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Fig. 7. Results of changing the size of the core area for each variable: (a,b) chlorophyll a concentration; (c,d) sea surface tem-

perature (SST); (e,f) turbidity. In each case, the median effect across all months and all years is shown on the y-axis. ‘Area’ on

the x-axis is the size of the core area in the analysis expressed as a proportion of the size of Farm A. (a,c,e) Individual results

for 2 different models (lin: linear; exp: exponential), for the effect of WBMFZ Area A (thick lines) and for control sites C, D and

E (thin lines). (b,d,f) Mean effect of the farm and 95 % confidence intervals (grey area; see '‘Methods' and ‘Results’ for more
details). Dashed lines: 0 effect

DISCUSSION

We used satellite data to observe the effect of a
large mussel farm on key water quality parameters,
namely the concentration of chl a (as a proxy for
phytoplankton abundance), turbidity and SST. Satel-
lite observations in the vicinity of the farm were
removed, filled in by kriging and then compared
with the observed data in this core area. Overall, our
results suggested that the effects of aquaculture in
WBMFZ Area A on water quality were small. We
found that chl a was reduced by 1.6% (long-term

median value) over an area of about 1.5x the actual
area of the farm. We detected no significant effect of
the farm on turbidity.

The size of the effect found here is smaller than
suggested by both field sampling and modelling. A
previous synoptic study of the effect of the farm on
phytoplankton using towed equipment suggested
chl a depletion at the farm scale of between 5 and
10% (Gall et al. 2003). Previous numerical model-
ling studies (Broekhuizen et al. 2004, 2005, Stenton-
Dozey et al. 2005) indicated that the Area A mussel
farm could reduce concentrations of plankton by
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Fig. 8. Effects of farm (a,c,e) by month and (b,d,f) by year for core area of 1.5 x the area of the farm, and 3 variables: a,b: chloro-

phyll a concentration; c,d: sea surface temperature; e f: turbidity. The grey areas show the 95 % confidence intervals estimated

as A + 2A, where A, is estimated as the standard deviation of the effect at the control sites by the 2 kriging models (Eq. 4).
The dashed lines show 0 effect

8-10% within an area extending a few km beyond
the boundaries of Area A. The modelling also sug-
gested that the farm could lead to mild enhancement
of phytoplankton growth in the summer, something
that was not detected in the present study or by field
sampling (Gall et al. 2003).

We also found an effect of the mussel farm on sur-
face water temperature, with a consistent pattern of
winter warming and summer cooling of up to about
0.1°C. It is likely that the tidal currents moving past
the physical structure of the mussel farm break up
the surface thermal microlayer, and this caused a
change in surface water temperature around the
farm. This is consistent with Gall et al. (2003), who

found evidence of significant reduction in tidal
current speed (20-25%) in the lee of the WBMFZ
Area A. In summer, the surface microlayer will be
warmer than the underlying water, so the farm's stir-
ring effect leads to a cool anomaly. In winter, when
the air temperature is cooler than the water, a cool
surface microlayer is formed, and the disturbance of
this is likely to lead to the observed warm anomalies
around the farm.

The small change in surface temperature detected
here suggests that the physical disturbance caused
by the farm structure is not sufficient to mix up water
from below the pycnocline (typically located at ~20 m
depth) to the surface. If this was the case, we would



result of filter feeding of mussels
rather than being a dilution effect
(e.g. changes to the vertical distribu-
tion of phytoplankton).

There was considerable variability
in the size of the farm effect identified
by this method based on different
satellite images (Fig. 9). The method
estimated both positive and negative
effects of the farm for all variables,
and in about 20% of the images,
the effects were estimated as being
greater than 0.1 in magnitude. Some
of this variability is undoubtedly real
and some will be a methodological
artefact. Mussel farms can genuinely
have positive and negative effects on
concentrations of phytoplankton and
suspended particulate matter (e.g.
Ogilvie 2000), but, in line with other
applications of remote sensing, a
large amount of satellite data is
needed to offset the relatively high
uncertainty.

In this context of variability, it is
important to note the use of 3 control
sites to test for significance. The way
in which the effect varied with the
size of the core agreed with our
expectations. When the core area for
analysis was smaller than the actual
area of effect, values in the skirt
would be affected by the aquaculture
activity and this would tend to make
the estimated effect too small. If the
core area chosen for analysis was
much bigger than the actual area of
effect of the farm, the median effect
estimated would again tend to be too
low. In the latter case, we would also
expect the potential for spurious

540 Aquacult Environ Interact 10: 529-545, 2018
1 1 1 1 1 1 1 1 1 1 1 1 1
40 — a
R 20 -
(0] i
o ‘ ‘
c ||‘ At {1, i A |
g 0 ,}‘“, '\l' ’Illl' 4 l”" V'“"]‘ | ”x'
(6]
© ] ' |
< _o0 4
) 20
| z=-2.29
~40 9 p-0.022
T T T T T T T T T T T T L
1 1 1 1 1 1 1 1 1 1 1 1 1
0.4 — b N =834
;6 0.2 4
(0] I
[@)] i ”‘“\I\ ]I\l |4 ‘1 }Hl ].H
c 0.0 ‘ .,
5 lW|H il ’M Nl MW ' 'I Ll
<
(6]
02 |
(D -
Z=1.15
047 p=025
R - - A
40 — C N =835
§ 20 —
> l J
c ‘
o i ‘Jlll ‘h l’.llh\u 1 l f
% 0 ‘1"‘ il _\‘ 4| |‘ \ I | I‘\_,‘ " x” ’m‘, ”|
3 .
g -20 |
E ]
40 Z=-0.67
- p =0.50
T T T T T T T T T T T T T T
03 04 05 06 07 08 09 10 11 12 13 14 15 16
Year

Fig. 9. Trend analysis of effects of the farm on (a) chlorophyll a concentration;
(b) sea surface temperature; (c) turbidity showing all individual satellite esti-
mates of effect, deseasonalised as described in ‘Methods’'. The Mann-Kendall
trend (red line), number of points (N), Mann-Kendall statistic (Z) and signifi-
cance (p) are shown. In no case was the trend significant at the 1% level

expect to see much larger effects of the farm on sur-
face temperature, as the pycnocline in the Firth of
Thames is associated with a 2°C vertical temperature
difference over several months (Zeldis et al. 2015).
This in turn argues for the reduction in chl a around
the farm being due to phytoplankton depletion as a

results to increase so that the uncer-
tainty bounds (based on the control
sites) would likely increase. We found
that our results corresponded closely
to this expected pattern for chl a
(Fig. 7). The size of the effect of the

farm increased, then decreased as the spatial size of
the core increased, and the confidence bounds
became wider. The maximum effect on chl a was
observed at an area of 1.5 times the area of the farm
(WBMFZ Area A), which suggested that this was the
appropriate spatial scale for analysis. To further test
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that the effects are real, we repeated the analysis
switching round the results of Farm A with each of
the control areas in turn. In each case, the size of the
effect did not vary in an interpretable and consistent
way as the size of the core changed. In addition, the
effect identified from the satellite data was consistent
with numerical modelling of the potential chl a de-
pletion 'halo’ of the farm (Gall et al. 2003; Fig. 10).
The shapes of the effects were very similar, although
the magnitude of the depletion in chl a predicted by
the analysis of Gall et al. (2003) was greater than the
reduction in chl a around the farm observed here.
The same pattern in how the effect of the farm
changes with core size was broadly seen for the tem-
perature and turbidity variables but was not so clear.
For example, the confidence bounds for temperature
increased as the size of the core increased, but the
greatest effect for temperature was found at 4x the
size of Area A, not at 1.5x. For turbidity, the confi-
dence bounds narrowed as the core size increased
beyond 3x. Phytoplankton have a capacity for re-

Chl a

depletion
0.99
0.98

0.97

0.96
0.95
0.94
0.93
0.91
0.90
0.89

0.88

growth following depletion by filter feeding (i.e. chl a
will demonstrate non-conservative behaviour), where-
as temperature and turbidity effects may be trans-
ported conservatively by water movement. Mean
hydraulic residence times in the farm area are likely
to be on the order of 1 d (Gall et al. 2003), similar to
phytoplankton intergenerational times. This may ac-
count for the smaller spatial scale of effect seen for
chl a relative to SST and turbidity (Fig. 7).

We discount the possibility that changes observed
in the satellite data in the vicinity of the farm were
due to the above-surface farm infrastructure (such as
floats and platforms) affecting the spectrum of water-
leaving radiance and hence the derived satellite
products. (1) The proportion of the area covered by
floats in the farm area is small (<0.5% of the area).
(2) The reflectivity of the floats is similar to that of
water, so their individual effect on water-leaving
radiances will be modest. (3) The changes in water
quality detected in our analysis extend outside the
outer limits of the farm superstructure.

b

Chl a
depletion

0.99

Fig. 10. Spatial distribution of chlorophyll a depletion. Values shown are the ratio of chl a with farm present to chl a with no
farm; thus, values <1 indicate a reduction in phytoplankton associated with the farm. (a) Depletion 'halo' over a 24 h period
based on synoptic surveys around the farm (reproduced from Gall et al. 2003, their Fig. 29). Black rectangle: aquaculture farm;
white background: O predicted depletion. (b) Spatial distribution of chl a reduction derived in the present study using a core
size of 2.5x the area of the farm. A bigger area than 1.5x is shown here to illustrate the spatial shape of changes in chl a around
the mussel farm. Light grey background indicates that no measurement exists (as this is outside the kriged area); black rectan-
gles: outer limit of the skirt (largest), 1.5x the area of the farm (intermediate) and the area of the farm (smallest rectangle). Note
that the colour scales in (a) and (b) differ to emphasize spatial patterns rather than absolute values
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There was some suggestion in our results of an
increasing effect of the farm on all variables, with a
significant trend identified in the effect of the farm on
chl a (Sen slope 0.12% yr~'). The stocking density of
mussels in the farm has increased over the period
analysed: by mid-2003 it was ~66 % seeded and in
2016 it was ~92% developed. It is hence plausible
that the small increasing trend in chl a depletion fol-
lows from the increase in stocking density over time.
The trends in the effect of the farm on surface tem-
perature and turbidity were not significant, consis-
tent with little change in the physical structure of the
farm over this period and little effect of the mussels
on suspended particulate matter concentrations in
the upper water column. Changes in the regional
hydrography of the Firth of Thames over the study
period could lead to spurious trends being identified
by this method. However, trends in all variables at
the 3 control sites were not significant, so there is no
evidence for long-term background environmental
change over the course of the study.

Given the difference in results obtained using a lin-
ear compared to an exponential kriging model, it is
reasonable to ask whether our results are robust to
uncertainties in the assumed shape of the semivari-
ogram function. Certainly fitting the parameters
(nugget, sill, range) to semivariograms of remotely
sensed water quality variables was not straightfor-
ward. As can be seen in Fig. 6, the individual semi-
variance data points were highly scattered and the
smoothed lines did not unambiguously follow any of
the standard semivariogram forms (linear, exponen-
tial, Gaussian, spherical) over the whole distance
range. Anisotropic semivariogram analysis may im-
prove the fit somewhat, but agreement with models
will always be imperfect. The relatively coarse spa-
tial scale of the satellite data also misses substantial
small-scale variability in water quality properties.
We developed an iterative fitting method for both the
linear and exponential forms, where the semivari-
ance beyond a certain distance was not used. Both
the fitted sill and range parameters of the linear mod-
els agreed reasonably well with those in the expo-
nential model. The median fitted sills were 0.177 (lin-
ear) and 0.182 (exponential), and the median fitted
ranges (in pixels) were 17.3 (linear) and 27.2 (expo-
nential). We set the nugget in the exponential model
to 0 to ensure reasonable values of range, whereas
the median nugget in the fitted linear models was
non-negligible (0.005). Carrying out the analysis
using a linear model with the nugget set to 0 had lit-
tle effect on the results. We also tested the effect of
using fixed values of range (set to 15, 20 and 25 pix-

els) in both the linear and exponential models. The
results using the fixed ranges bracketed those ob-
tained using the fitted semivariogram parameters as
expected. It seems therefore that the difference
between the results with exponential and linear
models was a result of the way in which the models
transmitted spatial variations from the skirt into the
core area.

We were not comfortable with using different mod-
els for different images, i.e. using a linear model for
one image and an exponential model for a different
image, as it was usually not clear from the fitting
which model best described the semivariance data.
Hence, we consider it appropriate to use both linear
and exponential models with equal weighting. For
future development of this method, it would be use-
ful to develop a better way of combining results from
different kriging models. For example, a resampling
method such as the jackknife or bootstrap using
withheld data could be used to evaluate the perform-
ance of different semivariograms and kriging models
for each individual image. We also note that kriging
can provide estimates of the uncertainties of the pre-
dictions. Combining these estimates of uncertainty
would allow different estimates of the effects of the
farm to be weighted in Egs. (3) and (4).

The spatial structure in the water quality para-
meters are not likely to be isotropic as we have
assumed, and there will probably be more variation
in water quality in the inshore-—offshore direction
than in the along-shore direction. We tested the ef-
fect of this anisotropy using kriging with anisotropic
factors of o= 1.2 and 2.0. A factor of o= 1.2 indicates
that the length-scales of variation in water quality
parameters are 20 % shorter in the inshore—offshore
direction than in the along-shore direction, and a fac-
tor of o= 2.0 means that the cross-shore length-scale
is half the along-shore scale. Qualitatively, we found
that the anisotropy had negligible effect on the
results; the observed effects of the farm as a function
of core area (Fig. 7) with and without anisotropy had
the same shapes (the correlation coefficients be-
tween the medians and confidence intervals were
always >0.95). However, anisotropy did affect the
magnitudes of the estimated effects. We found that
anisotropy with o= 1.2 and 2.0 reduced the estimated
effect of the farm on chl a by 5 and 24 %, respectively
(with the change expressed as a proportion of the
isotropic effect), reduced the estimated effect of the
farm on temperature by 4 and 14 %, and increased
the estimated effect of the farm on turbidity by +97
and +230%. Despite the big increases of anisotropy
on the estimated effect of the farm on turbidity, the
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effect of the farm was still not deemed significant
because the confidence intervals still spanned 0
effect. These results are consistent with expectations
that anisotropy would be greater for turbidity than
for either chl a or temperature because of potentially
strong cross-shore gradients in suspended sediment
concentration. It is not easy to estimate the appropri-
ate level of anisotropy, which will also vary from day
to day. Hence, we conclude that our results are qual-
itatively and approximately quantitatively robust to
the effect of anisotropy, but recommend that fully
anisotropic kriging (i.e. with anisotropic factors de-
rived separately from each image) be developed in
the future to improve confidence in the sizes of the
farm effects.

Although the temperature data from MODIS-Aqua
were found to be accurate, much poorer accuracy
was achieved for chl a or turbidity (Fig. 5). Similar
(poor) results have been found in this kind of ‘match-
up' analysis for chl a and turbidity in coastal areas
elsewhere (e.g. Pinkerton et al. 2003, Darecki &
Stramski 2004, Chang & Gould 2006). The mismatch
between in situ and satellite measurements of chl a
and turbidity potentially have many causes (Pinker-
ton et al. 2003), including: (1) water column structure:
although the water column at the mooring site in the
Firth of Thames is usually well-mixed to below the
depth of the mooring sensor, there are occasions
when chl a at depth differs substantially from that at
the surface (Gall & Zeldis 2011); (2) fundamental dif-
ferences in the spatial and temporal scales of obser-
vation by satellites and moorings (Pinkerton et al.
2003, Gall & Zeldis 2011). We integrated mooring
measurements over a 24 h period to better reconcile
the scales of observation but, even so, the ‘'match-up’
comparison method is limited as a way of assessing
satellite data quality; (3) in situ measurements of
chl a by the INF are inexact (Gall & Zeldis 2011); (4)
satellite algorithms for chl a and turbidity have high
uncertainties in the coastal zone (Garver & Siegel
1997, IOCCG 2000, Lee et al. 2002, Lohrenz et al.
2003). These uncertainties are due to variability in
the inherent optical properties of coastal water con-
stituents coupled with inaccuracies in the remote
sensing of water-leaving radiance, for example due
to imperfect atmospheric correction (Pinkerton et al.
2003). It is hence important to develop methods of
analysis of satellite data that are robust to limitations
in the absolute accuracy of measuring water quality
from satellites and in our methods to quantify these
accuracies.

The method developed here is likely to be rela-
tively insensitive to uncertainties and errors in the

absolute values of chl a and turbidity derived from
ocean colour satellite information, because it is based
on analysis of the spatial patterns in the data. In par-
ticular, our method will be insensitive to long-term
variations in the absolute accuracy of satellite meas-
urements of water quality over decadal scales, which
could potentially compromise traditional methods of
monitoring (e.g. Dierssen 2010). However, inaccura-
cies in the satellite-derived spatial patterns of chl a
and turbidity will affect our results and conclusions,
as the method developed in this study relies on the
spatial structure in the satellite observations. For
example, if the effects of sediment, phytoplankton
and CDOM on water colour were not properly re-
solved, inaccuracies in both spatial patterns and
in the absolute values of chl a and turbidity could
follow. We found that the satellite estimates of chl a
and turbidity in the skirt area were effectively inde-
pendent (R? < 0.01). This result suggests that the
satellite processing was working effectively, as sys-
tematic failure in the algorithm would be expected to
lead to correlation between chl a and turbidity.

A useful future study would be to examine apply-
ing the method described in the present study to
higher spatial-resolution satellite data (e.g. MERIS,
LANDSAT, Sentinel-2; e.g. Gernez et al. 2014, 2017)
to investigate smaller aquaculture facilities. The de-
veloping field of hot spot analysis (Getis & Ord 1992,
Harris et al. 2017) also promises to provide better sta-
tistical tools which could potentially be used to inves-
tigate spatial effects of aquaculture without the need
to define skirt and core areas.

In conclusion, while both modelling and in situ
monitoring have been used to quantify the effects of
the WBMFZ Area A mussel farm on water quality
(e.g. Gall et al. 2003, Broekhuizen et al. 2004, 2005,
Zeldis 2009), this is the first study to use satellite data
to directly observe the effects of such a farm. The
approach given here delivers direct information on 3
of the key water quality parameters that are required
to monitor and manage the environmental effects of
mariculture: phytoplankton, temperature and sus-
pended particulate matter (Kapetsky & Aguilar-
Manjarrez 2007, Soto et al. 2007, Ferreira et al. 2010).
The information is likely to be relevant to monitoring
several more key water quality properties, including
nutrients, farm-derived detritus, dissolved oxygen
and microbial loading. Remote sensing should be
thought of as a complement to in situ observation of
the environment (e.g. Gernez et al. 2014, 2017),
direct monitoring of harvest species (e.g. Filgueira et
al. 2014) and bio-physical modelling (Broekhuizen et
al. 2005, Guyondet et al. 2013, Rowe et al. 2017).
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