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INTRODUCTION

Coastal marine aquaculture is growing steadily
world wide as a means of food production, but has
been criticized on environmental grounds (Pillay
2008). One of the most contentious issues is the possi-
ble impact of aquaculture effluents accumulating on
the seabed on community structure and ecosystem
functioning of the benthic ecosystem (Kalantzi &
Karakassis 2006, Dubois et al. 2007). Compared to fin-

fish farming, shellfish aquaculture is considered to
cause less damage to the environment as there is no
addition of feed (Crawford et al. 2003). However,
shellfish are recognized as keystone species that exert
a bottom-up effect on marine ecosystems through
biodeposition (i.e. the deposition of faeces and pseu-
dofaeces), transferring materials and nutrients to the
benthic environment (Newell 2004). This process can
affect ecosystem functioning by serving as additional
food sources to the benthos and can thus potentially
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ABSTRACT: The farming of the non-indigenous bay scallop Argopecten irradians in coastal waters
generates large amounts of biodeposits that potentially change the trophic pathways and quality of
the benthic food web at lower trophic levels such as meiobenthos. To understand the trophic link
between faecal pellets of bay scallop and meiobenthos in the aquaculture area, we investigated the
resource use of harpacticoid copepods and nematodes inside and outside of 3 bay scallop farms in
Laizhou Bay (Bohai Sea, China) using natural abundance of stable carbon and nitrogen isotopes to-
gether with fatty acid profiling. Faeces were found to be enriched in δ15N compared to all other food
sources, which made faecal matter traceable. The enriched δ15N in several meiobenthos at the
farms, together with the mixing model results, indicated that faeces could be a new food source for
most of harpacticoid copepods and some nematodes. The quantities and the pathways of assimila-
tion differed between the copepod families, depending on their feeding behaviors and the receiving
environment. Furthermore, due to the presence of higher levels of polyunsaturated fatty acids, in
particular docosahexaenoic acid, the dominant copepod family Canuellidae that abundantly con-
sumed scallop faeces showed enhanced nutritional quality compared with those in the control sites.
Thus, aquaculture of non-indigenous bay scallops provided a food source that was  directly and in-
directly consumed by meiobenthos underneath the scallop farms and improved the quality of lower
level consumers as a food item in the benthic food web.
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change the benthic energy flow (Peterson & Heck
1999, Callier et al. 2008). Although many studies have
recorded the influence of bio deposition on benthic as-
semblages (Hartstein & Rowden 2004, Callier et al.
2008), little is known about the fate of biodeposits and
their functional effect on the benthic ecosystem, e.g.
through the assimilation of these deposits by benthic
organisms. While biodeposits have a good nutritional
value (McKindsey et al. 2011), it is unclear whether
the benthos can benefit from incorporating these
 deposits into their diet.

China is the biggest shellfish aquaculture producer
worlwide and scallop farming using longlines in
coastal marine waters is a major part of its aqua -
culture industry (FAO 2016). Among the cultured
scallop species, the non-indigenous species (NIS)
 Argopecten irradians (a.k.a. bay scallop), introduced
from North America, has dominated the Chinese scal-
lop production over the past 30 yr (Guo & Luo 2016).
In terms of economic output, A. irradians has an ad-
vantage over the native scallop Chlamys farreri due to
the faster growth rate (Guo & Luo 2016). However, the
high biodeposition rate of A. irradians (almost 10
times higher than C. farreri) also poses a threat to the
benthic ecosystem (Zhou et al. 2006, Li et al. 2009,
Wang 2015). However, little is known about whether
and how the biodeposition of non-indigenous A. irra-
dians can potentially affect organisms in the sediment
and the overall functioning of the benthic ecosystem.

Ecosystem functioning integrates the energy flux
within a system (Power 1992). The process of re -
source utilization by benthic consumers, especially
meiobenthos (the smaller fraction of metazoans pass-
ing through a 1 mm sieve but being retained on a
38 μm sieve), is crucial to understand the energy flux
of an ecosystem, because: (1) meiobenthos are highly
abundant and form a link between primary produc-
ers and higher trophic levels (TLs) (Leduc et al.
2009); and (2) due to their small size, short generation
times and close associations with sediments, they are
sensitive to stressors and respond functionally to
them (Kennedy & Jacoby 1999). However, there is lit-
tle information on functional responses (in particular,
resource utilization) of meiobenthos to aquaculture
biodeposition. Since the effects of aquaculture waste
are known to differ among trophic guilds and feeding
behaviors of animals (Wai et al. 2011), it is important
to incorporate the knowledge of functional responses
of different taxonomic groups in order to understand
the impact on ecosystem functioning. Furthermore,
harpacticoid copepods are important food sources
and providers of fatty acids (FAs), especially highly
polyunsaturated fatty acids (PUFAs), to higher mar-

ine consumers (de Lima et al. 2013). Their FA profiles
depend on their food sources and environmental con-
ditions (Nanton & Castell 1999, De Troch et al. 2012,
de Lima et al. 2013). Determining the presence of
quality-indicator FAs, such as PUFA, 20:5ω3 (eicosa -
pentaenoic acid; EPA) and 22:6ω3 (docosahexaenoic
acid; DHA), in harpacticoid copepods will contribute
to the assessment of the functional impacts of bio -
deposition by bay scallop in aquaculture areas.

The analysis of the natural abundance of stable iso-
topes together with FA profiles is an efficient tool to
investigate the diet of meiobenthos (Leduc & Probert
2009, Cnudde et al. 2015). Stable carbon ratios reflect
the food sources of consumers, and nitrogen ratios
are used to determine their trophic positions (DeNiro
& Epstein 1978, Minagawa & Wada 1984). Moreover,
stable isotopes help to trace the fate of aquaculture
waste in different communities (Gondwe et al. 2012,
Vizzini & Mazzola 2012, Sanz-Lázaro & Sanchez-
Jerez 2017). FA profiles provide information on food
sources such as diatoms and bacteria (Kelly &
Scheibling 2012).

The aim of this study was to evaluate the impact of
aquaculture of the NIS bay scallop A. irradians on
benthic ecosystem functioning. Specifically, we used
stable isotopes and FAs to test the following hypo -
theses: (1) the presence of a scallop farm affects the
isotopic values of primary organic sources in the sed-
iment; (2) scallop faeces are consumed by meioben-
thos in the receiving sediment; (3) the quantity of fae-
ces consumption differs among taxa/families of
meiobenthos; and (4) the presence of a scallop farm
changes the FA profile of the harpacticoid copepods
occurring in the sediment.

MATERIALS AND METHODS

Study area

Samples were collected in scallop farms located
in the eastern part of the Laizhou Bay (37° 00’ to
38° 30’ N, 118°45’ to 120° 30’ E). Laizhou Bay is lo -
cated in the south Bohai Sea, Shandong Province, on
the north coast of China. It has a mean depth of 9 m
(maximum ~18 m), a coastline of 320 km and a total
area of ~700 000 ha (Zhuang et al. 2014). The north-
east–southeast currents dominate with a mean veloc-
ity of 20 cm s−1, indicating a poor exchange of water
(Zhao & Chen 2001). The area is an important spawn-
ing and breeding ground for many fishes but is cur-
rently under pressure due to human activities such as
intensive mariculture (Jin et al. 2013).
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The bay scallop Argopecten irradians is a major
mariculture species, which has been cultivated using
the suspended-longline method in this area for 30 yr.
Bay scallop mariculture in Laizhou Bay is one of the
most important sources of scallop production in
China, with a total area of 500 ha and a density of
200 ind. m−2 yielding a production of around 20 000 t
yr−1 (Liu et al. 2004, Wang 2015). Bay scallops are
 cultured from May to November each year without
adding any feed. The rest of the year, the area is
devoid of any aquaculture activities.

Sampling design

We selected 3 of the largest farms and 3 correspon-
ding control sites. To exclude any direct effect of
aquaculture on the control sediment, each control
site was located 2 km to one side of the farm, at the
same depth as the farm, so that it was exposed later-
ally to the predominant current that also flowed
through the farm. Each pair of sites, ‘farm’ and ‘con-
trol’, was considered as a single station, and the 3 sta-
tions were characterized by sediment type as sandy-
shallow (Stn SS) (2% clay, 24−28% silt, 69−73%
sand; water depth 5 m), muddy-shallow (Stn MS) and
muddy-deep (Stn MD) (4−6% clay, 53−55% silt,
39−42% sand; water depth 7.5 and 12 m respective -
ly). Previous observations in Laizhou Bay revealed
that biodeposition rates of bay scallops peaked in
November, and rates of larger individuals were
higher than those of smaller ones (Wang 2015). We
thus conducted sampling for stable isotopes and FA
analysis in October−November 2015 and 2016, be -
fore the harvest of scallops, in order to cover the
period of high biodeposition rates in this area. For FA
samples, an additional sampling campaign was con-
ducted in May 2016 before the scallop lantern nets
were placed in this area.

Sampling procedure

We considered that meiobenthos from each farm
and control site were exposed to the following com-
mon primary organic sources: (1) phytoplankton from
the water column, (2) microphytobenthos (MPB) in
the sediment surface, and (3) fragments of seagrass
Zostera marina leaves in the sediment (senescent
fragments of Z. marina verified by microscopical ob-
servation). Bay scallop faeces were only considered
as a potential food source at the farm sites. Phyto-
plankton was considered to be the major component

in the pre-filtered particulate organic matter (POM)
be cause the weight-to-weight ratio of parti culate
orga nic carbon to chlorophyll a (POC/chl a) ranged
from 19 to 37 in October-November in our sampling
area (Wang 2015). This is within the known range of 2
to 200 for POC/chl a in algae (Cifuentes et al. 1988).
POM samples were obtained at each control site in
order to avoid the potential addition of aquaculture-
derived organic matter. About 500 ml seawater was
filtered through a 58 μm net to remove zooplankton
and large detritus, and subsequently filtered on pre-
combusted (450°C, 4 h) 0.7 μm Whatman GF/F glass
fiber filters. MPB samples were collected at each farm
and control sites in 2016. Due to the insufficient
MPB biomass for reliable stable isotope analysis, we
pooled farm and control together for each station,
which is justified by the similar δ13C and δ15N values
of the surface sediment at each farm and control site
(see ‘Data analysis’ below). MPB were separated
from the sediment surface using a modified method
of Doi et al. (2003): the top 1 cm sediment collected by
a Van Veen grab was covered by a 2 mm layer of
quartz sands (25 to 65 μm diameter,  pre-combusted at
500°C for 2 h), a nylon net (75 μm), and another layer
of 2 mm pre-combusted quartz sands. The dishes
were illuminated for 24 h, while moisture was main-
tained with continuous spraying of filtered seawater
on the sand. After illumination, the upper sand layer
was scraped off and resuspended in  filtered seawater.
The supernatants were filtered on pre-combusted
Whatman GF/F filters. We also collected sediment
surface or ganic matter (SSOM) to evaluate the
impact on the organic pool of surface sediments.
SSOM was collected at each farm and control site by
scraping the top layer (0 to 1 cm) of sediment from the
Van Veen grab. To collect the bay scallop faeces, 20
individuals of scallop (average body length of 5.5 cm)
were placed in the containers with filtered seawater
over night and faeces were obtained by filtering the
water from the containers on pre-combusted GF/F
 filters. Samples (n = 2 to 4) were taken for POM, MPB,
SSOM and scallop faeces.

Meiobenthos for stable isotopes and FAs were col-
lected qualitatively by scraping the top 1 cm layer of
the sediment from 3 randomly selected patches (ap -
prox. 1  × 1 m) that were at least 1 m apart at the farm
and control sites.

Stable isotope analysis

The POM, MPB, and faeces samples were oven-
dried at 60°C to a constant weight and divided into 2
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subsamples. One set was treated with hydrochloric
acid (HCl) fume to remove carbonates for 13C, and
the other, without acid treatment, was used for 15N
analysis. All samples were put into tin capsules (Ele-
mental Microanalysis, 8 × 5 mm) and pinched closed.

30 to 60 mg of sediment was acidified in silver cap-
sules (Elemental Microanalysis, 8 × 5 mm) with dilu -
ted HCl to remove carbonates and washed with dis-
tilled water. The capsules were dried and pinched
closed afterwards.

Sediments were sieved with filtered seawater
through a 500 μm and a 150 μm sieve. The fraction
retained on the 150 μm sieve was frozen and trans-
ported to the lab. The frozen samples were thawed
and meiobenthos were handpicked with a needle
under a stereomicroscope. Meiobenthos were sorted
into nematodes (150 to 300 ind. per sample) and
copepods. For the samples collected in 2015, cope-
pods were pooled together (80 to 100 ind. per sam-
ple) while copepod samples in 2016 were sorted to
family level (80 to 120 ind. per sample). Meiobenthos
were rinsed with MilliQ water twice before being
transferred to tin capsules, oven-dried overnight at
60°C and pinched closed. All samples were stored in
a desiccator prior to further analysis.

C and N stable isotopes were measured with an
isotope ratio mass spectrometer (type Europa Inte-
gra) at UC Davis Stable Isotope Facility (University of
California). Isotope values are expressed as δ13C and
δ15N (‰) determined by the following equation:

(1) 

where R = 13C/12C or 15N/14N. Reference standards
were PDB for δ13C and atmospheric nitrogen for δ15N.

Fatty acid profiling

FA samples included only specimens of the har -
pacticoid copepod family Canuellidae collected at
Stn SS. The abundances of the rest of the meio -
benthos at the other sites were too low to obtain
enough biomass for a reliable analysis. Canuellidae
were extracted alive from sediments following the
method of Svensson et al. (2010) and stored at room
temperature overnight to clear their gut content. The
next day, 100 to 150 individuals were picked, washed
with filtered seawater, and transferred to glass tubes
for storage at −80°C prior to FA extraction.

Lipid extraction, methylation to fatty acid methyl
 esters (FAMEs), and FAME analysis followed the
procedure of De Troch et al. (2012). FAME of 19:0

(Fluka 74208) was added as internal standard. The
FAMEs were analyzed with a gas chromatograph
(HP 6890N) coupled to a mass spectrometer (HP
5973). FAMEs were identified by comparing the re -
tention time and mass spectra with authentic stan-
dards and mass spectral libraries (WILEY, NITS05)
and then analyzed with the software MSD Chem -
Station (Agilent Technologies). Individual FAMEs
were quantified by using a component FAME and
BAME mix (Supelco #47885 and #47080 respectively,
Sigma-Aldrich) and additional standards (Larodan).
Shorthand FA notations were expressed as A:BωX,
where A gives the number of carbon atoms, B repre-
sents the number of double bonds and X is the posi-
tion of the first double bond closest to the terminal
methyl group.

Data analysis

Variations in δ13C and δ15N values of potential food
sources, SSOM, and meiobenthos were tested using
analysis of variance (ANOVA) followed by Student-
Newman-Keuls pairwise comparisons. Prior to ANO -
VA, the assumption of homogeneity of variances
were diagnosed with Kolmogorov-Smirnov tests and
Levene’s tests, respectively. Log transformations were
used to meet this assumption if necessary.  Non-
parametric Kruskal-Wallis tests were conducted when
homogeneity of variation could not be reached. Dif-
ferences between farm and control at each station for
δ13C and δ15N values of SSOM, TL, and FA indicators
were assessed using t-tests. ANOVA and t-tests were
conducted with the software SPSS 20.0.

To identify the difference in isotopic values (δ13C
and δ15N) of meiobenthos between farm and con-
trol, the δ13C and δ15N ratios of taxon or family co-
occurring in farm and control sites were plotted in
the same biplot (i.e. δ13C control/δ13C farm and δ15N
control/δ15N farm). Taxa or families were considered
to have similar δ13C or δ15N values if the ratio fell
within the 95% confidence interval (CI) encompass-
ing the 1:1 correlation between farm and control
 isotopic  values.

The TL of meiobenthos was estimated based on
δ15N values:

TLconsumer = 2 + (δ15Nconsumer − δ15Nbase)/Δ15N (2)

where δ15Nbase is the δ15N of primary consumer i.e.
the family of harpacticoid copepods that has the
 lowest δ15N in each site. The Δ15N of 2.3‰ for mar-
ine organisms was adopted (Zanden & Rasmussen
2001).

C or N = –1 1013 15 sample

standard

3( )δ ⎡
⎣⎢

⎤
⎦⎥

×
R

R
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A mixing model MixSIR applied Bayesian method
was used to calculate the potential food sources of
meiobenthos (Moore & Semmens 2008). Trophic en -
richment factors (TEF) of 0.3 ± 1.3‰ δ13C and 2.3 ±
1.8‰ δ15N were adopted for each trophic step (Zan-
den & Rasmussen 2001). The isotopic values of the
seagrass Z. marina were adopted from Hoshika et al.
(2006). We calculated isotopic data only for the year
2016 because MPB was not collected in 2015. MPB
and POM were pooled as a logical group represent-
ing the microalgae-derived organic matter (Phillips
et al. 2005).

A 2-way permutational multivariate analysis of
variance (PERMANOVA, main test and pairwise test)
and analysis of similarity (ANOSIM) were run on the
relative FA profiles of Canuellidae in Stn SS in 2016.
Time (‘Before vs. During’, where ‘Before’ refers to the
period prior to the start of seasonal aquaculture pro-
duction) and site (‘Farm vs. Control’) were orthogo-
nal and fixed factors. A distance-based test for homo-
geneity of multivariate dispersions (PERMDISP) was
used to test the homogeneity of multivariate disper-
sion (Anderson 2006). To visualize the degree of
 dissimilarity of FA composition between groups, non-
metric multi-dimensional scaling (nMDS) was con-
ducted based on a Bray-Curtis resemblance matrix of
untransformed relative FA profiles. The contribution
of individual FA to these clusters was tested by simi-

larity percentages (SIMPER) analysis. All multivari-
ate analyses were performed with Primer V6 (Clarke
& Gorley 2006), using the PERMANOVA+ add-on
package (Anderson et al. 2008).

RESULTS

Stable isotopes of food sources

Scallop faeces showed enriched δ15N values (9.40 ±
1.03‰ in 2015 and 9.44 ± 0.93‰ in 2016, Fig. 1),
which were higher than those of any other potential
food source (ANOVA for 2016: F6,13 = 20.999, p <
0.001; 2015: F3,11 = 8.666, p = 0.003). For the δ13C val-
ues, significant differences were found, with decrea -
sing signatures from seagrass (Zostera marina) to
scallop faeces to POM and MPB (Fig. 1A). Isotopic
composition of POM and MPB varied among stations
in terms of δ15N values in 2016 (ANOVA, POM in
2016: F2,6 = 6.806, p = 0.029; MPB in 2016: F2,5 =
13.900, p = 0.009) (Fig. 1B). Within each station, only
Stn MD and Stn SS showed significant differences in
isotopic signatures. At Stn MD the MPB had more
depleted δ15N values compared with POM, while
there were no differences at SS and MS (t-test, SS:
t1.074 = 6.157, p = 0.091; MS: t4 = 1.622, p = 0.180; MD:
t4 = 3.715, p = 0.021). At Stn SS δ13C values of POM
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Fig. 1. Average stable (A) carbon and (B) nitrogen isotope signatures (mean ± SD for n replicates) of primary organic food
sources of meiobenthos taxa collected from ‘farm’ and ‘control’ sites at 3 stations at scallop farms in Laizhou Bay, China in 2015
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were more depleted than those of MPB, while there
were no differences at MS and MD (t-test, SS: t3 =
9.203, p = 0.003; MS: t4 = 6.908, p = 0.415; MD: t4 =
1.050, p = 0.353). The δ15N values of POM at Stns SS
and MS were lower in 2015 compared with those in
2016 (Fig. 1B), and Stns SS and MD in 2015 displayed
more depleted δ15N than in 2016 (F5,14 = 3.477, p =
0.030; post hoc test α = 0.014 for Stn SS and α = 0.023
for Stn MS).

Stable isotopes of SSOM

Results of t-tests showed there was no significant
difference for either δ13C or δ15N of SSOM between
farm and control sites at each station (Fig. 2; see also
Table S1 in the Supplement at www. int-res. com/
articles/ suppl/ q010 p227 _ supp. pdf; t-test: p > 0.05).
The ANOVA test for the δ15N values of SSOM at 3
stations in 2015 showed a spatial variation (ANOVA:
F5,12 = 33.338, p < 0.001) with Stn SS having slightly
lower δ15N values (Fig. 2).

Stable isotopes and trophic level of meiobenthos

Copepods and nematodes were the major meioben-
thos taxa in all stations, accounting from 8 to 15% and
45 to 92% for meiobenthos biomass respectively (au-
thors’ unpubl. data). For copepods, in total 4  families

were identified: Canuellidae, Laophontidae, Ectino -
somatidae, and Miraciidae. At Stns SS and MS, Ca -
nuellidae was the dominant copepod family at both
control and farm sites. At Stn MD, copepods were
more diverse at the farm site, where Laophontidae,
Ectinosomatidae, Miraciidae, and Canuellidae were
abundant; while at the control site only Lao phontidae
and Ectinosomatidae were abundant. C and N iso -
topic values varied spatially and were not always the
same in the 2 sampling events, ranging from −23.02 ±
0.76‰ to −19.16 ± 0.20‰ for δ13C and 8.13 ± 0.13‰ to
14.37 ± 0.17‰ for δ15N (Table 1). Carbon and nitrogen
isotopic values varied among meiobenthos taxa (in
2015, δ13C: F12,31 = 31.126, p < 0.001; δ15N: F12,31 =
9.832, p < 0.001; in 2016, δ13C: F13,31 = 30.035, p < 0.001;
δ15N: F13,31 = 8.089, p < 0.001). In general, nematodes
had higher δ15N values compared with copepods from
the same site, except for the nematodes from 2015
Stn SS that showed a slightly lower value at the farm
and a similar value at the control site (Table 1). For the
common copepod family Canuellidae, isotopic values
 displayed high variation (mean values ranged from
−21.27 to −19.16‰ and from 8.13 to 12.55‰ for
δ13C and δ15N respectively). Family Ectinosomatidae
showed the highest δ15N among copepods at the farm
at Stn MD in 2016.

With regard to TL, nematodes at Stns MD and MS
showed higher values than any other meiobenthos,
ranging from 2.9 to 3.7 (ANOVA: F19,47 = 6.024, p <
0.001). Compared with nematodes from the same
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site, the TL values of copepods were lower and var-
ied among families and sites. Canuellidae always
displayed the lowest TL value at each site, except
for Stn SS in 2015 when nematodes had the lowest
TL (Table 1). Laophontidae and Miraciidae showed
intermediate TL corresponding to an omnivore signal
(Post 2002, Maria et al. 2012). Only Ectinosomatidae

from the farm site at Stn MD in 2016 showed a car-
nivorous signal (TL = 3.2); the was significantly
higher than at the control site at the same station (TL
control = 2.4; p = 0.004; Table 1).

The δ13C and δ15N ratios of co-occurring species at
control and farm sites from each station are presented
in Fig. 3. For δ13C, most taxa showed similar values at
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Station Taxon Control Farm t−test for TL
δ13C δ15N TL δ13C δ15N TL t (df) p-value

2016
SS Canuellidae −20.32 ± 0.08 (3) 11.63 ± 0.08 (3) 1.9 −20.40 ± 0.01 (4) 12.55 ± 0.03 (4) 2 0.818 (5) 0.451NS

MS Canuellidae −19.28 ± 0.08 (3) 8.52 ± 0.05 (3) 2 −19.50 ± 0.07 (3) 8.13 ± 0.13 (3) 2 0.088 (4) 0.943NS

Nematoda −19.68 ± 0.12 (3) 12.04 ± 0.29 (3) 3.5 −20.21 ± 0.16 (3) 12.07 ± 0.20 (3) 3.7 1.922 (4) 0.117NS

MD Laophontidae −23.02 ± 0.76 (3) 8.71 ± 0.97 (3) 2 −20.98 ± 0.18 (3) 9.61 ± 0.19 (3) 2.4 1.705 (4) 0.163NS

Ectinosomatidae −20.39 ± 0.11 (3) 9.68 ± 0.19 (3) 2.4 −19.51 ± 0.26 (3) 11.41 ± 0.48 (3) 3.2 6.014 (4) 0.004**
Miraciidae n/a n/a n/a −19.72 ± 0.31 (3) 9.67 ± 0.25 (3) 2.4 n/a n/a
Canuellidae n/a n/a n/a −19.16 ± 0.20 (3) 8.63 ± 0.28 (3) 2 n/a n/a
Nematoda −21.36 ± 0.21 (3) 11.83 ± 0.26 (3) 3.4 −19.88 ± 0.32 (4) 12.04 ± 0.42 (4) 3.5 0.987 (5) 0.369NS

2015
SS Canuellidaea −20.35 ± 0.42 (4) 8.98 ± 0.22 (4) 2 −20.58 ± 0.33 (4) 10.66 ± 0.11 (4) 2 1.731 (6) 0.134NS

Nematoda −19.54 ± 0.65 (3) 8.25 ± 0.51 (3) 1.7 −19.67 ± 0.72 (4) 10.89 ± 0.31 (4) 2.1 3.820 (5) 0.012*
MS Canuellidaea −21.27 ± 0.83 (4) 10.36 ± 0.38 (4) 2 −20.95 ± 0.07 (4) 11.55 ± 0.11 (4) 2 0.986 (6) 0.362NS

Nematoda −20.83 ± 0.19 (3) 13.28 ± 0.21 (3) 3.3 −20.38 ± 0.12 (3) 13.97 ± 0.09 (3) 3 3.960 (4) 0.017*
MD Bulk copepoda −21.08 (1) 11.66 (1) 2 −21.45 ± 0.04 (2) 12 ± 0.4 (2) 2 n/a n/a

Nematoda −20.88 ± 0.29 (2) 13.65 ± 0.01 (2) 2.9 −20.22 ± 0.07 (2) 14.37 ± 0.17 (2) 3 n/a n/a
aFamily Canuellidae represented >70% of sampled organisms per replicate

Table 1. δ13C and δ15N values (mean ± SD, with number of replicates shown in parentheses) and trophic levels (TL, mean) of harpacticoid
copepods and nematodes from scallop farms in Laizhou Bay, China in 2015 and 2016. Samples were taken from ‘control’ and ‘farm’ sites
at 3 stations, characterized by sediment type as sandy-shallow (SS), muddy-shallow (MS) and muddy-deep (MD). Results of t-tests of
TL in taxa co-occurring in farm and control sites are shown. ***p < 0.001; **p < 0.01; *p < 0.05; NS = non-significant; n/a: not applicable
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farm and control sites since they fell
within the 1:1 correlation 95% CI. For
δ15N, nematodes at Stns MS and MD
had similar values be tween farm and
control sites, but nematodes at the
farm site at Stn SS showed a more en-
riched δ15N compared to the control
site. All copepods in 2015 and all the
abundant families in 2016 (except
family Canuellidae at Stn MS) showed
more enriched δ15N at farm sites com-
pared to control sites.

Mixing model estimation of utiliza-
tion by  meiobenthos

In general, faeces-derived materials
were utilized by many copepods under
the farms, contributing 12 to 61%, 13
to 60%, 44 to 83%, and 49 to 83% to
the diets of Miraciidae, Lao phontidae,
and Ectinosomatidae at Stn MD, and
Canuellidae at Stn SS, respectively
(Table 2). However, the quantities of
faeces consumed by copepods differed
among the stations. For Canuellidae,
scallop faeces were predominantly con-
sumed at the farm site at Stn SS (con-
tributing at least almost half of their di-
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Station       Site                   Taxon                                    POM+MPB                           Seagrass                        Faeces

SS              Control            Canuellidae                       0.75 (0.68−0.82)                 0.25 (0.17−0.32)                  n/a
                  Control            Other Copepoda                0.73 (0.64−0.81)                 0.27 (0.19−0.36)                  n/a
                  Farm                Canuellidae                       0.28 (0.14−0.42)                 0.05 (0−0.12)                       0.66 (0.49−0.83)
                  Farm                Other Copepoda                0.41 (0.22−0.62)                 0.12 (0.02−0.22)                  0.45 (0.16−0.71)
MS             Control            Canuellidae                       0.62 (0.57−0.67)                 0.38 (0.32−0.43)                  n/a
                  Control            Other Copepoda                0.64 (0.59−0.70)                 0.35 (0.29−0.40)                  n/a
                  Control            Nematoda                               1 (0.99−1)                           0 (0−0.01)                       n/a
                  Farm                Canuellidae                       0.57 (0.44−0.66)                 0.32 (0.24−0.39)                  0.11 (0.01−0.3)
                  Farm                Other Copepoda                0.51 (0.33−0.64)                 0.27 (0.16−0.36)                  0.21 (0.02−0.48)
                  Farm                Nematoda                               1 (0.99−1)                           0 (0−0.01)                       0 (0−0.01)
MD            Control            Laophontidae                     0.86 (0.79−0.92)                 0.14 (0.07−0.20)                  n/a
                  Control            Ectinosomatidae                0.69 (0.62−0.75)                 0.31 (0.24−0.37)                  n/a
                  Control            Nematoda                               1 (0.98−1)                           0 (0−0.01)                       n/a
                  Farm                Laophontidae                     0.49 (0.33−0.64)                 0.13 (0.03−0.23)                  0.37 (0.13−0.60)
                  Farm                Ectinosomatidae                0.23 (0.09−0.36)                 0.13 (0.03−0.22)                  0.64 (0.44−0.83)
                  Farm                Miraciidae                          0.42 (0.25−0.57)                 0.22 (0.10−0.31)                  0.36 (0.12−0.61)
                  Farm                Canuellidae                       0.49 (0.34−0.60)                 0.31 (0.21−0.39)                  0.20 (0.02−0.42)
                  Farm                Nematoda                          0.98 (0.95−1)                           0 (0−0.01)                       0.01 (0−0.04)

Table 2. Contribution (mean, with 95% CIs in parentheses) of particulate organic matter plus microphytobenthos (POM+MPB),
seagrass and faeces in the diet of meiobenthos taxa collected from ‘farm’ and ‘control’ sites at 3 stations at scallop farms in
Laizhou Bay, China in 2015 and 2016. See Table 1 legend for abbreviations of stations. The values were calculated using the 

Bayesian stable isotope mixing model (MixSIR). n/a: not applicable
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ets), while faeces were less important at the farm sites
at Stns MS and MD (Table 2, Fig. 4). By contrast, nema-
todes at Stns MS and MD consumed very little faeces-
derived material (<1%).

Fatty acid profiles of the copepod family
 Canuellidae

There was a significant difference in FA profiles
over time (PERMA NOVA, p < 0.01; ANOSIM, R > 0.75;
Table 3), indicating that the FA profile of Canuellidae
changed in time. In line with this, the nMDS showed a
grouping for samples before aquaculture activity (T0)
and the ones collected during aquaculture activity (T1)

(Fig. 5). Based on the results of SIMPER,
DHA contributed the most to this dissimi-
larity (29.12%). Before aquaculture activ-
ity, 16:0 was the major component of the
total FA, contributing 46.1 and 47.0% of
the total FA of family Canuellidae at farm
and control sites respectively, while DHA
was the most important FA during aqua-
culture ac tivities, contributing 39.01and
29.38% at farm and control sites respec-
tively (Table 4).

In addition, a seasonal effect contrib -
uted to this pattern: significant differ-
ences were found between before and
during aquaculture (‘Before vs. During’)
within control and farm sites (see pair-
wise PER MANOVA tests in Table 3).
More importantly, the difference ‘Before

vs During’ was more significant within ‘Control’ than
within ‘Farm’ (p < 0.05 and p < 0.001 respectively;
Table 3), demonstrating that aqua culture made a
crucial contribution to the FA profile of Canuellidae
at Stn SS. Pairwise PERMANOVA also showed that
farm and control sites strongly differed during the
aquaculture stage (‘Farm vs. Control’ with ‘During’:
p < 0.001; Table 3:), though more replicates were
needed to confirm this pattern in a pairwise test
between farm and control within ‘Before’.

When excluding the seasonal effect, SIMPER
showed that DHA contributed 33.71% to the differ-
ence between farm and control sites during aquacul-
ture. During aquaculture at Stn SS, Canuellidae at
the farm site had higher amounts of DHA and PUFAs
than at the control site (Fig. 6, Table 4, Table S2 in
the Supplement). 20:1ω9 and PUFA/ SFA, considered
as the indicators of carnivorous diet (Stevens et al.
2004), showed higher values in Canuellidae at farm
sites during aquaculture at Stn SS. The trophic
marker of diatoms/dino flagel lates, i.e. EPA/DHA
(Cripps & Atkinson 2000), was lower at farm sites,
indicating the different diets of Canuellidae at farm
sites compared to those at control sites. Other trophic
FA biomarkers showed no difference between farm
and control sites (Fig. 6; see also Table S2; p > 0.05).

DISCUSSION

Fate of bay scallop biodeposits in the aquaculture
area

Stable isotopes analysis has been applied to trace
the fate of aquaculture waste in several studies
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Main test PERMANOVA    ANOSIM
Source of variation              df      MS       F(p)      p (perm) R

Time: Before vs. During      1     0.365   206.99     0.008** 1.000*
Site: Farm vs. Control          1     0.006       3.51     0.094NS 0.926*
Time vs. Site                         1     0.006       3.569   0.086NS

Residuals                              5     0.002                          

Pairwise test                               Group                     t p (perm)

Within ‘Control’                Before vs. During       6.445 0.018*
Within ‘Farm’                   Before vs. During       18.205 <0.001***
Within ‘Before’                  Farm vs. Control             – –
Within ‘During’                 Farm vs. Control        3.894 <0.001***

Table 3. Effect of time (‘Before vs. During’ seasonal aquaculture produc-
tion) and site (‘Farm vs. Control’) on fatty acid profiles of Canuellidae at
scallop farms in Laizhou Bay, China, sampled at Stn SS (see Table 1 legend
for abbreviation) in 2016. ***p < 0.001; **p < 0.01; *p < 0.05; NS = not
 significant. –: no testing possible due to insufficient number of replicates

Fig. 5. Non-metric multi-dimensional scaling (nMDS; resem-
blance: S17 Bray-Curtis similarity, 2D stress: <0.01) of the rela-
tive fatty acid composition of the harpacticoid copepod family
Canuellidae in ‘farm’ and ‘control’ sites at Stn SS (see Table 1
legend for abbreviation) at a scallop farm in Laizhou Bay, China 

before (T0) and during (T1) seasonal aquaculture in 2016



Aquacult Environ Interact 10: 227–241, 2018

(Kon et al. 2009, Gondwe et al. 2012, Callier et al.
2013), since the aquaculture-derived waste has dis-
tinctive isotopic values. In our study, the enriched
δ15N of bay scallop faeces compared to other
organic sources was a prerequisite in order to be
able to trace its fate. Contrary to some studies that
demonstrate the accumulation of aquaculture waste
in the sediment organic matter (OM) pool, SSOM
in our study did not show the enrichment of 15N by
scallop farming activity. This could be explained by
2 hypotheses. First, the aquaculture-derived OM
was diluted in the water column and thus did not
sink to the sea floor (Vizzini & Mazzola 2012). Sec-
ond, the local consumers rapidly incorporated the
aquaculture-derived matter (Kon et al. 2009). As
we found more enriched δ15N values of most cope-
pods and some nematodes in the sediment under
the farms (see ‘Effects of bay scallop aquaculture
on the quality of harpacticoid copepods for higher
trophic levels’), the second explanation is more
plausible. Callier et al. (2013) re ported a similar

outcome; i.e. isotopic values shifted in inverte-
brates rather than in SSOM. Taken to gether
with the results of our study, this suggests that
analyzing the response of the benthos (i.e. a
biotic response) to evaluate the effect of aqua-
culture will provide a more comprehensive
view than investigating only the response of
the sediment (i.e. an abiotic response).

Biodeposits of bay scallop as food sources to
meiobenthos

The resource utilization of meiobenthos ap -
pears to be a promising tool to evaluate the effect
of aqua culture effluents on ecosystem function-
ing in terms of energy flow (Kennedy & Jacoby
1999, De Troch et al. 2013). The incorporation of
scallop faeces into the diets of most harpacticoid
copepods at all stations and nematodes in the
sandy station under the farms demonstrates that
bay scallop farming changed the energy flow in
the basal part of the food web. This evidence
agrees with findings of other studies that aqua-
culture effluents serve as alternative food sour -
ces for the benthos (Dubois et al. 2007, Callier et
al. 2013).

The flux of OM is usually enhanced in the
shellfish aquaculture area (Newell 2004, Mc Kind -
sey et al. 2011); consequently the food availabil-
ity for benthic organisms increases. Moreover, in
terms of food source profitability, bio deposits are

considered to be of good nutritional value be cause of
their high carbon and nitrogen contents, large pro-
portions of labile OM, and the low C/N ratios (Kaut-
sky & Evans 1987, Miller et al. 2002). Biodeposits are
mucus-enriched and function as good substrates for
bacteria (Hargrave 1976). Thus, abundant microor-
ganisms colonize on the pellet particles during gut
passage (Wer ry & Lee 2005, Cnudde et al. 2011) and
after defecation (Fabiano et al. 1994), and efficiently
rework the labile components within hours to days
(Carlsson et al. 2010). They break down the refrac-
tory OM from the faecal pellets and also produce
micro bial nutrients (e.g. extracellular protein and
exu dates) that make them available to other benthic
organisms (Kautsky & Evans 1987, Wotton & Malm -
qvist 2001). Furthermore, increasing densities of micro -
organisms (e.g. bacteria, ciliates and dino flagellates)
themselves provide more foods for meiobenthos
(Epstein 1997, Moens & Vincx 1997). Therefore, bio -
deposit-derived materials can easily be con sumed by
meiobenthos and enter the basal food web.
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Fatty acid Before aquaculture During aquaculture 
Farm Control Farm Control

14:0 6.61 (1) 7.52 (1) 1.03 ± 0.15 (4) 1.63 ± 0.59 (3)
15:0 5.95 (1) 6.67 (1) 0.88 ± 0.12 (4) 1.18 ± 0.19 (3)
16:0 46.1 (1) 47.0 (1) 14.67 ± 1.19 (4) 20.54 ± 3.80 (3)
16:1ω7 n/a n/a 3.34 ± 0.55 (4) 3.91 ± 0.73 (3)
17:0 7.09 (1) 7.4 (1) 3.41 ± 0.14 (4) 3.00 ± 0.13 (3)
17:1ω7 n/a n/a n/a 0.06 ± 0.11 (3)
18:0 27 (1) 25.6 (1) 12.47 ± 0.43 (4) 17.60 ± 1.09 (3)
18:1ω9t n/a n/a 2.62 ± 0.83 (4) 2.79 ± 0.92 (3)
18:1ω9c n/a n/a 4.90 ± 0.14 (4) 4.25 ± 0.75 (3)
18:2ω6c n/a n/a 1.03 ± 0.69 (4) 1.30 ± 0.13 (3)
20:0 1.53 (1) 1.01 (1) 0.50 ± 0.08 (4) 0.50 ± 0.04 (3)
18:3ω3 ALA n/a n/a 0.77 ± 0.08 (4) 0.74 ± 0.07 (3)
20:1ω9 n/a n/a 2.05 ± 0.19 (4) 1.30 ± 0.02 (3)
20:2ω6 n/a n/a 0.38 ± 0.02 (4) n/a
22:0 2.01 (1) 1.49 (1) 0.83 ± 0.01 (4) 0.56 ± 0.04 (3)
20:3ω6 n/a n/a n/a 0.16 ± 0.28 (3)
22:1ω9 n/a n/a 0.13 ± 0.26 (4) n/a
23:0 0.96 (1) 0.74 (1) 0.61 ± 0.02 (4) 0.25 ± 0.22 (3)
20:5ω3 EPA n/a 0.45 (1) 9.82 ± 0.64 (4) 9.77 ± 1.45 (3)
24:0 2.23 (1) 1.62 (1) 0.93 ± 0.03 (4) 0.60 ± 0.02 (3)
24:1ω6 n/a n/a 0.51 ± 0.03 (4) 0.38 ± 0.36 (3)
22:6ω3 DHA n/a n/a 39.01 ± 1.84 (4) 29.38 ± 3.59 (3)

Table 4. Relative fatty acid composition of the harpacticoid copepod fam-
ily Canuellidae from ‘farm’ and ‘control’ sites at Stn SS (see Table 1 leg-
end for abbreviation) at a scallop farm in Laizhou Bay, China before and
during seasonal aquaculture in 2016. Values for ‘during aquaculture’ are
mean ± SD, with the number of replicates given in parentheses. ALA:
 alpha-linolenic acid; EPA: eicosapentaenoic acid; DHA: docosahexa-

enoic acid; n/a: not applicable
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Effect of bay scallop aquaculture on the diets of
meiobenthos

While aquaculture-derived OM is a nutritional food
source (McKindsey et al. 2011, Callier et al. 2013),
the quantities and pathways of consumption by ben-
thos vary among trophic groups and feeding modes
(Dubois et al. 2007, Wai et al. 2011). In accordance
with the large trophic diversity of meiobenthos in
coastal areas (Hicks & Coull 1983, Jensen 1987), we
found that the quantities and pathways of faeces con-
sumption differed according to the feeding behaviors
of the meiobenthos. This was clearly illustrated by
the harpacticoid copepod families. Substrate brow -
sers, like Laophontidae and Miraciidae, possibly took
faecal OM through scraping or sweeping off the
attached bacteria (Hicks & Coull 1983, Cnudde et al.
2013, Mascart et al. 2013). For Canuellidae, faecal
OM were presumably assimilated by filtering-feed-
ing the small particles suspended in the water col-
umn (Cnudde et al. 2015). With the provision of bac-
teria and protists on the biodeposits (Wotton &
Malmqvist 2001, Bongiorni et al. 2005), Ectinosomati-
dae showed an increased TL, suggesting that the

feeding type of this taxon changed from omnivorous
to carnivorous. It is possible that the dominant spe-
cies of Ectino somatidae has been modified by farm-
ing, since this is a species-rich family with various
resource utilization strategies including  diatom-
feeding,microvory,point-  feeding,and predation (Coull
& Dudley 1976, Sei fried & Dürbaum 2000). Further
detailed screening of the trophic ecology of meio -
benthos is required to prove this.

In addition, the copepod family Canuellidae de -
mon strated that the effect of bay scallop biodeposi-
tion depends on the receiving environment. With a
broad range of niche breadth (De Troch et al. 2003),
Canuellidae could switch their diets to more nutri-
tious organic sources such as scallop biodeposits if
other sources were insufficient, for instance in a
sandy bottom with low chlorophyll levels and poor
organic resources (Cartaxana et al. 2006). At muddy
stations, the small contributions of biodeposits to
Canuellidae may be explained by the greater avail-
ability of autotrophic production.

As for nematodes, their TLs indicate that the com-
munities were different according to the sediment
type. Nematodes at muddy stations were carnivores
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and did not incorporate faeces-derived materials into
their diets. The data suggest that even when bio -
deposits were present, they did not modify their
feeding mode i.e. they were either consuming bacte-
ria derived from MPB extracellular polymeric sub-
strate (EPS) or predating on small nematodes that fed
on EPS of MPB (Moens et al. 2005, Rzeznik-Orignac
et al. 2008, Majdi et al. 2012). It is also possible that
this group of nematodes resided in deeper sediment
(Steyaert et al. 2003) and could not access the bio -
deposits, which had either already been consumed
by surface locating copepods or were not buried
deep enough into the sediments. In this case, bay
scallop farming has no impact on the resource utiliza-
tion by nematodes that are trophic specialists. In con-
trast, nematodes at the sandy station incorporated
biodeposits under the scallop farm. Microvory of
nematodes has been reported to be dominant below
a mussel farm (Netto & Valgas 2010), where they pre-
sumably benefit from higher microbial densities by
organic loading (Mirto et al. 2000). In our study, the
feeding group of nematodes was likely changed by
bay scallop farming.

Effect of bay scallop aquaculture on the quality of
harpacticoid copepods for higher trophic levels

PUFA concentrations, and especially those of DHA
increased in Canuellidae (the most abundant harp -
acticoid copepods) as they consumed certain
amounts of scallop faeces at farm sites during the
high biodeposition stage. PUFAs are important com-
positions of cell membranes and are needed in ani-
mals at all taxonomic levels, including copepods (Ed-
erington et al. 1995, Hartwich et al. 2013). Especially
at low temperature, PUFAs promote membrane fluid-
ity (Farkas 1979, Stillwell & Wassall 2003). Also, with
higher levels of PUFA, copepods have higher repro-
duction ability in terms of eggs production (Edering-
ton et al. 1995). In our study, as the winter had just
started during our sampling season, we hypothesize
that the higher contents of PUFA provided Canuelli-
dae with better opportunities to reproduce and deal
with the low temperature and food-stress periods.

Furthermore, PUFAs, EPA and DHA have been
recognized as good biomarkers to describe the qual-
ity of food (Boon & Duineveld 1996, Goedkoop et al.
2000). As higher level consumers in marine ecosys-
tems cannot synthesize highly unsaturated fatty
acids (HUFAs) such as DHA, their HUFA levels are
derived entirely from their food sources (Iverson
2009, Hartwich et al. 2013). As harpacticoid cope-

pods are important food items for epibenthic organ-
isms such as shrimps and juvenile fishes (Coull et al.
1995), their quality in terms of PUFA or HUFA levels
becomes an important factor influencing the quality
of higher consumers as a food source and thus en -
riching the entire food web. Thus, the fact that
Canuellidae consuming biodeposits of bay scallops
contained more PUFAs (especially DHA) implies that
they constituted a more nutritious food item for
higher level consumers.

However, the mechanisms behind the increasing
levels of PUFA (especially DHA) are not clear yet
because the pathways to accumulate DHA are com-
plicated and depend on several factors (Bell & Tocher
2009, Werbrouck et al. 2016). Copepods may gain
DHA directly from the food or synthesize DHA from
shorter chain of PUFAs (Schlechtriem et al. 2006, De
Troch et al. 2012). It has been suggested that organ-
isms using ‘foreign foods’ (i.e. foods not originating
from their habitat) were not accustomed to these, and
this might have stimulated the compensatory bio-
chemical pathways (Iverson 2009). It is possible that
loading of bio deposits induces the pathway to accu-
mulate PUFAs and DHA in Canuellidae. To further
elucidate the role of faeces in the eco system func-
tioning, there are many options for future investiga-
tion; for example to determine whether, how, and to
what extent aquaculture-derived PUFAs is transfer-
able through the food chain.

Bay scallop as a non-indigenous species for the
local environment: a positive perspective

It is always a concern that culturing NIS, especially
non-indigenous shellfish, in coastal marine ecosystem,
includes ecological risks (Newell 2004, Shelton &
Rothbard 2006, Minchin et al. 2009). Our study
showed that, to some extent, farming the non-indige-
nous bay scallop provides an extra food source for the
benthos and consequently improves the quality of the
local benthic environment. This suggests that the
farming bay scallop has a positive effect on ecosystem
functioning. To make a more complete assessment of
NIS aquaculture, further re search is needed to com-
pare the effects with those of culturing native species.

Our observations may also apply to other shellfish
farms, but additional factors should be considered,
such as aquaculture characteristics (e.g. cultured spe -
 cies, stocking densities, etc.), and the hydrodyna mics
and sediment type of the receiving environment, be-
cause these can also affect the activities of the
benthos (Chamberlain et al. 2001, Giles et al. 2006).
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CONCLUSIONS

Our study showed that stable isotopes, especially
δ15N, are a powerful tool to trace possible functional
changes due to aquaculture activities. We also
showed that the biodeposits were directly/indirectly
consumed by meiobenthos, and accordingly, har -
pacticoid copepods residing under the scallop farms
improved their quality as food items for the next
trophic level. Therefore, we demonstrate a positive
effect of intensive farming of bay scallop Argopecten
irradians on ecosystem functioning.
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