INTRODUCTION

In fish, all activities including locomotion, digestion, reproduction and growth, are powered by aerobic metabolism and rely on the availability of dissolved O₂ (DO) (Fry 1971). As DO saturation declines and oxygen becomes metabolically limiting, activities non-essential to immediate survival, including feeding and growth, are minimized (Burt et al. 2013, Remen et al. 2016). For healthy Atlantic salmon, moderate DO levels, as high as 77 % saturation, lead to reduced feed intake (Remen et al. 2016). Saturations below 40 % force the switch to anaerobic metabolism, and can be lethal if conditions do not rapidly improve (Remen et al. 2016). As a result, the survival and production performance of farmed salmon is intrinsically linked to DO.

Cage size affects dissolved oxygen distribution in salmon aquaculture

Tina Oldham¹,* Frode Oppedal², Tim Dempster³

¹Aquatic Animal Health Group, Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania 7250, Australia
²Institute of Marine Research, Matredal 5984, Norway
³Sustainable Aquaculture Laboratory – Temperate and Tropical (SALTT), School of BioSciences, University of Melbourne, Victoria 3010, Australia

ABSTRACT: Atlantic salmon aquaculture is shifting toward larger cages, but the water quality implications of this shift are unknown. While larger cages could improve profitability through economies of scale, they may increase the risk of low dissolved O₂ (DO) conditions due to reduced water exchange. Low DO conditions reduce feed intake, meaning that the benefits of shifting to larger cages must be weighed against potential negative impacts on fish growth. To test the impact of cage size on DO distribution, we recorded DO saturation in several circular cages of 2 different sizes on a commercial salmon farm: 6 with 168 m and 4 with 240 m circumference. Static strings of DO loggers at 1, 4.5, 8, 12 and 16 m depths recorded DO saturation once every 60 s throughout a 10 d period in mid-summer. Overall, DO levels in standard 168 m circumference cages were suitable for salmon feeding and growth. DO levels were highly variable (57 to 134 % saturation), and were lower in cages than at the reference site. On average, DO saturation decreased with depth, and was lowest during the early morning hours. Lowest DO measurements occurred in the large 240 m circumference cages, where 1 in 20 of all recordings were at levels known to reduce salmon feeding and growth. DO levels in larger cages can suit salmon production, but site-specific environmental conditions throughout the year must be considered to ensure there is sufficient capacity to tolerate reduced water exchange.

KEY WORDS: Hypoxia · Salmo salar · Tasmania · Welfare · Feeding · Environment
duction volumes, as evidenced by the deployment of the world’s largest single fish cage of 250 000 m³ in 2017 (SalMar 2016). However, though larger aquaculture cages are more cost effective due to economies of scale, and are structurally better able to withstand harsh offshore conditions, increased cage size should decrease DO conditions within cages.

As cage size increases, the surface area to volume ratio of the cage declines and water exchange is reduced (Klebert et al. 2013). Aure et al. (2009) created a simple model to estimate DO levels within aquaculture cages as a function of stocking density, cage size and current speed. The model predicts that at a stocking density of 15 kg m⁻³ and current speed of 6 cm s⁻¹, DO concentrations would drop from 90% of ambient levels within a cage 30 m across to 50% in a cage 60 m across. Predicted DO levels drop further with increased stocking density or cage length, and decreased current speed (Aure et al. 2009).

Poor DO conditions, below levels known to cause reduced feed consumption and in some cases even death, have been documented in standard commercial salmon cages (12 500 to 24 500 m³) on 3 continents (Bergheim et al. 2006, Johansson et al. 2007, Burt et al. 2012, Stehfest et al. 2017). For this reason, any alterations to production strategy which may increase the likelihood of poor DO conditions, such as increasing cage size, should be approached with caution.

While the theoretical constraints and consequences of larger cages for DO levels are clear, the effect of cage size on DO has never been tested in a full-scale industrial setting. Using a unique site where 2 different cage sizes (168 and 240 m circumference) were co-located and contained commercial densities of salmon, we tested if DO saturation differed with cage size.

MATERIALS AND METHODS

Experimental setup

The experimental period ran from 14 to 24 December 2015 on a commercial Atlantic salmon farm in south-east Tasmania’s Huon estuary (43.26°S, 147.07°E). Bottom depth beneath the cages ranged from 18 to 30 m. Ten cages were evenly spaced in 2 parallel rows of 5 cages with approximately 100 m between all cages, arranged perpendicular to the primary N–S direction of tidal current flow (Fig. 1a,b). Each cage had 2 nets, an internal fish-containment net (mesh size: 35 mm) as well as an external predator net (mesh size: 125 mm).

Six of the cages were ‘standard’ size 168 m circumference circular tubes with internal nets measuring 52.5 m in diameter × 16.5 m deep (~35 000 m³ volume), while 4 of the cages were ‘large’ 240 m circumference circular tubes with internal nets measuring 76 m in diameter × 23 m deep (~104 000 m³ volume). The farm’s standard anti-fouling maintenance program, whereby the nets of all cages are visually monitored and regularly cleared of biofouling, was followed throughout the study. Visual inspection performed by divers and remotely operated vehicles determined that no detectable blockage increase occurred on any cages below the top metre of netting at any point throughout the study. Stocking densities ranged from 2.11 to 4.04 kg m⁻³, and average fish weight was between 2.27 and 3.18 kg based on data supplied by the farm (Table 1). Fish weight was determined during well-boat transfer of the full cage population at the time of cage stocking. As fish had
been recently distributed among cages at the beginning of the trial, there were minor size and density variations between cages with mean fish weights and stocking densities lower in the large cages than in the standard cages (Table 1). Fish were fed to satiation twice daily, beginning at 06:00 and 16:00 h.

We recorded DO in all 10 cages and a reference site 200 m south of the nearest cage. Static strings of DO loggers with copper anti-fouling caps (RBR-soloDO, RBR) were deployed at 1, 4.5, 8 and 12 m in all cages, with an extra logger at 16 m in the large cages and at the reference site (Fig. 1c). DO saturation measurements were recorded once every 60 s, by each logger, throughout the 10 d period. Across all 45 loggers, a total of 739 958 DO measurements were collected. Temperature profiles from 1 to 16 m depth were collected from the reference site at the beginning and end of the study on 16 and 27 December 2015, respectively.

Table 1. Cage position (Fig. 1), cage size, and weight (mean ± SD) and stocking density of Atlantic salmon in each cage

<table>
<thead>
<tr>
<th>Cage position</th>
<th>Cage size</th>
<th>Fish weight (kg)</th>
<th>Stocking density (kg m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard</td>
<td>3.18 ± 0.06</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>Standard</td>
<td>3.11 ± 0.05</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>Standard</td>
<td>3.05 ± 0.06</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>Standard</td>
<td>3.06 ± 0.07</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>Large</td>
<td>2.57 ± 0.04</td>
<td>2.3</td>
</tr>
<tr>
<td>6</td>
<td>Large</td>
<td>2.80 ± 0.06</td>
<td>2.6</td>
</tr>
<tr>
<td>7</td>
<td>Large</td>
<td>2.27 ± 0.05</td>
<td>2.1</td>
</tr>
<tr>
<td>8</td>
<td>Large</td>
<td>2.91 ± 0.06</td>
<td>2.6</td>
</tr>
<tr>
<td>9</td>
<td>Standard</td>
<td>3.07 ± 0.03</td>
<td>3.9</td>
</tr>
<tr>
<td>10</td>
<td>Standard</td>
<td>3.07 ± 0.03</td>
<td>3.9</td>
</tr>
</tbody>
</table>

RESULTS

DO saturations were highly variable throughout the study (Fig. 2) and ranged from 57 to 118% in cages and 69 to 134% at the reference site. The water column was well mixed from 0 to 16 m depth with regards to temperature and ranged from 15.3 to 15.5°C at the beginning of the trial and 16.9 to 17.1°C at the end. On average, DO was higher at the reference site (96 ± 0.03%) than in either the standard (90 ± 0.02%) or large (89 ± 0.03%) cages (mean ± SE). There was a small, but significant difference between mean DO saturation in the large and standard cages (p = 0.037), but no difference between positions among cages of the same size.

DO saturation decreased with depth in both cage sizes (p < 0.0001), but not at the reference site (Table 2). The lowest average DO saturation, 82 ± 5%, occurred at the 16 m depth in the large cages, as compared to 95 ± 5% at the 16 m depth of the reference site (mean ± SD). Of the 10 d included in the study, lowest mean daily DO occurred on 19 December 2015, which corresponded with a neap tide, when water flow was lowest (Fig. 3). DO levels also varied with time of day (Fig. 4). Similar patterns were recorded in both the cages and at the reference site, where DO saturations increased throughout daylight.
Fig. 2. Dissolved O₂ saturation in each cage and at the reference site throughout the trial from 14 to 24 December 2015. Low dissolved O₂ levels known to reduce feed intake and growth in post-smolt Atlantic salmon (Remen et al. 2016) are shaded in red. Numbers in the upper right corner of plots correspond to cage numbers in Fig. 1b.
Oldham et al.: Cage size affects dissolved oxygen

hours to a peak in the afternoon, after which they dropped through the night to a minimum in the early morning (Fig. 4).

The majority of DO measurements collected during this trial were physiologically suitable for Atlantic salmon post-smolt growth and welfare (Fig. 5). No measurements were recorded below the LOS for Atlantic salmon post-smolts as calculated by Remen et al. (2013). Further, all measurements at the reference site were above the level known to reduce feed intake, and less than 1% of measurements in the standard sized cages were below it. In the large cages, 5% of all DO measurements were below the level known to reduce feed intake. There was a clear pattern with depth in the percentage of measurements that were below the reduced feed intake threshold: 1 and 4.5 m always had suitable DO conditions, whereas 8 (3%), 12 (5%) and 16 m (15%) had increasingly poor DO levels (Figs. 2 & 5).

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Standard</th>
<th>Large</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95.1 ± 4.7</td>
<td>97.4 ± 5.1</td>
<td>90.4 ± 3.9</td>
</tr>
<tr>
<td>4.5</td>
<td>90.2 ± 4.3</td>
<td>95.8 ± 4.8</td>
<td>111.4 ± 4.4</td>
</tr>
<tr>
<td>8</td>
<td>89.5 ± 4.6</td>
<td>86.4 ± 5.0</td>
<td>91.7 ± 4.4</td>
</tr>
<tr>
<td>12</td>
<td>85.2 ± 4.2</td>
<td>85.5 ± 5.5</td>
<td>92.8 ± 5.9</td>
</tr>
<tr>
<td>16</td>
<td>NA</td>
<td>81.9 ± 5.2</td>
<td>94.8 ± 5.1</td>
</tr>
</tbody>
</table>

DISCUSSION

As one of the primary determinants of fish metabolism, understanding DO dynamics in aquaculture cages is critical for maximizing production perform-
ance (Fry 1971). Our study provides evidence that DO levels are lower in larger cages, but also demonstrates that DO concerns need not prohibit the use of larger cages as long as ambient environmental conditions are sufficient to tolerate the reduced water exchange. Further, the continuous, high-resolution DO dataset presented here provides new insights as to the distribution and variability of DO in salmon cages, and highlights key parameters for consideration when developing monitoring protocols.

Our study was conducted at full industrial scale, with stocking densities at the lower end (≤ 25 kg m⁻³) of the range for modern production. While mean DO saturation only differed marginally between cage sizes, 90 ± 0.02% (standard) and 89 ± 0.03% (large), there were considerable differences at the lower extremes. Though 99% of all DO measurements in the standard cages were at levels suitable for salmon production, almost 1 in 6 of the measurements at 16 m depth in the large cages were at levels known to reduce feed intake and growth in healthy fish (Figs. 2 & 5), despite stocking densities being lower than or equivalent to those in the standard cages. The observed pattern of decreasing DO saturation with increasing depth could explain the lower DO in large cages, as they extended deeper than the standard cages, but this pattern was only present in cages and not at the reference site (Table 2).

It has been well established that fish do not distribute themselves evenly throughout cages, but rather alter their distribution and behaviour in response to a wide variety of factors (Oppedal et al. 2011a). While some studies have observed avoidance of extremely poor DO conditions (Johansson et al. 2007, Stehfest et al. 2017), evidence suggests that other environmental factors, such as temperature and light, over-ride behavioural avoidance of moderate DO levels known to reduce feed intake and growth (Johansson et al. 2006, Oldham et al. 2017, Solstorm et al. 2018). Such uneven distribution can result in intense crowding and observed fish densities as much as 20x the stocking density (Oppedal et al. 2011b). These findings suggest that the low DO measurements in the large cages are not simply a result of the cages being deeper, but also the result of altered fish distribution and/or the larger cage structure imped ing water exchange. How fish utilize space in different size cages and the impact of cage size on water exchange specifically, are topics that warrant further investigation. Understanding the drivers behind sub-optimal DO conditions would allow targeted mitigation measures, such as the addition of supplemental oxygenation at the depths and times of greatest concern, or the use of lights to optimize the distribution of fish biomass throughout the cage, to be implemented effectively (Endo et al. 2008, Wright et al. 2015).

Despite the lower DO levels in large cages, the majority of measurements collected during this study in both cage sizes were at levels suitable for Atlantic salmon production performance and welfare (Figs. 2 & 5). Overall, DO levels displayed a high degree of temporal and spatial variability, ranging from 57 to 134% saturation, and were similar to conditions observed in previous studies (Johansson et al. 2006, 2007, Burt et al. 2012). Spatially, we observed a consistent pattern of decreasing DO saturation with increasing depth inside cages (Table 2). This pattern is similar to conditions observed by Johansson et al. (2006) on a research farm, but the opposite to that observed on commercial farms in both Norway and Canada (Johansson et al. 2007, Burt et al. 2012). Although no universal mechanism driving DO distribution in aquaculture cages can be pinpointed due to the many complex interacting forces present, what is evident from these studies spanning 3 continents is that site-specific patterns exist. At each site, considerations such as differing oxygen solubility with temperature, altered mixing patterns as a result of density gradients, and the specific controlling factors affecting current velocity, direction and regularity must all be considered in order to understand prevailing DO conditions (Johansson et al. 2007, Burt et al. 2012).

Throughout this study, we also observed a high degree of temporal variability, with DO saturation fluctuating both on daily and hourly timescales. Daily mean DO saturation ranged from 87 to 92% in cages and from 94 to 97% at the reference site. DO levels at the reference site were less variable, but followed the same daily trends as DO levels in cages (Fig. 3). Lowest daily mean DO in both cage sizes and at the reference site occurred on 19 December 2015, which coincided with a neap tide. Neap tides, which occur just after the 1st or 3rd quarters of the moon, are when there is the least difference between high and low water, and thus minimal water movement. A previous study which investigated the relationships between DO, current velocity and tide predictions found a significant correlation between current velocities and DO conditions in salmon cages, but no relationship with local tide predictions (Johansson et al. 2007). A major difference between their study sites and that of this trial, however, is that water currents in the Huon estuary are primarily tide driven whereas at their fjordal sites, current patterns are
more complex (CSIRO 2000, Johansson et al. 2007). Given the importance of tides in controlling currents at our study site, it is logical that neap tides would coincide with lower DO conditions.

We also observed a distinct daily pattern to DO fluctuations. Broadly, DO levels increased through the daylight hours to a peak in the afternoon (16:00 to 19:00 h), and decreased throughout the night to a minimum in the early morning (6:00 to 10:00 h, Fig. 4). The pattern was most pronounced at the reference site, but conditions in both cage sizes also followed the same pattern. While we do not have data to confirm this explanation, a likely possibility is that photosynthesis by algae during daylight hours causes a daily increase in DO saturation, and drawdown due to respiration without replacement at night creates a daily minimum (Wildish et al. 1993). Although the precise pattern we observed in this trial is likely to be specific to farms in the Huon estuary, the influence of daylight on DO conditions in cages has important implications for farms considering site placements in high latitude areas that experience light intensities too low for primary production during large periods of the year.

Failure to account for local DO conditions can result in reduced feed intake and growth, increased susceptibility to disease and, in extreme cases, mortality (Remen et al. 2012, 2013, 2014, 2016, Burt et al. 2013). Our results confirm the expectation that DO levels are lower in larger cages, but also demonstrate that larger cage sizes can be used without impacting salmon production performance or welfare when ambient DO conditions are sufficient, such as those recorded throughout this study. However, in locations with lower rates of DO replenishment, such as the conditions observed by Stehfest et al. (2017) in Macquarie Harbour, Tasmania, shifting to larger cages is not recommended. Even in this study, with low stocking densities and high replenishment rates, limiting DO conditions occurred in the large cages. Therefore, use of very large cages, such as Ocean Farm 1, or higher stocking densities in the large cages studied here, present risks for salmon welfare and production performance even at sites with high DO replenishment (SalMar 2016). Further, though the precise patterns documented here of decreasing DO with depth and during the night may be site specific, they could have parallels in many marine cage aquaculture situations. Together, this study illustrates the importance of site- and time-specific considerations when developing monitoring protocols or considering alterations to production strategy, such as larger cages.

Acknowledgements. The authors thank the personnel at Huon Aquaculture and Fletcher Warren-Myers, Daniel William Wright, Francisca Samson, Michael Sievers, Cassandra Pert, Juan Manuel Valero Rodriguez, Matthew Le Feuvre and Kris Oldham for their hard work and assistance in the field. Funding for this work was provided by an Australian Research Council Future Fellowship grant to T.P., the Norwegian Research Council ‘Future Welfare’ project (267800), Huon Aquaculture Company and an Australian Government Research Training Program Scholarship awarded to T.O.

LITERATURE CITED

Diana JS, Egna HS, Chopin T, Peterson MS and others (2013) Responsible aquaculture in 2050: valuing local conditions and human innovations will be key to success. Bioscience 63:255–262

FAO (Food and Agriculture Organization of the United Nations) (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. FAO, Rome

Fry F (1971) 1 - The effect of environmental factors on the physiology of fish. Fish Physiol 6:1–98

Huguenin JE, Ansuini FJ (1978) A review of the technology...
and economics of marine fish cage systems. Aquaculture 15:151–170

Editorial responsibility: Pablo Sánchez Jerez, Alicante, Spain

Submitted: October 26, 2017; Accepted: February 19, 2018
Proofs received from author(s): April 5, 2018