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INTRODUCTION

There are >154 large hydroelectric dams in opera-
tion in the Brazilian Amazon, with 21 dams under
construction and 277 more planned over the next few
decades (Finer & Jenkins 2012, Castello & Macedo
2015) in order to supply the Brazilian demand for
power (Agostinho et al. 2008). It is well known that
these obstructions greatly alter the landscape and
negatively affect aquatic ecosystems, including frag-
mentation and isolation of fish communities (Girard
2002, Khan et al. 2014, Hurd et al. 2016, Pereira et al.
2016, Winemiller et al. 2016). Dams interrupt the tim-

ing and intensity of the annual hydrological cycle in
the Amazon River Basin, which largely determines
important life cycle characteristics of native fish such
as dispersal during breeding seasons (Maltchik &
Medeiros 2006) and movement related to feeding
opportunities (Hahn & Fugi 2007). In particular, dams
prevent migratory fish species from using river chan-
nels for reproductive movements (Ribeiro et al. 1995,
Cox-Fernandes 1997, Freitas & Garcez 2004, Sousa
& Freitas 2008, Miranda 2012). Fish ladders in this
region have proven to be either ineffective or detri-
mental to fish survival (Pelicice & Agostinho 2008,
Agostinho et al. 2012, Pelicice et al. 2015). Both
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ABSTRACT: Much has been written about the negative impacts of large hydroelectric dams on
fish species diversity in the Amazon River Basin; however, less is known about the impacts of
small dams in streams that are created for fish aquaculture. Our study of fish assemblages
upstream and downstream of fish farm dams in Rondônia State, Brazil, revealed that the dams act
as physical barriers to fish movement and that upstream assemblages showed lower measures of
diversity and abundance compared to downstream. The greatest impact was the obstruction of
upstream movement of a number of fish groups, coupled with isolation and disappearance of rel-
atively rare fish species living upstream. The fish species most affected were from frugivore, her-
bivore and detritivore trophic levels that are associated with migration and the forming of schools
(potamodromous species), although the impact was also evident in piscivorous fish commonly
found in lentic habitats. Although stream dams may cause small negative effects relative to huge
hydroelectric barriers, the cumulative impact of hundreds of fish farms in stream channels could
be considerable. Amelioration of the damage caused by fish farm impoundments will require (1)
design of effective fish passage systems around dams to reduce impact on fish diversity and (2)
prohibition of the complete stream blocking to build these fish farms, which will require derivative
channels to their water supply.
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upstream and downstream dispersal remains dis-
rupted, and mortality of fish that are able to traverse
the fish ladders tends to be high (Pelicice et al. 2015).

Although most research to date has focused on the
impacts caused by large-scale hydroelectric barriers
in major rivers (Winemiller et al. 2016), there are also
many smaller dams built in streams for fish aquacul-
ture (Neto et al. 2015, Lima et al. 2016). The impact of
individual dams would likely be small, but the cumu-
lative negative effects from multiple impoundments
over an entire sub-basin could cause irreversible
damage to the aquatic environment (Albanez & Alba -
nez 2000) and specifically to fish assemblages (Ago -
stinho et al. 2007). To determine the number of aqua-
culture farms that a given watershed can support, it
is essential to verify the impacts associated with the
construction of small dams for fish farm impound-
ments (Agostinho et al. 2007). Apparently, almost all
of the fish farms in Brazil already in operation are not
up to code and have contributed to deforestation of
riparian areas, fragmentation of river habitats, block-
age of migratory routes and degradation of nursery
areas (Barletta et al. 2010).

Rondônia State is located in the southern part of the
Brazilian Amazon and currently has >4000 licensed
fishing farms, mainly in the Machado River basin (Os-
trensky et al. 2008, Rondônia 2015). These farms spe-
cialize in the production of tambaqui Colossoma
macropomum (Cuvier 1818), a large-sized characi-
form species that is endemic to the Amazon basin
(MPA 2010). Studies of the effects of aquaculture on
native fish assemblages are very scarce in Amazonia
and completely nonexistent in the Machado River
basin. The present research aimed to identify the im-
pacts of fish aquaculture farms on the wild fish fauna
of the streams in the headwaters of the Machado
River by testing the following null hypotheses: (1) that
small aquaculture dams have no effect on the struc-
ture of fish communities upstream or downstream;
and (2) that there are no environmental changes in
water quality associated with these fish farms.

MATERIALS AND METHODS

Study area

The study area was located in the Machado River
basin (Rondônia State, Brazil), where 5 streams were
dammed to impound water for aquaculture farms
(Fig. 1). All of the studied streams are shallow, low-
order tributaries of the Machado River with sandy
and rocky substrates. Grasslands are typically found

on the margins of these streams, as well as some
stretches of preserved primary and secondary forests,
including in the riparian zone. The status of the
selected environmental variables was assessed in the
field, using notes and a metric rule. The aquaculture
impoundments ranged in size from 1.03 to 17.14 ha
(10 300 to 171 400 m2, Table 1), with no treatment sys-
tems in place to purify water before returning it to the
stream. These aquaculture impoundments allowed
us to investigate the effects of semi-intensive fish
production since it is a system that directly interacts
with the stream’s main channel.

Sample collections

Fish were sampled in 2 consecutive years, during 2
periods of the annual hydrological cycle: low water
(September 2014 and June 2015) and rising water
(December 2014 and March 2015). Fish sampling
was performed in 150 m long-sections upstream and
downstream of fish farming impoundments at 5
small streams, giving a total of 10 sampling locations
(1 upstream and 1 downstream of each fish farm).
Fish were captured using 3 different types of appara-
tus that were employed at every sampling site: (1)
2 gill nets 2 m high and 5 m long with 20 mm mesh,
applied transversally or on the border of the river
channel; (2) 1 ring net trap with a diameter of 2 m and
10 mm mesh size between opposite knots, moving
continuously for 2 h, with 15 min intervals within
long-sections (from one end to the other) of the
stream; (3) 1 dip net with 2 mm mesh and 1 m diam-
eter, also employed at the streams margins for a
period of 2 h. Both trap types were set for a period of
2 h at night (18:00 to 20:00 h) and during the day
(06:00 to 08:00 h) and were inspected every 20 min.
At the same time, physical-chemical parameters were
measured, including water temperature, dissolved
oxygen, pH and electrical conductivity. The sampled
fish were euthanized in cold shock (ice-water solu-
tion), labeled, stored in plastic bags and saved in
an isothermal box for posterior taxonomic identifica-
tion in the Aquaculture and Fisheries Laboratory at
Rondônia Federal University.

Data analysis

Fish community composition values were initially
subjected to descriptive analysis to determine fre-
quencies, means and standard deviations. The fol-
lowing ecological parameters were also calculated:
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species richness (S), Shannon’s index of diversity
(H’), Berger-Parker index of dominance (D) and
Evenness (E) for both upstream and downstream
data sets. Differences in water quality measurements
between upstream and downstream data were tested
with Student’s t-test, when the data met the assump-
tions for normality and homoscedasticity. To test the
null hypotheses that fish species composition is simi-
lar between upstream and downstream samples and
between the low and high water seasons, a 2-way
PERMANOVA was employed with 5000 per -
mutations (Anderson 2001), based on a matrix of
Canberra distance measures. The assumption of mul-
tivariate homogeneity of groups was tested before
performing PERMANOVA. The Canberra distance
was used to estimate the distance between sampling
sites because this metric excludes double zeros and

increases the effect of differences between variables
with low values and many zeros (Buttigieg & Ramette
2014).

We classified fish species according to 3 life history
strategies adapted from Winemiller & Rose (1992) and
Winemiller (2005) based on their bioecologic charac-
teristics (following Carvalho & Tejerina-Garro 2015,
Röpke et al. 2017 and Arantes et al. 2017): (1) equilib-
rium strategists: species with moderate to long gener-
ation time, low reproductive effort, variable body size,
low batch fecundity, high investment per offspring
and, in general, no migratory behavior (24 species);
(2) periodic strategists: species with long generation
time, moderate reproductive effort, medium to large
body size, high batch fecundity, low investment per
offspring and migratory behavior (14 species); and (3)
opportunistic strategists: species with short generation
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Fig. 1. Sampling sites and aquaculture dam locations in headwater streams of the Machado River basin, Rondônia State, 
Brazil. Arrow indicates the direction of flow of the Machado River
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time, high reproductive effort, small body size, low
batch fecundity, low investment per offspring and no
migratory behavior (15 species) (Table 2). We also
performed paired t-tests, using species richness per
life strategy as response variables. Sampling site posi-
tion related to the farms, upriver and downriver, were
used as factors aiming to test the hypothesis that the
impacts of the aquaculture farms were the same for
fish species of different life strategies. We found 2
species, Parodon buckleyi and Phenacorhamdia spp.,
without enough biologic information for a confident
classification and an exotic species Oreochromis
niloticus that were not included in the analysis.

The distance matrix and the PerMANOVA were
performed using the Vegan package (Oksanen et al.
2015), and also the t-tests were performed on the R
v.2.14.2 statistical software (R Development Core
Team 2012, Urbanek et al. 2012).

RESULTS

A total of 6432 individuals was sampled in the
study area, distributed among 4 orders, 20 families

and 56 species. Characiformes was the most abun-
dant order with 3987 individuals (61.99%), followed
by Perciformes (29.60%), Siluriformes (4.99%) and
Gymnotiformes (3.42%). Characiformes was also the
most diverse group with 30 species, corresponding to
51% of the total (Table 2).

The highest number of fish was captured at sam-
pling site Pt01, while the lowest occurred at Pt05
(Fig. 2). There was no clear pattern for the number of
fish caught between upstream and downstream sites.
More fish were caught upstream than downstream at
sampling sites Pt01 and Pt02, whereas more fish
were caught downstream than upstream at sampling
sites Pt03, Pt04 and Pt05 (Fig. 2).

The most frequent species were Serrapinnus aff.
microdon, with 15.57% (n = 908) and Serrapinnus aff.
notomelas with 15.29 % (n = 892). Many species were
considered rare, with ≤5 individuals collected per
species, including Para don bucleyi, Curimata inor-
nata, Curimata ocellata, Cyphocharax notatus, Hemi -
odus unima culatus, Hyphessobrycon agulha, Jupi-
aba antero ides, Jupiaba cf. apenima, Moenkhausia
cotinho, Phenacogaster cf. beni, Roeboides affinis,
Ituglanis cf. amazonicus, Corydoras cf. trilineatus,
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Parameter Pt01 Pt02 Pt03 Pt04 Pt05

Downstream average 2.75 ± 0.65 1.78 ± 1.28 1.20 ± 0.81 1.99 ± 0.27 1.09 ± 0.14
channel width (m)

Upstream average 2.01 ± 0.30 2.45 ± 0.37 2.25 ± 0.78 4.73 ± 1.01 1.09 ± 0.14
channel width (m)

Downstream average 0.85 ± 0.49 0.25 ± 0.03 0.20 ± 0.07 0.17 ± 0.05 0.18 ± 0.05
depth (m)

Upstream average 0.29 ± 0.08 0.36 ± 0.12 0.50 ± 0.23 0.52 ± 0.23 0.18 ± 0.05
depth (m)

Area of the impound- 17.14 3.08 1.96 1.77 1.03
ment (Ha)

Environmental status
Downstream
Riparian condition Grass land Grass land, Grass land, Secondary Primary and 

riparian forest riparian forest forest secondary forest

Benthic condition Sand ground Rock and Sand ground, Sand ground, Sand ground, 
sand ground and macrophyte and macrophyte and macrophyte 
macrophyte presence presence presence

presence

Flow status lotic water Lotic water Lotic water Lentic water Lotic water

Upstream
Riparian condition Grass land Secondary Grass land, Grass land Grass land, 

forest riparian forest riparian forest

Benthic condition Rock and Sand ground, Sand ground, Rock, sand ground, Sand ground, 
sand ground and macrophyte and macrophyte and macrophyte and macrophyte 

presence presence presence presence

Flow status Lotic water Lentic water Lentic water Lentic water Lentic water

Table 1. Environmental characteristics of sampling sites (Pt01–05, see Fig. 1). Mean ± SD
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Taxon Pt01 Pt02 Pt03 Pt04 Pt05 LHS
Up Dn Up Dn Up Dn Up Dn Up Dn

CHARACIFORMES
Parodontidae
Parodon buckleyi Boulenger, 1887 2 1 Unknown

Curimatidae
Curimata inornata Vari, 1989 1 Periodic
Curimata ocellata Eigenmann & Eigenmann, 1889 2 Periodic
Curimatella dorsalis (Eigenmann & Eigenmann, 1889) 35 34 20 6 72 Periodic
Cyphocharax notatus (Steindachner, 1908) 1 Periodic
Steindachnerina fasciata (Vari & Géry, 1985) 112 220 25 34 19 101 5 8 Periodic

Prochilodontidae
Prochilodus nigricans Spix & Agassiz, 1829 1 7 3 10 7 Periodic

Anostomidae
Leporinus friderici (Bloch, 1794) 39 4 1 3 1 Periodic

Crenuchidae
Characidium aff. zebra Eigenmann, 1909 7 1 Opportunistic

Hemiodontidae
Hemiodus unimaculatus (Block, 1794) 1 Periodic

Characidae
Astyanax aff. bimaculatus (Linnaeus, 1758) 4 68 11 54 110 119 38 3 Periodic
Astyanax cf. maximus (Steindachner, 1876) 1 27 3 1 11 Periodic
Brachychalcinus copei (Steindachner, 1882) 1 17 1 4 Opportunistic
Hyphessobrycon agulha Fowler, 1913 1 Periodic
Jupiaba anteroides (Géry, 1965) 5 Opportunistic
Jupiaba cf. apenima Zanata, 1997 5 Opportunistic
Knodus cf. heteresthes (Eigenmann, 1908) 1 14 25 10 46 Opportunistic
Moenkhausia cf. pankilopteryx Bertaco & Lucinda, 2006 1 19 4 Opportunistic
Moenkhausia cotinho Eigenmann, 1908 5 Periodic
Moenkhausia oligolepis (Günther, 1864) 1 26 11 2 2 3 19 Opportunistic
Phenacogaster cf. beni Eigenmann, 1911 1 Opportunistic
Poptella compressa (Günther, 1864) 9 Opportunistic
Roeboides affinis (Günther, 1868) 2 Opportunistic
Serrapinnus aff. microdon (Eigenmann, 1915) 181 296 161 9 64 138 15 3 41 Opportunistic
Serrapinnus aff. notomelas (Eigenmann, 1915) 217 54 185 31 14 103 172 108 8 Opportunistic

Serrasalmidae
Myloplus asterias (Müller & Troschel, 1844) 7 1 Equilibrium
Serrasalmus altispinis Merckx, Jégu & Santos, 2000 40 65 8 Opportunistic

Iguanodectidae
Bryconops cf. giacopinii (Fernández-Yépez, 1950) 1 11 2 29 20 67 5 15 Periodic

Acestrorhynchidae
Acestrorhynchus falcatus (Bloch, 1794) 6 Periodic

Erythrinidae
Hoplias malabaricus (Bloch, 1794) 27 4 20 2 16 4 6 9 4 1 Opportunistic

SILURIFORMES
Trichomycteridae
Ituglanis cf. amazonicus (Steindachner, 1882) 1 Equilibrium

Callichthyidae
Callichthys callichthys (Linnaeus, 1758) 2 9 16 Equilibrium
Corydoras aeneus (Gill, 1858) 5 35 Equilibrium
Corydoras cf. trilineatus Cope, 1872 1 Equilibrium
Hoplosternun littorale (Hancock, 1828) 3 14 1 10 Equilibrium

Table 2. Fish species, the number of individuals sampled in each location (Pt01–05, see Fig. 1) and their life history strategy (LHS). 
Up: upstream; Dn: down-stream of the fish farm plant

continued on next page
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Hypostomus spp., Phenacorhamdia spp., Trachely-
opterus galeatus, and Apteronotus albifrons. In addi-
tion, 10 individuals of the exotic species Oreochromis
niloticus were collected.

A clearer pattern was observed for ecological mea -
sures. All sampling sites showed lower richness (S) at
locations upstream of the dams (Table 3, Fig. 3).
Shannon’s (H’) index was also lower in the upstream
areas, indicating that overall diversity was higher
downstream than upstream. Evenness (E) also showed
more  equitability downstream than upstream, with
the exception of Pt03, which exhibited similar values
of evenness for both areas. With exception of Pt01,
the Berger-Parker (D) index shows that species dom-
inance was highest in up stream locations (Table 3).

The test for homogeneity of multivariate disper-
sions did not reveal negative eigenvalues, indicating
that there is multivariate homogeneity between

groups. PERMANOVA rejected the null hypothesis
for similarity between upstream and downstream
locations at each site (Pseudo-F = 1.373; df = 1, 16; p =
0.036), indicating that species composition was not
the same between the sampling points upstream and
downstream of the aquaculture dams. We detected
no differences between seasons of the hydrologic
cycle (Pseudo-F = 0.312; df = 1, 16; p = 0.909) and no
interaction effects (Pseudo-F = 0.335; df = 1, 16; p =
0.887). However, water quality parameters did not
show significant differences between upstream and
downstream locations when submitted to the paired
t-test presenting p > 0.05 (Table 4).

The paired t-test performed using species richness
clustered by life history strategies showed significant
differences between up- and downstream locations
for equilibrium (t = −3.428, df = 4, p = 0.026) and peri-
odic (t = −2.954, df = 4, p = 0.042), with species rich-
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Loricariidae
Ancistrus cf. dubius Eigenmann & Eigenmann, 1889 1 3 9 11 6 3 1 Equilibrium
Farlowella oxyrrhyncha (Kner, 1853) 1 6 1 2 Equilibrium
Hypostomus pyrineusi (Miranda Ribeiro, 1920) 1 5 6 11 3 16 30 1 Equilibrium
Hypostomus spp. 2 3 Equilibrium
Pterygoplichthys lituratus (Kner, 1854) 2 1 2 2 Equilibrium
Rineloricaria lanceolata (Günther, 1868) 7 1 13 1 Equilibrium
Rineloricaria spp. ‘Juruema’ 20 1 2 14 6 Equilibrium

Heptapteridae
Phenacorhamdia spp. 1 Unknown
Pimelodella serrata Eigenmann, 1917 7 6 3 Equilibrium
Rhamdia quelen (Quoy & Gaimard, 1824) 3 8 1 Equilibrium

Auchenipteridae
Trachelyopterus galeatus (Linnaeus, 1766) 1 Equilibrium

GYMNOTIFORMES
Gymnotidae
Gymnotus carapo Linnaeus, 1758 21 10 4 33 28 9 4 2 4 Equilibrium

Sternopygidae
Eigenmannia sp. nov. 17 9 5 15 9 8 Opportunistic
Sternopygus macrurus (Bloch & Schneider, 1801) 6 2 5 6 14 3 2 Equilibrium

Apteronotidae
Apteronotus albifrons (Linnaeus, 1766) 1 1 2 Equilibrium

PERCIFORMES
Cichlidae
Aequidens tetramerus (Heckel, 1840) 113 72 118 81 151 104 86 6 22 14 Equilibrium
Cichla monoculus Agassiz, 1831 3 3 9 Equilibrium
Crenicichla lepidota Heckel, 1840 6 23 4 2 8 2 6 4 2 Equilibrium
Crenicichla spp. 5 27 14 12 8 Equilibrium
Oreochromis niloticus (Linnaeus, 1758) 8 1 1 Not classified
Satanoperca jurupari (Heckel, 1840) 282 228 1 13 23 47 48 64 33 Equilibrium

Table 2 (continued)

Taxon Pt01 Pt02 Pt03 Pt04 Pt05 LHS
Up Dn Up Dn Up Dn Up Dn Up Dn



Sousa et al.: Impacts of aquaculture dams on Amazonian ichthyofauna

ness higher at the sampling sites located down-river
for both fish groups. No difference was observed for
opportunistic species (t = −1.856, df = 4, p = 0.137).

DISCUSSION

Pelicice et al. (2015) hypothesized that reservoirs of
large dams act as ecologic barriers for downstream
fish movements due to the presence of a gradient
of hydraulic and limnological features. However,

whether they are small or large, dams primarily
impede upstream fish movements, especially if they
do not have effective accommodations for fish to
bypass these barriers. Allowing for fish to bypass
dam barriers is likely to be easier in small streams
where the slope is shallower.

Our study focused on small dams and detected simi-
lar effects to the ones reported for larger dams.
Indeed, most of the studies on river regulation at large
hydroelectric developments report an alteration in
species richness and diversity, and consequently in

95

Fig. 2. Number of fish (mean ± SD) caught both upstream
and downstream of aquaculture dams at the sampling sites

Fish assem- Pt01 Pt02 Pt03 Pt04 Pt05
blage attribute Up Down Up Down Up Down Up Down Up Down

S 18 25 20 34 21 28 5 36 15 29
N 1,299 1,194 841 349 546 836 340 497 248 282
H ’ 1.981 2.269 2.048 3.100 2.316 2.562 0.574 2.532 1.711 2.617
D 0.2402 0.2479 0.2592 0.0974 0.2766 0.1651 0.8412 0.3461 0.4355 0.2553
E 0.6853 0.7050 0.6835 0.8792 0.7606 0.7689 0.3572 0.7067 0.6317 0.7772

Table 3. Estimates of fish richness (S), abundance (N), diversity index (H’ ), dominance index (D), and evenness (E) from 
upstream (up) and downstream (down) of each sampling site (Pt01–05, see Fig. 1)

Fig. 3. Fish species richness distribution (mean ± SD) both
upstream and downstream of aquaculture dams at the 

sampling sites

Location Limnological parameter Pt01 Pt02 Pt03 Pt04 Pt05

Upstream Dissolved oxygen (mg l−1) 3.65 ± 1.32 2.07 ± 0.79 3.47 ± 1.23 4.85 ± 0.61 4.67 ± 1.45
pH 6.02 ± 0.87 6.37 ± 0.66 5.97 ± 1.18 5.47 ± 0.83 6.02 ± 0.44
Temperature (°C) 27.50 ± 1.58 26.67 ± 2.49 25.31 ± 0.76 24.85 ± 0.61 26.42 ± 3.46
EC (µS cm−1) 55.60 ± 12.97 97.00 ± 17.32 103.07 ± 14.85 60.17 ± 15.36 13.50 ± 2.69

Downstream Dissolved oxygen (mg l−1) 4.60 ± 2.99 3.65 ± 2.08 4.75 ± 0.66 5.72 ± 2.19 5.31 ± 0.78
pH 6.17 ± 1.32 6.64 ± 0.79 6.26 ± 1.08 5.73 ± 1.31 6.00 ± 0.17
Temperature (°C) 28.30 ± 0.94 26.92 ± 0.89 26.30 ± 1.14 27.72 ± 2.19 27.98 ± 1.80
EC (µS cm−1) 59.52 ± 9.73 119.80 ± 24.80 112.20 ± 14.07 51.15 ± 32.62 13.60 ± 2.77

Table 4. Water quality parameters (mean ± SD) measured at sampling sites (Pt01–05, see Fig. 1), during the years 2014 and
2015 considering 2 seasons including day and night samples from upstream and downstream locations (n = 8). EC: electrical 

conductivity
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assemblage composition (Pusey et al. 1995, Reyes-
Gavilán et al. 1996, Gehrke et al. 2002). However, we
hypothesized that there are different causal mecha-
nisms. We believe that the short distance between
sampling points located up- and downstream of these
small dams, not large enough to be linked to environ-
mental/landscape differences between these sam-
pling points, which supports the hypo thesis that a
physical barrier is the main factor to explain the ob-
served differences. It appears that dams in smaller
streams block upstream movements of resident fish,
probably associated with reproductive and feeding
strategies, thereby reducing fish diversity in the head-
water areas. The results here suggest that dams sepa-
rated these fish assemblages, leading to the isolation
of certain fish groups in upstream areas. In compari-
son, fish in downstream areas have free movement to
access the Machado River and its other tributaries.
The fish remaining upstream effectively become
trapped in a smaller area and face increasing compe-
tition and predation pressures that may eliminate
some species, especially if they are rare or require
downstream  access as part of their life cycles.

The magnitude of the dams’ effect is associated
with fish life strategy. Some of the most abundant
periodic species, such as Steindachnerina fasciata,
Astyanax aff. bimaculatus and Bryconops cf. gia-
copinii, showed reduced abundance in upstream
areas and were dominant in downstream areas. In
the sense of Winemiller & Rose (1992), this group
includes mostly migratory species and therefore
should be particularly sensitive to the connectivity
loss resulting from physical barriers imposed by
aquaculture farms in the river channel.

Equilibrium species includes most groups belong-
ing to Siluriformes, Gymnotiformes and Perciformes.
We hypothesized that the unclear pattern observed
for equilibrium species could be explained by the dif-
ferent level of demographic compensation via disper-
sal exhibited by these species (Rose et al. 2001). Two
equi librium species were very abundant up- and
downstream—Aequidens tetramerus and Satanop-
erca juru pari—without a clear pattern of dominance
associated with the position related to the aqua -
culture farm. Both are small-size fish and exhibit life
history traits that could permit survival even with the
loss of connectivity.

Finally, opportunistic species showed no effect of
dams’ presence. The high abundance of sedentary
and opportunistic species in upstream areas could be
associated with the new environment, predominantly
lentic, caused by the stream impoundment (Loureiro
& Hahn 1996, Hoshino et al. 2016, Oliveira et al.

2016). These slow-moving environments are favor-
able for these species to complete their life cycle
because they do not rely on seasonal variations in
water level to reproduce (Graça & Pavanelli 2007,
Queiroz et al. 2013, Zuanon et al. 2015). They are
predominantly small-sized species (e.g. small pelagic
forage fish species), which exhibit high abundance
and fecundity (Hahn & Fugi 2007).

A critical threat associated with upstream isolation
is that it could end up causing localized extinction of
rare and endemic species, but in our study, we were
not able to sample these sites before the streams
were dammed. Comparisons with such areas as con-
trols would be important to determine if species suf-
fer declines or extinctions as a result of impound-
ments of fish farms. Headwater areas of Amazonian
streams, regionally called igarapés, host several rare
and endemic species adapted to these environments,
as small streams (Mendonça et al. 2005, Espírito-
Santo et al. 2009). One of the consequences of per-
manent flooding due to dam impoundment is the
elimination of temporary pools adjacent to the stream
channels that form after heavy rains, which are
known to be important to the stability of fish assem-
blages in headwater areas of Amazonian streams
(Espírito-Santo & Zuanon 2016). However, these
newly flooded environments could create further
niches for species that require more slow-moving
habitats for feeding or reproduction.

A final consideration related to impacts caused by
fish farming activity of tambaqui in the Machado
River basin is the presence of an introduced invasive
species, the tilapia Oreochromis niloticus, which is
another common aquaculture species (Zambrano
et al. 2006). Tilapia has been spreading invasively
throughout Brazilian waterways due to escapes from
aquaculture pens, causing competition with native
species for space and food. Furthermore, tilapia has
been disseminating parasites and diseases among
native fish (Fernandes et al. 2008, Miranda et al.
2010, Miranda 2012), putting in peril native fish com-
munities (Agostinho et al. 1999, Dias 2016).

We conclude that there are 2 important agendas to
follow: (1) create and test more natural fish passage
systems (FAO/DVWK 2002) as alternatives to fish
ladders to reduce the impact of impoundments on
aquatic biodiversity; (2) prevent introductions of non-
native fish to the Amazon Basin, substituting native
species to tilapia in fish farming. Given the high rate
at which anthropogenic changes are occurring in the
Amazonian environment (Hurd et al. 2016), the ur -
gency for research aimed at preserving the diversity
of these fish communities could hardly be greater.
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