bass Lates calcarifer (Yue et al. 2012,
Noble et al. 2014) and Atlantic cod Gadus morhua
(Glover et al. 2011a). In the present study, we imple-

mented siblingship tests for the first time, which led
to an increase in the accuracy and confidence of
assignment of the salmon escapees back to their
farm(s) of origin. The identification of the relation-
ships among siblings, either those that share 1 (half
sibling) or both (full sibling) parents, has formerly
been utilised to address a wide variety of questions in
biology and ecology, such as elucidating fine-scale
patterns of larval dispersal for a rocky reef fish on the
open coast (Schunter et al. 2014), determining indi-
vidual variability in reproductive success (Hudy et al.
2008, Liu & Ely 2009) and dispersal (Hudy et al.
2008), providing some insight into the mating systems
by inferring genotypes of unknown parents (Wang
2004, Kanno et al. 2011) and tracing market product
to the farm of origin in the event of detection of dis-
ease or toxins in the market fish (Hayes et al. 2005).

The singularity of this study resides in the fact that
the suite of procedures conducted here allowed, for
the first time, the connection of 2 seemingly inde-
pendent escape events. The connection of both epi -
sodes was possible through the joint analysis of sev-
eral pieces of evidence, including biometric data of
the escapees, their genetic background and the
 sampling time. Importantly, however, the siblingship
tests revealed not only the existence of dyads of full
siblings between the escapees and cage farms, but
also that some of the escapees reported in Ryfylke
displayed full-sibling relationships with some of the
escapees observed ~150 km north, in an upstream
migration trap located in the River Etne. Based upon
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Test No. full- No. escapees Classification No. assigned to 
sibling in AquaGen Mowi SalmoBreed ‘Unknown’ SalmoBreed cage samples
dyads the dyads 5A 7A 8B

Ryfylke vs. 5A 22 11 0 0 11 0 11 0 0
Ryfylke vs. 7A 32 29 0 0 28 1a 2 26 1
Ryfylke vs. 8B 0 0 0 0 0 0 0 0 0
Etne vs. 5A 6 3 0 0 3 0 3 0 0
Etne vs. 7A 4 4 0 0 3 1b 2 2 0
Etne vs. 8B 0 0 0 0 0 0 0 0 0
Ryfylke vs. Etne 22 31 0 0 26 5c 13 13 1
aIndividual RF-199 was classified as ‘Unknown’ despite being directly assigned to cage sample 5A and showing inferred
membership to the SalmoBreed STRUCTURE cluster of 0.983, as it was excluded from all cage samples at p < 0.001
bIndividual RF-341 was classified as ‘Unknown’ despite being directly assigned to cage sample 5A and showing inferred
membership to the SalmoBreed STRUCTURE cluster of 0.985, as it was excluded from all cage samples at p < 0.001
cFive individuals were classified as ‘Unknown’, 1 of them (RF-331) despite being directly assigned to cage sample 5A and
showing inferred membership to the SalmoBreed STRUCTURE cluster of 0.982, as it was excluded from all cage samples
at p < 0.001

Table 2. Best maximum likelihood assignment of full-sibling dyads obtained with COLONY v.2.0.5.1: number of full-sibling
dyads between cage farms (5A, 7A, 8B) and escapees, and between both escape events; number of escapees in the full-sibling
dyads; classification of the escapees belonging to those dyads according to the consensus information provided by the STRUC-

TURE and GeneClass methods; and number of escapees directly assigned to SalmoBreed cage samples by GeneClass
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this evidence, we conclude that the fish identified as
full siblings in these 2 regions originated from the
same farm, despite being sampled in 2 locations sep-
arated by 150 km. These findings highlight the utility
of siblingship tests, even when the baseline samples
from farms used to assess the escape epi sode are out
of the geographic scope, as it is the case for the River
Etne.

Non-genetic data were also available to support
the connection between the 2 escape events. Firstly,
the overlapping sizes of escaped SalmoBreed fish in
both episodes (∼50 to 65 cm) suggest that they could
have originated from the same farm and cage sample
(Fig. 4c,d). Secondly, the 1 mo delay between the first
record of SalmoBreed escapees in Ryfylke and in
Etne (Fig. 4a,b) suggests that fish would have had
enough time to cover the ~150 km distance that sep-
arates both sites. This is in agreement with field
experiments in this region reporting that the majority
of the escapees disperse from the escape area after
~1 mo (Skilbrei 2010, Skilbrei & Jørgensen 2010).
Likewise, Chittenden et al. (2011) experimentally

showed that fish dispersed rapidly (9.5 ± 19.2 km d−1)
in the days following escape, travelling outward to
coastal waters along the edges of the fjord. In addi-
tion, the findings from the present study illustrate an
even longer migration along the coast and into
another fjord system, allowing the escaped farmed
fish to spread into multiples rivers along the coast.

The genetic clustering analyses conducted in this
study allowed the successful identification of the
breeding strain of origin of 80.3% of all escapees.
The number of escapees that were assigned to a
strain was higher for the escapees captured in Ry -
fylke than those in the trap in Etne (90.5 vs. 64%,
respectively). This is likely to be attributed to the
closer geographical proximity between the rivers
where escapees were captured with respect to the
farms sampled as baseline reference. Thus, in Ry -
fylke, SalmoBreed fish were overrepresented and
accounted for 77% of the escapees captured in this
region, whereas in the River Etne, Mowi was the
dominating strain (30% of the escapees). When con-
sidering the fish that were statistically excluded from
all cage samples at a threshold of α = 0.001, the pro-
portion of individuals of ‘Unknown’ origin was 3.6-
fold higher in Etne (36%) than in Ryfylke (10%). This
would account for fish coming from a variety of
sources that had been in the sea for longer before ini-
tiating the migration to fresh water, a suggestion sup-
ported by their lipid profiles (Fig. 5). The larger
genetic variation (total number of alleles, allelic rich-
ness) observed among the escapees in relation to the
neighbouring farms further supports this aforemen-
tioned mixed origin (Skaala et al. 2004), an issue that
has already been invoked in former escape episodes
(Zhang et al. 2013). The higher percentage of indi-
viduals of ‘Unknown’, and hence, mixed origin is
 particularly relevant in Etne and explains why this
sample shows larger genetic variation and effective
population size than any of the remaining ones.

The ‘DNA stand-by-method’ is implemented to
identify the cage sample of origin of farmed salmon
in order to provide scientific ground for regulatory
and legal procedures (Glover 2010). As previously
discussed, none of the farms sampled in this study
represented the primary source of the escapees
 captured in the River Etne. However, cage sample
7A was pin-pointed as the primary source of the
escapees captured in the Ryfylke area. In addition,
cage sample 5A could not be completely excluded as
a potential source of some of those escapees (Fig. 3a).
The sibling-based analyses helped identify the source
of these escapees in Ryfylke based upon the identifi-
cation of some full- and half-sibling relationships
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between the escapees and the farms of origin. This
represents an advance in the implementation of DNA
methods to identify escapees, as fish originating from
the same breeding strain will often be genetically
similar (Glover 2010, his Fig. 2) and therefore diffi-
cult to differentiate using standard genetic assign-
ment methods based upon allele frequencies alone.
However, as demonstrated here, sibling-reconstruc-
tion methods will provide extra resolution. Further-
more, if sibling-based statistical methods are com-
bined with increased numbers of genetic markers
and larger sample sizes, it is possible that even the
most challenging escape events, where there is
large genetic overlap between farms that rear fish of
similar genetic background, may be partially or fully
resolved.
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