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INTRODUCTION

Global aquaculture yield is forecast to increase
by 2.3% yr–1 between 2017 and 2026 to >100 mil-
lion t yr−1 (OECD-FAO 2017). Already, aquaculture
provides 90% as much human food as wild-caught
fisheries, and it is likely to overtake it in the next
decade (Bostock et al. 2010). Aquaculture is also
big business, with a worldwide value exceeding
US$30 billion yr−1 (Kapetsky & Aguilar-Manjarrez
2007). Mariculture of molluscs provides about a
quarter of total aquaculture production worldwide,
and is dominated by coastal farms for filter-feeding
bivalves, especially oysters, scallops, clams and mus -

 sels (Kapetsky & Aguilar-Manjarrez 2007, Bostock et
al. 2010).

Along with the increasing scale and prevalence of
mariculture worldwide comes an increasing urgency
in managing its effects on the marine environment
(Soto et al. 2007, Filgueira et al. 2014). In New Zea -
land as elsewhere, there is an increasing focus on
sustainable, ecosystem-based management of aqua-
culture (Zeldis et al. 2005, Soto et al. 2007, Bostock et
al. 2010, Pinkerton, 2017a). One of the key environ-
mental issues associated with coastal bivalve mari-
culture is its potential effect on water quality (Zeldis
2005, Soto et al. 2007, Bostock et al. 2010), both in
terms of the output of material from the farmed spe-
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cies to the environment (Soto et al. 2007)
and the depletion of phytoplankton by fil-
ter-feeding species (Gall et al. 2003,
Grant et al. 2007, Zeldis et al. 2013).
Managing the environmental effects of
mariculture on water quality within an
ecosystem context implies long-term
monitoring at appropriate time and space
scales, which is expensive and complex
(Soto et al. 2007). Coastal environments
have high spatial and temporal variabil-
ity which means that in situ sampling
alone is unable to adequately assess
changes in coastal water quality over
large areas and long time periods
(IOCCG 2000, Ogilvie et al. 2000, Ogilvie
2000, Grant et al. 2007).

Using hyperspectral airborne remote
sensing, Grant et al. (2007) were the first
to demonstrate that remote sensing could
observe the effect of bivalve mariculture
on water quality as a complement to in
situ monitoring. Subsequent studies have
used data from satellites to quantify
changes to water quality by filter feeders
(e.g. MERIS: Gernez et al. 2014; Sea-
WiFS: Rowe et al. 2015, 2017; MODIS:
Warner & Lesht 2015; Sentinel-2: Gernez
et al. 2017). Satellite remote sensing has
also been used to help identify suitable
sites for mariculture (e.g Kapetsky &
Aguilar-Manjarrez 2013, Gernez et al.
2014).

Here, we present a new method that
uses images from MODIS-Aqua to meas-
ure the effect on water quality of a large,
coastal mussel farm in northern New
Zealand. The farm area studied here is
the Wilson Bay Marine Farm Zone
(WBMFZ) in the Firth of Thames, a bay of
the Hauraki Gulf in northern New Zea -
land (Fig. 1; Zeldis et al. 2015). This is New Zealand’s
largest area of contiguous mussel farms (totaling
~1000 ha of farmed space). Environmental resource
management of the WBMFZ has in cluded an adap-
tive management approach called ‘Limits of Accept-
able Change’ (Turner & Felsing 2005, Zeldis et al.
2005), which uses in situ water quality sampling for
chlorophyll a (chl a) as a proxy to quantify changes in
phytoplankton biomass. The monitoring programme
compares monthly chl a samples at a single ‘impact’
site at the centre of each of Areas A and B (Fig. 1),
with control sites surrounding the WBMFZ, located

8−13 km away (Zeldis et al. 2005). While this moni-
toring programme has been successful in assessing
the farm impacts relative to chlorophyll depletion
limits (Zeldis et al. 2005, J. Stenton-Dozey pers.
comm.), it is limited by its low spatial resolution. In
particular, this method is not capable of resolving the
true spatial extent of depletion, nor the intensity of
depletion at areas other than at its single within-farm
impact site.

Satellite remote sensing can help by increasing the
spatial and temporal coverage of water quality infor-
mation (IOCCG 2000, Kapetsky & Aguilar-Manjarrez
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Fig. 1. Wilson Bay Marine Farm Zone (WBMFZ) in the New Zealand Firth
of Thames, at the southern extreme of the Hauraki Gulf. The locations of
the aquaculture farms in WBMFZ Areas A and B are shown as rectangles.
The larger area around the farms is called the ‘skirt’ which is the area used
in the present study for kriging (see ‘Methods’ for details). An oceano-
graphic mooring has been maintained at 36°45.6’S, 175°18.0’E since 1998
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2007, Hoepffner et al. 2008). Satellite observations of
ocean colour are now available every day at all lati-
tudes (although they cannot see through clouds) and
at reasonable spatial resolution (better than 1 km).
Several challenges remain in using remote sensing to
assist the development and management of sustain-
able marine aquaculture (Schaeffer et al. 2013). First,
the accuracy of satellite observations of water quality
is uncertain, especially in near-shore environments
which tend to be optically complex (i.e. the colour of
the water is affected by many, independently varying
components such as phytoplankton, sediment and
coloured dissolved organic matter, CDOM; IOCCG
2000). Second, optical properties can change over
time (both on short and long time scales), which
potentially impacts the utility of satellite data for
monitoring long-term change (Dierssen 2010). Third,
the spatial resolution of satellite data can limit their
utility for observing the effects of smaller marine
farms.

In this study, we used satellite data from MODIS-
Aqua at 500 m resolution to directly observe the
effect of the large mussel farm in WBMFZ on 3
important water quality variables: (1) the concentra-
tion of chl a; (2) turbidity, which responds to particu-
late material in the water column; and (3) sea surface
temperature as an indicator of water column mixing.

METHODS

Study area

The Firth of Thames is an estuary which covers
1100 km2 with a mean depth of 14 m (Fig. 1), and is
subject to inflows of water from the Waihou and
Piako Rivers to the south (combined catchment area
of 4200 km2), and mixing to the north with the larger
Hauraki Gulf which opens onto the New Zealand
continental shelf and the southwest Pacific Ocean
(Zeldis et al. 2015). Chl a in the Firth of Thames
varies between about 0.5 and 5 mg m−3, and average
daily primary productivity rates are ~1 g C m−2 d−1

(Gall & Zeldis 2011). Mixed layer depths are about
20 m for most of the year (Gall & Zeldis 2011, Zeldis
et al. 2015). Annual riverine input of sediment is esti-
mated to be 195 000 t yr−1 (Hicks et al. 2011). Tides in
the Firth of Thames are semi-diurnal, with average
spring and neap tidal ranges of 3.2−3.5 m and 2.0−
2.2 m, respectively (Healy 2002). Over a tidal cycle,
currents within the Firth of Thames are typically 0.3 m
s−1, although speeds of up to 1.4 m s−1 have been
recorded (Proctor & Greig 1989, Black et al. 2000);

residual tidal currents are weak (0.01− 0.02 m s−1;
Broekhuizen et al. 2002). In terms of bio-optics, Area A
is intermittently strongly affected by sediment and
CDOM from riverine run-off leading to ‘case 2’ con-
ditions where water colour is not principally affected
by phytoplankton (Morel & Prieur 1977). Satellite
data over the farm (this study) suggest total sus-
pended matter concentrations of 2.8 g m−3 (2.1−3.5 g
m−3; median, lower and upper quartiles) and chl a
concentrations of 3.6 g m−3 (2.8− 4.6 g m−3).

In the WBMFZ aquaculture facility, mussel spat are
seeded onto vertical lines, and grow by feeding on
naturally occurring marine phytoplankton. No addi-
tional feed or enrichment is used. Harvesting occurs
approximately 18 mo to 2 yr after seeding, and stock-
ing densities have no consistent seasonal pattern.
Development of Area A (5.8 × 2.4 km) started in 2001
and its current (2016) harvest was 16 400 t yr−1 of
mussels. Area B (5.8 × 1.9 km) development started
in 2014 and it currently produces approximately
4500 t yr−1 (J. Stenton-Dozey pers. comm.). Because
Area A is presently much more fully developed than
Area B, this paper is focussed on the former, which
will dominate the farm effects on water quality.
Based on the density of mussel lines, stocking densi-
ties and nominal clearance rates, Broekhuizen et al.
(2004) estimated that phytoplankton within Area A
could suffer a mussel-induced mortality rate of 30%
d−1 but went on to say that in practice it is likely to be
much less.

The ecosystem effects of the mussel farm in the
Firth of Thames is of concern because the region sup-
ports important ecosystem services (MacDiarmid et
al. 2013) including spawning and nursery grounds
for New Zealand’s largest inshore fin-fishery (snap-
per Pagrus auratus; Zeldis & Francis 1998), and is an
important site for shorebirds (wetland of interna-
tional importance under the Ramsar Convention).

Overview of methods

The methodology was based on the following
steps. (1) We brought together satellite data products
processed to satellite data Level 2 (individual satel-
lite overpasses) exclusively using case 2 algorithms
with strict quality control to eliminate clouds and
poor quality data (see ‘Satellite data processing’
below for more details). (2) We investigated the qual-
ity of the satellite dataset using in situ measurements
(see ‘Validation of satellite data’ below).

(3) Statistical analysis was applied to each satellite
image with >50% valid data in the WBMFZ area
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(Fig. 2). We were concerned with estimating the
effect of the farm on water quality in the ‘core’ area.
This core area is centred on Area A but could be
smaller or larger than the actual farm area, as the
effect of the farm on water quality may extend out-
side the physical boundaries of the farm because of
water movement and mixing (e.g. Gall et al. 2003,
Broekhuizen et al. 2004, 2005). We call the larger
area outside the core the ‘skirt’. The area of the skirt

was much larger (125 km2, 400 pixels) than Area A
(14 km2, 56 pixels). The core and skirt areas are
almost always optically deep (satellite data sug-
gested that 99.8% of pixels over the 15 yr period had
optical depths >1). We tested the effect of changing
the size of the skirt and using a constant area of skirt
irrespective of the size of the core area and found
that neither significantly changed the results; hence,
we used a fixed skirt size. Semivariogram analysis
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Fig. 2. Overview of the method used in
this paper. (1) Select each individual
 image with good data coverage in the
area around the farm (example file here is
the chl a variable from file A20022830215
at 500 m spatial resolution). (2) Only use
data in the farm and surrounding ‘skirt’
area. (3) Carry out semivariogram analy-
sis to obtain parameters for kriging.
Colour: density of points; solid line: fitted
model; dashed lines: fitted range and sill.
(4,5) Using only the skirt data, apply krig-
ing over the farm area. (6,7) Compare the
kriged data and actual satellite measure-
ments in the farm area to obtain spatial 

estimates of the effect of the farm
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was carried out on data in the core and skirt
together to obtain semivariogram model
parameters for linear and exponential mod-
els (see ‘Spatial analysis’ be low). We
masked out the data in the core and used
semivariogram parameters and isotropic
kriging to fill in the satellite data in the core.
We propose that these kriged data represent
the best estimate of water quality in the core
if there was no farm present. Under this
assumption, comparing the kriged data with
the observed data gives a measure of the
effect of the farm over the area of the core.
We tested the effect of anisotropy and found
this had little effect (see Discussion).

Three areas of different sizes were used as
controls to investigate the uncertainty in
these estimates of the farm effect (Fig. 3).
These control sites are the same size and
shape as the core and were analysed in
exactly the same way. All analyses in this
study were carried out using IDL software
version 8.5 (Interactive Data Language, Har-
ris Geospatial Solutions).

Satellite data processing

Satellite data used in this study were from
NASA’s Moderate Resolution Imaging Spec-
trometer of the Aqua satellite (https://ocean
color.gsfc.nasa.gov/data/ aqua/). MO DIS data
have a spatial resolution of 250− 1000 m in
visible spectral bands, frequent overpasses
(daily) and long-term tracking to charac-
terise long-term change in sensor sensitivi-
ties. Data from MODIS-Aqua used in this
study cover the period from July 2002 until
February 2017. Level 1A (top of atmosphere,
uncalibrated) MODIS-Aqua data were ac-
quired either by file transfer from NASA
(data between 2002 and 2007) as full spatial-
resolution 5 min granules, or as direct broad-
cast data by the NIWA X-band receiver (after 2007).
All direct broadcast data were calibrated and pro-
cessed using NASA Collection 6 calibration files. In
total, we processed the 6949 data files using NASA’s
SeaDAS v7.2. Data were rejected for land, cloud
cover, solar glint, white-cap reflection, atmospheric
correction failure or in-water  algorithm failure. Satel-
lite data products were calculated at a spatial resolu-
tion of 500 × 500 m and derived variables were pro-
jected to a transverse Mercator grid.

Sea surface temperature

The MODIS-Aqua daytime sea surface tempera-
ture (SST) product was used in this study with no
local adjustment, but with 1 km resolution data re -
sampled onto a 500 m resolution grid. Satellite esti-
mates of surface water temperature were excluded
based on the MODIS data quality flag ‘sstqual’ and
when the chl a processing failed (potentially indica-
tive of residual cloud contamination).
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Fig. 3. (a) Farm A; (b−d) 3 controls (labelled C, D and E to distinguish
them from Farm B [see Fig. 1], which is only lightly stocked and its bio-
geochemical effect is not considered important). For each site (A, C, D,
E), the white area shows the outer extent of the ‘skirt’— the area sur-
rounding the farm that was used for kriging inside the site. The 9 black
rectangles inside the white areas show the different sizes of inner ar-
eas, i.e. the cores, which have areas of 0.75, 1, 1.25, 1.5, 2. 2.5, 3, 4 and 5
times the area of Farm A. The shapes of the skirts and cores were deter-
mined based on the tidal ellipses in the region and models of dispersion 

over a tidal cycle (Gall et al. 2003)
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Chl a and turbidity

Given that the study area is intermittently case 2,
the satellite processing must be able to separate the
co-occurring phytoplankton, suspended sediment
and CDOM. Failure to distinguish between these
coloured materials would result in errors in their spa-
tial distributions and could lead to erroneous conclu-
sions as to the effect of the farm on water quality. A
variety of atmospheric correction methods appropri-
ate for turbid (case 2) waters are available in SeaDAS
for use with MODIS data (Ruddick et al. 2000, Wang
& Shi 2007, Bailey et al. 2010) and others are under
development (e.g. Lavender et al. 2005). It is not clear
which of these performs best in a given situation, and
here, we used the near infrared−short-wave infrared
(NIR-SWIR) combined method (Wang & Shi 2007)
which may be the most robust when turbidity is high
and local information on aerosol optical properties is
not available. In the approach of Wang & Shi (2007),
NIR wavelengths are used to estimate reflectance by
atmospheric aerosols over clear waters, and SWIR
wavelengths (that are not affected by allochthonous
particulates) are used over turbid waters.

Simple empirical methods (e.g. O’Reilly et al. 1998)
can robustly estimate chl a concentration in case 1
waters but typically perform poorly in case 2 waters
(IOCCG 2000, Pinkerton et al. 2006, Zeldis et al.
2015). This study used the quasi-analytical algorithm
(QAA) (Lee et al. 2002, 2009) to estimate particulate
backscatter at 555 nm [bbp(555)] and phytoplankton
absorption at 488 [aph(488)]. MODIS data were inter-
polated to 500 m using paired bands where necessary
(Franz et al. 2006). Case 2 chl a was obtained from
aph(488) using chlorophyll-specific absorption coeffi-
cients measured in New Zealand estuaries (Pinkerton
2017b). We blended the case 2 chl a and the MODIS-
default chl a (which is likely to be more robust in
case 1 conditions) using a logistic-scaling of bbp(555)
(Pinkerton 2017b). Values of bbp(555) were also lin-
early scaled to calculate turbidity (in normalised tur-
bidity units) using in situ bio-optical measurements in
New Zealand estuaries (Pinkerton 2017b).

Validation of satellite data

Satellite data products were compared with in situ
measurements to explore data quality. A biogeo-
chemical mooring has been maintained in the Firth of
Thames at 40 m depth since 1998, with approximate -
ly quarterly servicing (Gall & Zeldis 2011; Fig. 1). The
moorings included internally logging thermistors

(Onset) and an integrating natural fluorometer (INF-
300, Biospherical) at approximately 7 m depth. Fol-
lowing correction for biofouling and averaging over a
day to account for diel effects, INF data were used in
conjunction with shipboard biogeochemical meas-
urements to estimate daily chl a (Gall & Zeldis 2011,
Zeldis et al. 2015).

Time-series plots show that the satellite observa-
tions capture long-term variations in the mooring
measurements of chl a and surface temperature
(Fig. 4). ‘Match-up’ analysis — where the median of 9
satellite observations at the mooring site are com-
pared to daily average measurements from the moor-
ing for the same day — is widely used to assess satel-
lite data quality (Darecki & Stramski 2004, Chang &
Gould 2006). Match-up analysis yielded good agree-
ment for temperature (R2 = 0.95) but poor results for
chl a (R2 = 0.23 in log space; Fig. 5). There were no
measurements of turbidity from the mooring, so
instead we compared the satellite estimate of tur -
bidity with in situ measurements at a nearby site
(Manukau Harbour, northern New Zealand). Unpub-
lished data show that suspended sediment had very
similar inherent optical properties in the 2 areas
(Pinkerton 2017b) meaning that the accuracies of
satellite estimates of turbidity in the 2 areas are likely
to be similar. Satellite observations of turbidity in
Manukau Harbour were found to be unbiased with
respect to in situ measurements, but explained only a
small proportion of the variance (R2 = 0.088 in log
space; Fig. 5). This is likely to be the case for satellite
data on turbidity in the study area also.

Low R2 values between satellite and in situ obser-
vations of chl a and turbidity are not fundamentally
limiting for the method used in this study. However,
inaccuracies in the remotely sensed spatial distribu-
tions of coloured material will affect the method
developed here, and this is considered further in the
‘Discussion’.

Spatial analysis

Many statistical methods are potentially capable of
analysing the spatial patterns of a 2-dimensional data
field, including kriging, spline-based approaches
and ‘hot-spot’ analyses (Krige 1951, Wahba 1990,
Getis & Ord 1992). We used kriging to ‘fill in’ data
over the core (or control) areas as the method is well
established, simple to apply and computationally
efficient, and it produces unbiased estimates (Papritz
& Stein 1999). Semivariogram analysis was used to
determine the appropriate parameters (nugget, sill,
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range) in the kriging model. The semivariogram γ (h)
is half the average squared difference in a variable
(z) measured at 2 points (xi and xi+h) separated by a
distance h (Matheron 1963); Eq. (1). The semivari-
ogram measures the way in which pairs of observa-
tions in a spatial data field become more different as
their separation increases, as has been used to help
interpret changes in geophysical data (Isaaks & Sri-
vastava 1989) including satellite images of water
quality (Bierman et al. 2011).

(1)

Kriging can be used with a number of different
covariance models, including linear, exponential,
Gaussian and spherical. The covariance data found
here (see example in Fig. 6) best fitted linear and
exponential models, with some images better fitting
the former and others the latter. Consequently, we
carried out all analysis using both of these models,
and combined the results using the method given in
the following subsection. Satellite measurements of
chl a and turbidity were log transformed before
analysis to make their distributions more normal, but
temperature data were not transformed.

Statistical analysis and confidence

For each variable (chl a, temperature, turbidity),
there are 8 sets of results. These results correspond to
4 core areas (Area A ‘farm’, and 3 controls C, D and
E), each based on 2 different semivariogram models
(linear and exponential). We first define the ‘effect’
(Eq. 2). For chl a and turbidity (which tend to be log-
normally distributed), the effect is defined as the
median over the core area of the ratios between
observed data (zobserved) at location xi and the kriged
data at the same location (zkriged) minus 1. The chl a
and turbidity effects are dimensionless. For tempera-
ture data (which are closer to a normal distribution),
the effect is defined as the median of the differences
in the core area between observed data and kriged
data. The temperature effect has units of °C. Using
the median rather than the mean removes the sensi-
tivity of the measure to extreme values. Negative
effects indicate a ‘hole’ (i.e. reduction in chl a due to
the farm, or to cooling), whereas positive effects indi-
cate enrichment due to the farm or warming.

Next, we define the best estimate of the effect of
the farm (written here as Aμ) as the mean of the over-
all effects estimated using the linear and exponential

h
n

z x z x hi i
i

n h

( )
1

2
( ) ( ) 2

1

( )

∑ { }γ = − +
=
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Fig. 4. Biogeochemical variables from MODIS satellite (grey diamonds and lines) between 2002 and 2017. (a) Chlorophyll a
concentration; (b) surface temperature. In situ measurements of chl a concentration and surface temperature from the mooring 

are shown as black dots for comparison



Aquacult Environ Interact 10: 529–545, 2018

kriging models (Alin, Aexp, respectively) minus the
mean of the effects found at controls C, D and E
(Eq. 3). Upper and lower confidence bounds are esti-
mated as Aμ ± 2Aσ, where Aσ is estimated as the stan-
dard deviation of the effect at the control sites by the
2 kriging models (Eq. 4):

z = chl a, turbidity (2a)

z = temperature (2b)

(3)

(4)

Trend analysis

Temporal trends in water quality variables were de-
termined using a Mann-Kendall test (Hipel & Mc Leod
1994). Estimates of farm effect from all individual
satellite overpasses were used for the trend analysis
with no time compositing. Data were deseasonalised
by collapsing measurements into a single annual pe-
riod, smoothing using a moving 2 mo window and
 interpolating based on day of year. Statistical signifi-
cance was assessed using the unadjusted Mann-
Kendall statistic ZMK (Hipel & McLeod 1994). Trends
were identified as significant when the p-value was
<0.01 and the 95% confidence interval of the Sen
slope did not intercept 0 (Larned et al. 2015).

RESULTS

The final analysis was based on data from approxi-
mately 890 MODIS-Aqua files, with, overall, more
than 23 000 pixels in the area of the WBMFZ for each
product (Fig. 7). Across all 3 variables, the effects
observed at the control sites were always clustered
about 0 and were little affected by the size of the core
(chl a: 0.003 ± 0.007 (dimensionless); temperature:
−0.002 ± 0.008°C;  turbidity: −0.0001 ± 0.008 (dimen-
sionless); mean ± SD across core sizes 0.75 to 5 times
Area A). In other words, the analysis method devel-
oped here behaved in a stable way over different
sizes of core at the control sites and tended to 0
effect. Almost without exception, the effect due to the
farm was greater in magnitude than the effect at any
of the 3 control sites (Fig. 7). The effects on all 3 vari-
ables due to the farm, predicted by the linear model,
were greater than the effects determined by the
exponential model. The direction of the effect of the

( )

( )
= ⎡

⎣⎢
⎤
⎦⎥

−median 1observed

kriged
A

z x
z x

i

i

[ ]( ) ( )= −median observed krigedA z x z xi i

( ) ( )= + − + + + + +μ
1
2 lin exp

1
6 lin exp lin exp lin expA A A C C D D E E

[ ] [ ] [ ]( )= σσ , , , , ,lin exp lin exp lin expA C C D D E E
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Fig. 5. Validating key satellite products by match-up analy-
sis: (a) chlorophyll a concentration; (b) sea surface tempera-
ture; (c) turbidity. Solid black line: y-on-x regression line;
elipses: 80 and 95% confidence limits; dashed line: 1:1 line.
Also shown: no. of points (N), and coefficients of determina-
tion (R2) in linear and log-log space. Match-up analysis
yielded good agreement for temperature, but poor results
for chl a and turbidity; see ‘Methods’ for more information
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farm on 2 of the variables (chl a, temperature) was
the same for the linear and exponential models: chl a
and surface water temperature were lower in the
farm area. The exponential model suggested that the
farm increased turbidity, whereas the linear model
gave a decrease.

The effect of aquaculture at the farm on chl a was
significant when the area of effect (core size) was 1.5
times the actual area of the farm (t (3) = 4.12, p =
0.026). The effect of the farm on chl a at this spatial
scale was −1.6%. At scales smaller than the farm
area or larger than twice the farm area, the effect of
the farm on chl a was not significant (t (3) < 2.88, p >
0.064). In contrast, the annual-average cooling effect
(−0.03°C) of the farm was significant at all spatial
scales of analysis (t (3) > 4.42, p < 0.021). No signifi-
cant effect of the farm on turbidity was found (t (3) <
3.62, p > 0.036).

Because the satellite data extended across years
between 2002 and 2017 and had good coverage in all
months, we used this analysis to explore seasonal
and interannual effects of the farm on water quality
(Fig. 8). We carried out this analysis using a core size
of 1.5× the area of the farm based on the result for
chl a (Fig. 7). For chl a, we found that the effect of the
farm was significant in January, May, June, August

and September (t (3) > 4.0, p < 0.027), and not signifi-
cant otherwise (t (3) < 0.90, p > 0.054). In contrast, the
effect of the farm on surface water temperature had a
strong seasonal variation, with maximum warming in
June (+0.03°C, t (3) = 8.8, p = 0.003) and maximum
cooling in January (−0.11°C, t (3) = 18.5, p < 0.001).
The effect of the farm on turbidity was positive
(+2.0%) in May and June (t (3) > 4.4, p < 0.021), but
not significant at other times of the year or in the
annual average (t (3) < 2.9, p > 0.064).

In terms of long-term trends between 2002 and 2017
(Fig. 9), we found that the effect of the farm on chl a
had a significant trend (ZMK = −2.3, p = 0.02) with a
Sen slope of 0.12% yr−1 (increasing effect of the farm).
Trends were not significant in temperature (ZMK =
−0.67, p = 0.50) or turbidity (ZMK = 1.2, p = 0.25).

The computing resources required for this analysis
were reasonable but not prohibitive. The analysis of
each image (which involved data mapping, semivar-
iogram analysis and kriging) was completed in about
0.34 s, and each set of 890 files took ~5 min. With 288
runs (4 variables, 2 semivariogram models, 4 areas
[Area A and 3 controls] and 9 spatial scales), the
analysis took about 24 h of processing resource. Sen-
sitivity analysis (including for anisotropy) took ~5 d of
processing.
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Fig. 6. Example of semivariogram analysis using the chlorophyll a concentration data from image A20021940220. (a) Semi -
variogram showing the change in semicovariance between pairs of points as the spatial distance between them changes. Red
(blue) colours indicate high (low) density of points. Black dots are individual semivariogram points. The black line was fitted
by median smoothing over a distance of h = 3. (b) Fitting the kriging parameters. The grey line is the smoothed semivariogram
(SV) data, to which linear (lin) and exponential (exp) models are fitted (black lines). The fitted nugget (N), sill (S) and range (R) 

are shown. Note that the nugget is forced to 0 for the exponential model
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DISCUSSION

We used satellite data to observe the effect of a
large mussel farm on key water quality parameters,
namely the concentration of chl a (as a proxy for
phytoplankton abundance), turbidity and SST. Satel-
lite observations in the vicinity of the farm were
removed, filled in by kriging and then compared
with the observed data in this core area. Overall, our
results suggested that the effects of aquaculture in
WBMFZ Area A on water quality were small. We
found that chl a was reduced by 1.6% (long-term

median value) over an area of about 1.5× the actual
area of the farm. We detected no significant effect of
the farm on turbidity.

The size of the effect found here is smaller than
suggested by both field sampling and modelling. A
previous synoptic study of the effect of the farm on
phytoplankton using towed equipment suggested
chl a depletion at the farm scale of between 5 and
10% (Gall et al. 2003). Previous numerical model-
ling studies (Broekhuizen et al. 2004, 2005, Stenton-
Dozey et al. 2005) indicated that the Area A mussel
farm could reduce concentrations of plankton by
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Fig. 7. Results of changing the size of the core area for each variable: (a,b) chlorophyll a concentration; (c,d) sea surface tem-
perature (SST); (e,f) turbidity. In each case, the median effect across all months and all years is shown on the y-axis. ‘Area’ on
the x-axis is the size of the core area in the analysis expressed as a proportion of the size of Farm A. (a,c,e) Individual results
for 2 different models (lin: linear; exp: exponential), for the effect of WBMFZ Area A (thick lines) and for control sites C, D and
E (thin lines). (b,d,f) Mean effect of the farm and 95% confidence intervals (grey area; see ‘Methods’ and ‘Results’ for more 

details). Dashed lines: 0 effect
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8−10% within an area extending a few km beyond
the boundaries of Area A. The modelling also sug-
gested that the farm could lead to mild enhancement
of phytoplankton growth in the summer, something
that was not detected in the present study or by field
sampling (Gall et al. 2003).

We also found an effect of the mussel farm on sur-
face water temperature, with a consistent pattern of
winter warming and summer cooling of up to about
0.1°C. It is likely that the tidal currents moving past
the physical structure of the mussel farm break up
the surface thermal microlayer, and this caused a
change in surface water temperature around the
farm. This is consistent with Gall et al. (2003), who

found evidence of significant reduction in tidal
 current speed (20−25%) in the lee of the WBMFZ
Area A. In summer, the surface microlayer will be
warmer than the underlying water, so the farm’s stir-
ring effect leads to a cool anomaly. In winter, when
the air temperature is cooler than the water, a cool
surface microlayer is formed, and the disturbance of
this is likely to lead to the observed warm anomalies
around the farm.

The small change in surface temperature detected
here suggests that the physical disturbance caused
by the farm structure is not sufficient to mix up water
from below the pycnocline (typically located at ~20 m
depth) to the surface. If this was the case, we would
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Fig. 8. Effects of farm (a,c,e) by month and (b,d,f) by year for core area of 1.5 × the area of the farm, and 3 variables: a,b: chloro-
phyll a concentration; c,d: sea surface temperature; e,f: turbidity. The grey areas show the 95% confidence intervals estimated
as Aμ ± 2A σ, where Aσ is estimated as the standard deviation of the effect at the control sites by the 2 kriging models (Eq. 4). 

The dashed lines show 0 effect
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expect to see much larger effects of the farm on sur-
face temperature, as the pycnocline in the Firth of
Thames is associated with a 2°C vertical temperature
difference over several months (Zel dis et al. 2015).
This in turn argues for the reduction in chl a around
the farm being due to phytoplankton depletion as a

result of filter feeding of mussels
rather than being a dilution effect
(e.g. changes to the vertical distribu-
tion of phytoplankton).

There was considerable variability
in the size of the farm effect identified
by this method based on different
satellite images (Fig. 9). The method
estimated both positive and negative
effects of the farm for all variables,
and in about 20% of the images,
the effects were estimated as being
greater than 0.1 in magnitude. Some
of this variability is undoubtedly real
and some will be a methodological
artefact. Mussel farms can genuinely
have positive and negative effects on
concentrations of phytoplankton and
suspended particulate matter (e.g.
Ogilvie 2000), but, in line with other
applications of remote sensing, a
large amount of satellite data is
needed to offset the relatively high
uncertainty.

In this context of variability, it is
important to note the use of 3 control
sites to test for significance. The way
in which the effect varied with the
size of the core agreed with our
expectations. When the core area for
analysis was smaller than the actual
area of effect, values in the skirt
would be affected by the aquaculture
activity and this would tend to make
the estimated effect too small. If the
core area chosen for analysis was
much bigger than the actual area of
effect of the farm, the median effect
estimated would again tend to be too
low. In the latter case, we would also
expect the potential for spurious
results to in crease so that the uncer-
tainty bounds (based on the control
sites) would likely increase. We found
that our results corresponded closely
to this expected pattern for chl a
(Fig. 7). The size of the effect of the

farm increased, then decreased as the spatial size of
the core increased, and the confidence bounds
became wider. The maximum effect on chl a was
observed at an area of 1.5 times the area of the farm
(WBMFZ Area A), which suggested that this was the
appropriate spatial scale for analysis. To further test
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Fig. 9. Trend analysis of effects of the farm on (a) chlorophyll a concentration;
(b) sea surface temperature; (c) turbidity showing all individual satellite esti-
mates of effect, deseasonalised as described in ‘Methods’. The Mann-Kendall
trend (red line), number of points (N), Mann-Kendall statistic (Z) and signifi-
cance (p) are shown. In no case was the trend significant at the 1% level
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that the effects are real, we repeated the analysis
switching round the results of Farm A with each of
the control areas in turn. In each case, the size of the
effect did not vary in an interpretable and consistent
way as the size of the core changed. In addition, the
effect identified from the satellite data was consistent
with numerical modelling of the potential chl a de -
pletion ‘halo’ of the farm (Gall et al. 2003; Fig. 10).
The shapes of the effects were very similar, although
the magnitude of the depletion in chl a predicted by
the analysis of Gall et al. (2003) was greater than the
reduction in chl a around the farm observed here.

The same pattern in how the effect of the farm
changes with core size was broadly seen for the tem-
perature and turbidity variables but was not so clear.
For example, the confidence bounds for temperature
increased as the size of the core increased, but the
greatest effect for temperature was found at 4× the
size of Area A, not at 1.5×. For turbidity, the confi-
dence bounds narrowed as the core size increased
beyond 3×. Phytoplankton have a capacity for re -

growth following depletion by filter feeding (i.e. chl a
will demonstrate non-conservative behaviour), where -
as temperature and turbidity effects may be trans-
ported conservatively by water movement. Mean
hydraulic residence times in the farm area are likely
to be on the order of 1 d (Gall et al. 2003), similar to
phytoplankton intergenerational times. This may ac -
count for the smaller spatial scale of effect seen for
chl a relative to SST and turbidity (Fig. 7).

We discount the possibility that changes observed
in the satellite data in the vicinity of the farm were
due to the above-surface farm infrastructure (such as
floats and platforms) affecting the spectrum of water-
leaving radiance and hence the derived satellite
products. (1) The proportion of the area covered by
floats in the farm area is small (<0.5% of the area).
(2) The reflectivity of the floats is similar to that of
water, so their individual effect on water- leaving
radiances will be modest. (3) The changes in water
quality detected in our analysis extend outside the
outer limits of the farm superstructure.
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Fig. 10. Spatial distribution of chlorophyll a depletion. Values shown are the ratio of chl a with farm present to chl a with no
farm; thus, values <1 indicate a reduction in phytoplankton associated with the farm. (a) Depletion 'halo' over a 24 h period
based on synoptic surveys around the farm (reproduced from Gall et al. 2003, their Fig. 29). Black rectangle: aquaculture farm;
white background:  0 predicted depletion.  (b) Spatial distribution of chl a reduction derived in the present study using a core
size of 2.5× the area of the farm. A bigger area than 1.5× is shown here to illustrate the spatial shape of changes in chl a around
the mussel farm. Light grey background indicates that no measurement exists (as this is outside the kriged area); black rectan-
gles: outer limit of the skirt (largest), 1.5× the area of the farm (intermediate) and the area of the farm (smallest rectangle). Note 

that the colour scales in (a) and (b) differ to emphasize spatial patterns rather than absolute values
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There was some suggestion in our results of an
increasing effect of the farm on all variables, with a
significant trend identified in the effect of the farm on
chl a (Sen slope 0.12% yr−1). The stocking density of
mussels in the farm has increased over the period
analysed: by mid-2003 it was ~66% seeded and in
2016 it was ~92% developed. It is hence plausible
that the small increasing trend in chl a depletion fol-
lows from the increase in stocking density over time.
The trends in the effect of the farm on surface tem-
perature and turbidity were not significant, consis-
tent with little change in the physical structure of the
farm over this period and little effect of the mussels
on suspended particulate matter concentrations in
the upper water column. Changes in the regional
hydrography of the Firth of Thames over the study
period could lead to spurious trends being identified
by this method. However, trends in all variables at
the 3 control sites were not significant, so there is no
evidence for long-term background environmental
change over the course of the study.

Given the difference in results obtained using a lin-
ear compared to an exponential kriging model, it is
reasonable to ask whether our results are robust to
uncertainties in the assumed shape of the semivari-
ogram function. Certainly fitting the parameters
(nugget, sill, range) to semivariograms of remotely
sensed water quality variables was not straightfor-
ward. As can be seen in Fig. 6, the individual semi-
variance data points were highly scattered and the
smoothed lines did not unambiguously follow any of
the standard semivariogram forms (linear, exponen-
tial, Gaussian, spherical) over the whole distance
range. Anisotropic semivariogram analysis may im -
prove the fit somewhat, but agreement with models
will always be imperfect. The relatively coarse spa-
tial scale of the satellite data also misses substantial
small-scale variability in water quality properties.
We developed an iterative fitting method for both the
linear and exponential forms, where the semivari-
ance beyond a certain distance was not used. Both
the fitted sill and range parameters of the linear mod-
els agreed reasonably well with those in the expo-
nential model. The median fitted sills were 0.177 (lin-
ear) and 0.182 (exponential), and the median fitted
ranges (in pixels) were 17.3 (linear) and 27.2 (expo-
nential). We set the nugget in the exponential model
to 0 to ensure reasonable values of range, whereas
the median nugget in the fitted linear models was
non-negligible (0.005). Carrying out the analysis
using a linear model with the nugget set to 0 had lit-
tle effect on the results. We also tested the effect of
using fixed values of range (set to 15, 20 and 25 pix-

els) in both the linear and exponential models. The
re sults using the fixed ranges bracketed those ob -
tained using the fitted semi variogram parameters as
expected. It seems there fore that the difference
between the results with exponential and linear
models was a result of the way in which the models
transmitted spatial variations from the skirt into the
core area.

We were not comfortable with using different mod-
els for different images, i.e. using a linear model for
one image and an exponential model for a different
image, as it was usually not clear from the fitting
which model best described the semivariance data.
Hence, we consider it appropriate to use both linear
and exponential models with equal weighting. For
future development of this method, it would be use-
ful to develop a better way of combining results from
different kriging models. For example, a resampling
method such as the jackknife or bootstrap using
withheld data could be used to evaluate the perform-
ance of different semivariograms and kriging models
for each individual image. We also note that kriging
can provide estimates of the uncertainties of the pre-
dictions. Combining these estimates of uncertainty
would allow different estimates of the effects of the
farm to be weighted in Eqs. (3) and (4).

The spatial structure in the water quality para -
meters are not likely to be isotropic as we have
assumed, and there will probably be more variation
in water quality in the inshore−offshore direction
than in the along-shore direction. We tested the ef -
fect of this anisotropy using kriging with anisotropic
factors of α = 1.2 and 2.0. A factor of α = 1.2 indicates
that the length-scales of variation in water quality
parameters are 20% shorter in the inshore−offshore
direction than in the along-shore direction, and a fac-
tor of α = 2.0 means that the cross-shore length-scale
is half the along-shore scale. Qualitatively, we found
that the anisotropy had negligible effect on the
results; the observed effects of the farm as a function
of core area (Fig. 7) with and without anisotropy had
the same shapes (the correlation coefficients be -
tween the medians and confidence intervals were
always >0.95). However, anisotropy did affect the
magnitudes of the estimated effects. We found that
anisotropy with α = 1.2 and 2.0 reduced the estimated
effect of the farm on chl a by 5 and 24%, respectively
(with the change expressed as a proportion of the
isotropic effect), reduced the estimated effect of the
farm on temperature by 4 and 14%, and increased
the estimated effect of the farm on turbidity by +97
and +230%. Despite the big increases of anisotropy
on the estimated effect of the farm on turbidity, the
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effect of the farm was still not deemed significant
because the confidence intervals still spanned 0
effect. These results are consistent with expectations
that anisotropy would be greater for turbidity than
for either chl a or temperature  because of potentially
strong cross-shore gradients in suspended sediment
concentration. It is not easy to estimate the appropri-
ate level of anisotropy, which will also vary from day
to day. Hence, we conclude that our results are qual-
itatively and approximately quantitatively robust to
the effect of anisotropy, but recommend that fully
anisotropic kriging (i.e. with anisotropic factors de -
rived separately from each  image) be developed in
the future to improve confidence in the sizes of the
farm effects.

Although the temperature data from MODIS-Aqua
were found to be accurate, much poorer accuracy
was achieved for chl a or turbidity (Fig. 5). Similar
(poor) results have been found in this kind of ‘match-
up’ analysis for chl a and turbidity in coastal areas
elsewhere (e.g. Pinkerton et al. 2003, Darecki &
Stramski 2004, Chang & Gould 2006). The mismatch
between in situ and satellite measurements of chl a
and tur bidity potentially have many causes (Pinker-
ton et al. 2003), including: (1) water column structure:
although the water column at the mooring site in the
Firth of Thames is usually well-mixed to below the
depth of the mooring sensor, there are occasions
when chl a at depth differs substantially from that at
the surface (Gall & Zeldis 2011); (2) fundamental dif-
ferences in the spatial and temporal scales of obser-
vation by satellites and moorings (Pinkerton et al.
2003, Gall & Zeldis 2011). We integrated mooring
measurements over a 24 h period to better reconcile
the scales of observation but, even so, the ‘match-up’
comparison method is limited as a way of assessing
satellite data quality; (3) in situ measurements of
chl a by the INF are inexact (Gall & Zeldis 2011); (4)
satellite algorithms for chl a and turbidity have high
uncertainties in the coastal zone (Garver & Siegel
1997, IOCCG 2000, Lee et al. 2002, Lohrenz et al.
2003). These uncertainties are due to variability in
the inherent optical properties of coastal water con-
stituents coupled with inaccuracies in the remote
sensing of water-leaving radiance, for example due
to imperfect atmospheric correction (Pinkerton et al.
2003). It is hence important to de velop methods of
analysis of satellite data that are robust to limitations
in the absolute accuracy of measuring water quality
from satellites and in our methods to quantify these
accuracies.

The method developed here is likely to be rela-
tively insensitive to uncertainties and errors in the

absolute values of chl a and turbidity derived from
ocean colour satellite information, because it is based
on analysis of the spatial patterns in the data. In par-
ticular, our method will be insensitive to long-term
variations in the absolute accuracy of satellite meas-
urements of water quality over decadal scales, which
could potentially compromise traditional methods of
monitoring (e.g. Dierssen 2010). However, inaccura-
cies in the satellite-derived spatial patterns of chl a
and turbidity will affect our results and conclusions,
as the method developed in this study relies on the
spatial structure in the satellite observations. For
example, if the effects of sediment, phytoplankton
and CDOM on water colour were not properly re -
solved, inaccuracies in both spatial patterns and
in the absolute values of chl a and turbidity could
 follow. We found that the satellite estimates of chl a
and turbidity in the skirt area were effectively inde-
pendent (R2 < 0.01). This result suggests that the
satellite processing was working effectively, as sys-
tematic failure in the algorithm would be expected to
lead to correlation between chl a and turbidity.

A useful future study would be to examine apply-
ing the method described in the present study to
higher spatial-resolution satellite data (e.g. MERIS,
LANDSAT, Sentinel-2; e.g. Gernez et al. 2014, 2017)
to investigate smaller aquaculture facilities. The de -
veloping field of hot spot analysis (Getis & Ord 1992,
Harris et al. 2017) also promises to provide better sta-
tistical tools which could potentially be used to inves-
tigate spatial effects of aquaculture without the need
to define skirt and core areas.

In conclusion, while both modelling and in situ
monitoring have been used to quantify the effects of
the WBMFZ Area A mussel farm on water quality
(e.g. Gall et al. 2003, Broekhuizen et al. 2004, 2005,
Zeldis 2005), this is the first study to use satellite data
to directly observe the effects of such a farm. The
approach given here delivers direct information on 3
of the key water quality parameters that are required
to monitor and manage the environmental effects of
mariculture: phytoplankton, temperature and sus-
pended particulate matter (Kapetsky & Aguilar-
 Manjarrez 2007, Soto et al. 2007, Ferreira et al. 2010).
The information is likely to be relevant to monitoring
several more key water quality properties, including
nutrients, farm-derived detritus, dissolved oxygen
and microbial loading. Remote sensing should be
thought of as a complement to in situ observation of
the environment (e.g. Gernez et al. 2014, 2017),
direct monitoring of harvest species (e.g. Filgueira et
al. 2014) and bio-physical modelling (Broekhuizen et
al. 2005, Guyondet et al. 2013, Rowe et al. 2017).
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