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1.  INTRODUCTION

The salmon louse Lepeophtheirus salmonis is a
parasitic copepod on salmonid fish and the dominant
sea louse species on farmed salmonids in the North-
ern Hemisphere (Pike & Wadsworth 1999). The para-
sitic stages of L. salmonis live on the skin of the host
fish and disperse by means of planktonic larval stages
(Pike & Wadsworth 1999). The lice larvae hatch from
egg strings that normally remain attached to the
female during development (although if stressed, the

egg strings may become detached and disperse as
well; Eisenhauer et al. 2020). High farm density
locally leads to high lice density with potentially
adverse effects on fish welfare and survival (Grimnes
& Jakobsen 1996). As a consequence, salmon lice are
a density-dependent constraint to salmonid farming
(Jansen et al. 2012, Kristoffersen et al. 2014). Salmon
lice of farm origin also cause increased mortality of
wild salmonids, such as salmon post-smolts, which
migrate through coastal areas with high farm densi-
ties (Krkošek et al. 2009, Vollset et al. 2018), and sea
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trout Salmo trutta, which remain in coastal waters
during their marine phase (Thorstad et al. 2015). For
salmonid farming to be sustainably managed, we
need quantitative knowledge about how salmon lice
spread within and between farms and from farms to
wild fish under different environmental conditions
and production regimes.

Norway is the largest producer of Atlantic salmon
S. salar and one of the largest producers of rainbow
trout Oncorhynchus mykiss in the world (FAO 2019).
The political ambition is to increase production further,
conditional on the growth being environmentally
sustainable (Ministry of Trade, Industry and Fisheries
2015). The environmental indicator used to regulate
whether to increase, maintain or reduce production
in different areas along the coast is the estimated
detrimental effect that salmon lice from fish farms has
on wild salmonids, with a main focus on the mortality
of wild salmon post-smolts. To monitor salmon lice,
fish farmers are required to count and report salmon
lice on a weekly basis (Ministry of Trade, Industry
and Fisheries 2012; monthly reporting before 2012).
Statistical analyses of these data have provided in -
sights into salmon lice dispersal and population
dynamics (Jansen et al. 2012, Aldrin et al. 2013,
Kristoffersen et al. 2014, Aldrin et al. 2019). The mon-
itoring data are also key input data in models that
have been developed to estimate the effects of farm-
origin salmon lice on the mortality of salmon post-
smolts (Kristoffersen et al. 2018, Myksvoll et al. 2018,
Sandvik et al. 2020). The post-smolt mortality esti-
mates from these models are updated regularly as
part of the decision support for the government’s reg-
ulation of fish farm production in Norway (e.g.
Vollset et al. 2019). Considerable uncertainties in the
mortality effects complicate interpretation and deci-
sion-making, however, and require a continual effort
to improve the precision of the estimates.

Several studies in recent years have provided new
information about production, mortality and infectivity
of larval salmon lice, which can potentially improve the
epidemiological modelling (reviewed by Brooker et
al. 2018). For example, new experimental studies
have been published on how temperature influences
L. salmonis egg and larval development rates (Sams-
ing et al. 2016, Hamre et al. 2019) and egg batch size
(Samsing et al. 2016). New estimates have also been
published on how the dispersal probability of L.
salmonis larvae decreases with distance (Aldrin et al.
2019) and on the mortality rates of L. salmonis adults
and larvae (Aldrin et al. 2017). Furthermore, experi-
mental studies have provided new insights into how
temperature and salinity influence mortality rates and

the ability of lice larvae to successfully attach to a fish
host (infectivity). The infectivity of L. salmonis larvae
on Atlantic salmon post-smolts appears to be higher at
around 10−15°C than at either higher or lower tem-
peratures (Tucker et al. 2000, Samsing et al. 2016,
Dalvin et al. 2020, Skern-Mauritzen et al. 2020). Low
salinity has been associated with reduced hatching
success of L. salmonis larvae (Johnson & Albright 1991,
Gravil 1996), re duced larval survival (Gravil 1996,
Bricknell et al. 2006), reduced infectivity (Tucker et al.
2000, Bricknell et al. 2006) and larval avoidance of
low-saline surface waters (Bricknell et al. 2006, Cros-
bie et al. 2019). Application of these results in epi-
demiological modelling is, however, complicated by
the fact that vital rates such as mortality and infectivity
are influenced by a number of abiotic and biotic fac-
tors that are difficult to represent realistically under
laboratory settings (Brooker et al. 2018). Temperature
and salinity may, therefore, scale differently with
these rates in the sea than in the laboratory, and it is
not certain that accounting for more processes in the
epidemiological models improves predictions. Thus,
there is a need for a systematic evaluation of which al-
terations in model settings actually improve predic-
tions of salmon lice infestations on salmonids in the sea.

The aim of this study was to review and synthesize
new results on salmon lice mortality, development,
egg production and infestation rates and test if the
precision of the estimates of salmon lice infestations
on Atlantic salmon post-smolts could be improved by
incorporating these new results. We considered the
salmon lice infestation model by Kristoffersen et al.
(2018) as a baseline model. This model predicts spa-
tiotemporal variation in salmon lice infestation pres-
sure based on monitoring data of salmon lice and
temperature at fish farms as well as knowledge about
salmon lice biology (following Kristoffersen et al.
2014). As farmed salmon outnumber wild salmonids
by 2 orders of magnitude along the Norwegian coast
(Heuch & Mo 2001, Johansen et al. 2011), we assumed
that salmon lice larvae were predominantly of farm
origin; the fish farm monitoring data then provide
extensive information about the spatial and temporal
variation in the production of salmon lice larvae. The
fish farm monitoring data also provide in formation
about the rate at which salmon lice larvae infest new
salmon hosts; however, the interpretation of these
data is complicated by the anti-lice actions taken by
the fish farmers, such as use of cleaner fish, shielding
skirts, submerged feeding, functional feeds, etc. The
infestation by salmon lice on Atlantic salmon post-
smolts has therefore been determined by a number
of sentinel cage experiments from 2012−2020 (Bjørn

340



Stige et al.: Modelling salmon lice infestation pressure

et al. 2011, Sandvik et al. 2020), which Kristoffersen
et al. (2018) used to analyse infestation level as a func-
tion of infestation pressure.

Kristoffersen et al. (2018) provided a statistically
robust model framework to test hypotheses about the
biological and physical mechanisms that link the
data on salmon lice larvae production and infesta-
tion. We used this model framework to test 12 hypo -
theses (H1−H12) for how predictions of salmon lice
infestation could be improved compared to the base-
line model. Each hypothesis represented a possible
alteration of the baseline model by relaxing simplifi-
cations made in that model (H1, H4), updating param-
eter values for key processes in the model based on
recent studies (H2, H3, H5, H6), accounting for tem-
perature and/or salinity effects on processes previ-
ously assumed to be constant (H7‒H11) or statistically
estimating temperature and salinity effects (H12). To
address hypotheses about effects of temperature at
infestation time and salinity (H9‒H12), the measured
farm temperatures were supplemented by tempera-
ture and salinity data from a regional ocean model
(Asplin et al. 2020). The hypotheses were that predic-
tions of salmon lice abundance on salmon post-smolts
in sentinel cage experiments would become more
precise by:
(H1) calculating infestation pressure based on the
cumulative number of infective larvae in the experi-
mental period (new methodological approach) instead
of the production of infective larvae during the last
2 wk of the cage experiment (baseline model);
(H2) using new (Aldrin et al. 2019) instead of old
(Aldrin et al. 2013) estimates for how the dispersal
probability of salmon lice larvae decreases with dis-
tance from the farm that the larvae originated from;
(H3) testing alternative mortality rates of adult (egg-
bearing) female lice, planktonic and parasitic lice lar-
vae (Stien et al. 2005, Aldrin et al. 2017);
(H4) calculating development times by a temperature-
dependent development fraction approach (Hamre
et al. 2019) instead of using a degree-days approxi-
mation (Kristoffersen et al. 2018);
(H5) updating the function for temperature- dependent
egg development time (Stien et al. 2005) with new ex -
perimental data (Samsing et al. 2016, Hamre et al.
2019);
(H6) updating the function for temperature- dependent
larval development time (Stien et al. 2005) with new
experimental data (Samsing et al. 2016) or re placing
it by a newly published function (Samsing et al. 2016);
(H7) replacing constant egg batch size and egg via-
bility (Stien et al. 2005) with temperature-dependent
egg batch size (Samsing et al. 2016);

(H8) accounting for temperature-dependent egg via-
bility (Samsing et al. 2016);
(H9) accounting for temperature-dependent infectiv-
ity (Tucker et al. 2000, Samsing et al. 2016, Dalvin et
al. 2020, Skern-Mauritzen et al. 2020) or temperature-
and time-dependent infectivity (Skern-Mauritzen et
al. 2020);
(H10) accounting for salinity-dependent egg viability
(Johnson & Albright 1991);
(H11) accounting for salinity-dependent infectivity
(Tucker et al. 2000, Bricknell et al. 2006); and
(H12) statistically estimating effects of sea tempera-
ture and salinity on lice abundance that operate
through, e.g. mortality rates of lice larvae.

These hypotheses are also relevant for other mod-
els of salmon lice dynamics, and results contribute to
improve our understanding of salmon lice biology.

2.  MATERIALS AND METHODS

2.1.  Data

Extensive monitoring data from the aquaculture
industry provided information about the spatiotem-
poral variation in the production of newly hatched
salmon lice of farm origin. All active marine salmonid
farms in Norway are required to count and report
salmon lice Lepeophtheirus salmonis infestations, and
also to report farm numbers of fish, the geographic
coordinates of the farm and water temperature at 3 m
depth (as described by Jansen et al. 2012, Kristof-
fersen et al. 2014). We used data from January 2012
to July 2020, comprising on average 608 active
salmonid (Atlantic salmon and rainbow trout) farms
at any given time (Fig. 1). The lice and temperature
data have weekly resolution and are publicly avail-
able at the BarentsWatch portal (https://www. barents
watch .no/ en/fishhealth/). The salmonid production
data have monthly resolution and are administered
by the Directorate of Fisheries. The monthly and
weekly data were matched and converted to a daily
time scale as described by Kristoffersen et al. (2018).

Counts of salmon lice on salmon post-smolts placed
in sentinel cages along the Norwegian coast (Fig. 1)
provided information about the spatiotemporal varia-
tion in infestation rate (see Bjørn et al. 2011, Sandvik
et al. 2020 for information about experimental setup).
Each year from 2012−2020, between 49 and 206
(mean 117) sentinel cages were placed in the sea for
periods of between 6 and 30 (mean 17) days in
May‒August. The cages were 0.9 m wide, 0.8 m high
and deployed at 0.5 m depth. Each cage contained
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around 25 farm-reared salmon post-smolts that were
louse-free at the start of the experiments. The fish
were around 20 cm long, with annual averages be -
tween 19 and 22 cm and individual lengths between
8 and 31 cm (measured for a representative subset of
the fish; data lacking for 2016 and 2017, and annual
averages about 2 cm longer in 2018−2020 than
2012−2015). We used data on total salmon lice abun-
dance (all parasitic stages) per fish at the end of
the experiments. These data are publicly available
through the Norwegian Marine Data Centre (www.
nmdc.no; data for 2019 and 2020 provided to us by
Ørjan Karlsen, Institute of Marine Research).

Spatiotemporal variation in sea surface salinity
and temperature at 3 m depth were estimated from
the ‘NorKyst800’ hydrodynamic ocean model, which
is also used in an operational model system for
salmon lice monitoring by the Institute of Marine
Research (Asplin et al. 2020). We used data from a
hindcast model run that included interannual, sea-
sonal and geographic variation in freshwater run -
off from land. Freshwater runoff until September
2017 was ob tained from the ‘HBV’ hydrology model
of the Norwegian Water Resources and Energy
Directorate (Beldring et al. 2003). Freshwater runoff
after that date was calculated based on station data
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(J. Albretsen pers. comm.). We extracted daily salin-
ity and temperature values for the 800 m model
grid-cell coordinate nearest each sentinel cage or
farm.

In the subsequent analyses, we used reported
temperatures and NorKyst800-modelled salinities
for farm locations and NorKyst800-modelled tem-
peratures and salinities for sentinel cage locations.
The NorKyst800 model captures variations in tem-
perature and salinity in coastal waters quite well,
with the deviation typically being within a unit of
salinity and 1°C of temperature (Dalsøren et al.
2020). A supplementary analysis confirmed that
NorKyst800-modelled temperature and salinity val-
ues were generally consistent with temperatures re -
ported for farm locations and temperature and
salinity measured at a subset of the sentinel cages,
although regional and short-term deviations oc -
curred (see the Supplement at www. int-res. com/
articles/ suppl/ q013 p339 _ supp .pdf for details). We ex -
tracted NorKyst800-modelled temperature at 3 m to
be able to compare with reported farm tempera-
tures, but note that especially in freshwater-strati-
fied inner parts of fjords, temperatures around sen-
tinel cages (around 1 m) may be higher or lower.
Salinity at sea surface typically represents the low-
est salinity in the water column and a lower limit of
the ambient salinity experienced by the salmon lice.
Note that no fixed depth can fully represent the am -
bient environment of attached and pelagic salmon
louse stages, as both fish hosts and pelagic salmon
lice larvae can potentially adjust their vertical posi-
tioning in response to environmental changes (e.g.
Oppedal et al. 2011, Crosbie et al. 2019, 2020).

2.2.  Outline of analysis

We first used sentinel cage data from 2012−2017 to
improve the explanatory power of the salmon lice
model, comparing alternative methods to calculate
infestation pressure at the cage locations, alternative
distance functions for the spread of salmon lice from
fish farms, alternative mortality rates, alternative
functions for temperature-dependent development
rates and alternative functions for temperature- and
salinity-dependent egg production and infestation
rates. We then assessed if temperature and salinity
could explain some of the unexplained variation; for
example, through temperature and salinity effects on
lice mortality. The out-of-sample predictive power of
the selected model was assessed using sentinel cage
data from 2018−2020.

2.3.  Salmon lice infestation model

The salmon lice infestation model we used as a
baseline model was described in detail in Kristof-
fersen et al. (2014) and Kristoffersen et al. (2018). The
purpose of the model was to assess how salmon lice
from salmonid farms influence the survival of wild
salmon post-smolts. We investigated the 2 first steps
in the model: that is, firstly, the estimation of spatial
and temporal variation in concentrations of infective
salmon lice larvae in the sea (hereafter termed ‘infes-
tation pressure’), and secondly, the estimation of the
abundance of parasitic salmon lice on salmon post-
smolts exposed to a given infestation pressure.

The daily recruitment of newly hatched infectious
salmon lice larvae to a geographic position i at time
T, termed , was calculated by summing the prod-
uct of egg production, successful development, sur-
vival and dispersal across all potentially contributing
farms j = 1, …, nj and daily time steps t = t0, …,T, with
t0 = 1 January 2012:

(1a)

Specifically, was the number of salmon lice eggs
produced from fish at farm j and day t, sj,t,T was the
fraction of these eggs that survived and developed
into the infectious larval stage from time t to T and ri,j

was the probability of dispersal of larvae from farm j
to location i.

2.3.1.  Salmon lice eggs produced per farm per day

The daily number of eggs produced ( in Eq. 1a)
was calculated by multiplying the total number of
adult female salmon lice ( ) with the number of
eggs per egg batch (Bj,t) divided by the number of
days between egg batches, which was approximated
by the egg development time to hatching ( ):

(2)

The total number of reproductive female salmon lice
( ) was calculated by multiplying the re ported
mean number of adult female lice per fish with the
number of fish at the farm.

In the baseline model, we assumed that each egg
batch consisted of 2 egg strings with 150 viable eggs
in each string, independent of temperature and salin-
ity (Stien et al. 2005, Kristoffersen et al. 2018):

Bj,t = 2 · 150 eggs (3a)

The time (days) between egg batches depended on
sea temperature reported at the farm (Tempj,t), fol-
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lowing experimentally derived minimum egg devel-
opment times to hatching (Stien et al. 2005, Kristof-
fersen et al. 2018):

(4a)

2.3.2.  Survival and development of eggs to
 infectious stage

The fraction of eggs that survived and developed
into the infectious larval stage from time t to T (sj,t,T in
Eq. 1a) was a function of egg development time to
hatching ( ), larval development time from hatch-
ing to infectious stage ( ), daily mortality rate of
females with developing eggs attached (ME) and
daily mortality rate of larvae (ML):

(5a)

The ‘if’-statement in the equation ensured that the
fraction was only non-zero if the number of days from
t to T equalled the development times of eggs to in -
fectious larvae (as an integer number). This step
implied that we only counted the larvae the day they
entered into the infective stage, and that we calcu-
lated infestation pressure as the number of infective
larvae produced in a given period. The fraction of
eggs surviving to the infective stage was the product
of the daily stage-dependent survival values (1 minus
mortality) from time t to T. In the baseline model, we
assumed that the mortality rates of eggs and larvae
were identical: ME = ML = 0.17 (Kristoffersen et al.
2018). The notations t’ and t’’ referred, respectively,
to the successive time intervals for the egg and larval
stages, for eggs starting to develop at time t. The
development times depended on the temperatures
reported at the farm from time t onwards (Tempj,t,
Tempj,t+1, Tempj,t+2, …). In the baseline model, we
assumed that egg and larval development required
126 degree-days (Kristoffersen et al. 2018). That is,
we found the lowest value of the sum of egg and lar-
val development times ( ) that satisfied:

(6)

2.3.3.  Dispersal of salmon lice from farms

The probability of dispersal of larvae from farm j to
geographic position i (ri,j in Eq. 1a) was a function of
the seaway distance, di,j (km), from farm j to geo-

graphic position i (Aldrin et al. 2013, Kristoffersen et
al. 2018):

(7a)

The dispersal probability was set to zero for distances
larger than 200 km. This function shows how the con-
centration of infective salmon lice larvae de creases as
a function of distance from each farm of origin.

2.3.4.  Infestation pressure at sentinel cage locations

In the baseline model, infestation pressure at a sen-
tinel cage experiment conducted at geographic posi-
tion i and time T’ was calculated as the total recruit-
ment (TRi,T’) of newly hatched infectious salmon lice
larvae ( in Eq. 1a) during the last 2 calendar
weeks of the experiment (Kristoffersen et al. 2018):

(8a)

A mixed-effects model with negative binomial error
structure analysed salmon lice counts on salmon
post-smolts as a function of infestation pressure:

(9a)

Here, referred to observed counts of salmon
lice on fish k in a sentinel cage experiment at position
i and time T’, β0 was the intercept, β1 quantified the
relationship with the calculated infestation pressure,
the offset variable ‘duration’ was the duration of the
experiment (days), bi,T’ was a random effect of the
combination of area (among 7 fjord systems; Fig. 1),
year (2012, …, 2017) and time period (early or late
summer) of the experiment and ci,T’ was a random
effect of cage nested in area−cage−period (modified
from Kristoffersen et al. 2018). We assumed that the
random effects of area−year−period and cage were
normally distributed with means zero and standard
deviations σ1 and σ2, respectively. The shape of the
negative binomial distribution depends on the esti-
mated dispersion parameter θ, and the variance is μ +
μ2 / θ, where μ is the mean.

2.4.  Alternative model formulations

2.4.1.  Infestation pressure calculated as cumulative
number of infective larvae (H1)

As an alternative to calculating infestation pres-
sure as total recruitment (TRi,T’ in Eq. 8a) of newly
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hatched infectious salmon lice larvae during the last
2 wk of the experiment, we calculated infestation
pressure as total number of infective larvae (TIi,T’)
accumulated during the experiment:

(8b)

Here, TIi,T’ referred to infestation pressure for a sen-
tinel cage experiment at geographic position i that
ended at day T’, was the number of infective lar-
vae at any given time T of the experiment and MC

was the daily mortality of larvae that had successfully
attached to a fish. The sum was calculated from the
start day (T = T’ – Duration) to the end day (T’) of the
experiment. We used MC = 0.001 based on mortality
estimates for chalimus stages of L. salmonis by Aldrin
et al. (2017) derived from statistical analysis of moni-
toring data from Norwegian fish farms. The number
of infective larvae at Day T was calculated by modi-
fying Eqs. (1a) & (5a):

(1b)

(5b)

Here, s’j,t,T in Eq. (1b) was the fraction of eggs that
had developed into, and remained in, the infective
larval stage. The fraction s’j,t,T was defined by Eq. (5b).
The ‘if’-statement in Eq. (5b) ensured that the frac-
tion was only non-zero if eggs produced at time t
were in the infective larval stage at time T. When this
condition was met, the fraction surviving was the
product of the daily stage-dependent survival values
from time t to T, also accounting for mortality during
the infective stage. The parameter in Eq. (5b)
was the duration of the infective stage, and MI in
Eq. (5b) was the daily mortality of the infective stage.
The notation t’’’ referred to the time interval of the
infective stage.

The duration of the infective stage ( in Eq. 5b)
was assumed to be temperature-dependent, follow-
ing experimental results by Samsing et al. (2016):

(10)

The duration of the infective stage was calculated
based on the temperatures reported at the farm, by
finding when the sum of developmental fractions
(1/ ) exceeded 1. Following Aldrin et al. (2017), we
assumed that the daily mortality of the infective lar-

val stage was identical to that of the pre-infective lar-
val stage, MI = ML.

With this formulation, it was not necessary to cor-
rect for duration in the negative-binomial model of
salmon lice counts on salmon post-smolts as a func-
tion of infestation pressure:

(9b)

2.4.2.  Alternative dispersal function (H2)

We considered an updated dispersal function based
on analyses by Aldrin et al. (2019), here scaled to be
1 at distance 0 (Fig. 2):

(7b)

2.4.3.  Alternative mortality rates (H3)

As alternatives to the mortality rates of the baseline
model, ME = ML = MI = 0.17, MC = 0.001, we consid-
ered ME = 0.12 and/or ML = MI = 0.3. These alterna-
tive values were mortality estimates for, respectively,
adult and larval (nauplii and copepodid) stages of
salmon lice by Aldrin et al. (2017). We further consid-
ered MC = 0.01, which was the upper limit of plausi-
ble values for chalimus-stage daily mortality pro-
posed by Stien et al. (2005).

2.4.4.  Alternative temperature-dependent egg and
larval development times (H4−H6)

As a first step, we tested H4 by considering a model
formulation in which the time delay from observa-
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et al. (2013) (black dashed line; Eq. 7a) and Aldrin et al. 
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tions of adult females to the appearance of infective
larvae was not a constant function of degree-days
(Eq. 6a). Instead, we used a ‘development-fraction
ap proach’ (Hamre et al. 2019). Specifically, we calcu-
lated egg development time from Eq. (4a) (as already
done for egg production rate) and larval develop-
ment time from Eq. (11a), both estimated by Stien et
al. (2005):

(11a)

To calculate the egg development time based on the
temperatures reported at a farm, we assumed that
the daily values of 1/ described the fractional egg
development and considered the eggs to be fully
developed and hatch when the sum of development
fractions exceeded 1. Correspondingly, the daily val-
ues of 1/ described the fractional larval develop-
ment based on the temperatures reported from the
egg-hatching time onwards.

We tested H5 by considering an alternative func-
tion for temperature-dependent egg development,
which incorporated recent experimental results by
Samsing et al. (2016) and Hamre et al. (2019). In com-
parison, the baseline model by Kristoffersen et al.
(2018) used egg and larval development times given
by Stien et al. (2005). The egg development times
found by Hamre et al. (2019) fitted nicely on the
curve estimated by Stien et al. (2005), while Samsing
et al. (2016) found lower development time than pre-
viously reported (Fig. 3a). We used the new data

points (Samsing et al. 2016, Hamre et al. 2019) in
addition to the data used by Stien et al. (2005) to re-
estimate the parameters in Eq. (4a) by nonlinear
regression (Fig. 3a):

(4b)

The standard errors for the parameter estimates 35.5
and 0.378 in Eq. (4b) were, respectively, 4.1 and
0.024. This function was used both for estimating the
egg production rate (Eq. 2; Fig. 4b,c) and the time
from egg production to infective stage (Eq. 5).

We tested H6 by considering 2 alternative func-
tions for temperature-dependent larval development
that incorporated experimental results by Samsing et
al. (2016). We first re-estimated the parameters in Eq.
(11a) by including the new data points from Samsing
et al. (2016) in addition to the data used by Stien et al.
(2005; Fig. 3b):

(11b)

The standard errors for the parameter estimates 26.2
and 0.509 were, respectively, 1.39 and 0.0147. This
function was nearly indistinguishable from the origi-
nal function (Fig. 3b).

We also considered the regression equation re -
ported by Samsing et al. (2016):

(11c)

This function predicts longer development time than
the other functions at low temperatures, particularly
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Fig. 3. (a) Egg development times of salmon lice from S Johannessen (1977), J Johnson & Albright (1991), M Boxaspen & Næss
(2000), H Heuch et al. (2000), ● Tucker et al. (2002), Z Samsing et al. (2016, Table S1) and R Hamre et al. (2019, Table 5). Black
filled symbols (JM●) represent data used by Stien et al. (2005) to calculate Eq. (4a); all filled symbols (JM●ZR) represent data
used to calculate the updated Eq. (4b). Lines show egg development time as a function of temperature according to Eqs. (4a) or
(4b). (b) Larval development times. S, J, M, ● and Z refer to the same data sources as in (a), with Δ from Wootten et al. (1982).
Lines show larval development time as function of temperature according to Eq. (11a) (Stien et al. 2005), Eq. (11b) (re-
 estimated based on all the plotted data, not easily distinguishable from the line for Eq. 11a), or Eq. (11c) (Samsing et al. 2016).
(c) Lines show total egg and larval egg developmental times calculated by combining the equations for eggs and larvae, 

or approximated by a total development time of 126 degree-days (as assumed in the baseline model; Eq. 6a)
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below 5°C, which was the lowest temperature as -
sessed by Samsing et al. (2016).

2.4.5.  Temperature-dependent egg batch size (H7)

The function for egg development time influenced
the egg batch release rate (Fig. 4a), which, together
with the number of eggs per batch (Fig. 4b), de -
termined the egg production rate (Fig. 4c). As an
alternative to constant egg batch size (Eq. 3a), we
considered temperature-dependent egg batch size
following experimental results by Samsing et al.
(2016):

(3b)
This function predicts more eggs per egg batch around
5‒10°C than at either lower or higher  temperatures.

2.4.6.  Temperature-dependent egg viability (H8)

We then took into account temperature-dependent
egg viability by calculating a viability factor (vTemp,
scaled from 0 to 1) that egg batch size (Eq. 3b) was
multiplied with:

(3c)

The viability factor was a logistic function of the
reported farm temperature at the time of egg forma-
tion (Fig. 4d):

(12)

Here, logit–1 is the inverse logit function, logit–1(X) =
exp(X) / [1 + exp(X)]. We calculated the temperature
function based on data on the fraction of L. salmonis
eggs that successfully hatched at temperatures from
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Fig. 4. Alternative egg production functions for salmon lice. (a) Number of egg batches released by each female per day. This
function is the inverse of the egg development times shown in Fig. 3a (Eqs. 4a & 4b). (b) Number of eggs per egg batch at dif-
ferent temperatures, assuming constant egg batch size (Eq. 3a), temperature-dependent egg batch size (Samsing et al. 2016,
Eq. 3b), or temperature-dependent egg batch size and temperature-dependent egg viability (Eqs. 12 & 3c). (c) Number of eggs
released by each female per day for different functions for egg batches per day and eggs per batch. (d) Temperature effect on
egg viability (logistic regression line fitted to data from Samsing et al. 2016). (e) Salinity effect on egg viability (logistic regression 

line fitted to data from Johnson & Albright 1991)
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3−20°C in experiments by Samsing et al. (2016). The
logistic regression curve was fitted using the ‘glm’
function in R, by assuming that each reported fraction
hatched represented 100 binomial trials (this number
was set high enough to avoid rounding errors and
did not influence parameter estimates).

2.4.7.  Temperature-dependent infectivity (H9)

We estimated temperature effects on infectivity from
published experiments that had quantified infesta-
tion success of L. salmonis copepodids on Atlantic
salmon post-smolts at 2 or more temperatures (Fig. 5a).
Tucker et al. (2000) exposed the fish to newly moulted
copepodids and determined infestation success 5 d
post-exposure in 2 temperature experiments con-
ducted at 7.2 and 11.7°C (experiment 1) and 6.9 and
12.8°C (experiment 2). Samsing et al. (2016) deter-
mined infestation success at 5, 10 and 20°C after,
respectively, 28, 13 and 5 d post-exposure (when lice
were estimated to be in the chalimus stages). Skern-
Mauritzen et al. (2020) determined infestation suc-
cess at 5, 10 and 15°C as a function of copepodid age
(Fig. 5b). The copepodid age spans tested by Skern-
Mauritzen et al. (2020) corresponded approximately
to previously reported temperature-dependent infec-
tive periods of copepodids (Samsing et al. 2016). As a
measure of mean infestation success during the

infective period, we computed average values across
the duration of the experiment for each temperature
(using values from Table S1 in Skern-Mauritzen et
al. 2020). Dalvin et al. (2020) determined infestation
success of newly moulted copepodids in 8 tempera-
ture groups from 3−10°C after 4‒11 d post-exposure
dependent on temperature (shown in their Fig. 1). In
a second experiment, Dalvin et al. (2020) determined
the combined infestation and survival success of
copepodids measured from the late chalimus I stage
to the ap pearance of adult female lice in 6 tempera-
ture groups from 6−21°C (shown in their Fig. 4). We
used the average values for each temperature group
ex cept the 6°C group, as it was infected at 9°C. Fur-
ther, we considered the 9‒15 and 18‒21°C groups as
different experiments because different copepodid
batches were used.

By analysing the data from all experiments using a
mixed-effects generalized linear model, we found
that infestation success (I, scaled from 0−1) could be
explained as a function of temperature (Temp, °C)
with the following equation (Fig. 5a):

(13a)

The standard errors for the coefficients −3.89, 4.33
and −1.18 were 0.33, 0.13 and 0.06, respectively. The
effect of experimental settings on expected infesta-
tion success was accounted for by a random effect
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Fig. 5. Temperature- and salinity-dependent infestation success of salmon lice. (a) Points show infestation success as function
of temperature in different experiments: S Expt 1 by Tucker et al. (2000), ● Expt 2 by Tucker et al. (2000), Z Samsing et al.
(2016), r Skern-Mauritzen et al. (2020), H Expt 1 by Dalvin et al. (2020), batch 1 in Expt 2 by Dalvin et al. (2020, with the 6
degrees group shown in grey infected at 9 degrees and not used to fit the regression line), J batch 2 in Expt 2 by Dalvin et al.
(2020). Line: regression line fitted by a mixed-effects model with a random effect of experiment (Eq. 13a). (b) Infection success
as function of days post-hatching at 3 different temperatures. Unbroken lines: time-varying infectivity as estimated by Skern-
Mauritzen et al. (2020, Eq. 13b). Broken lines: constant infectivity, with temperature effect on infection success according to
Eq. (14a), larval development time according to Eq. (11b) and duration of infective stage according to Eq. (10). (c) Points show
infestation success as function of salinity in different experiments: S Expt 3 by Tucker et al. (2000), ● Expt 4 by Tucker et al.
(2000), H Bricknell et al. (2006). Line: regression line fitted by a mixed-effects model with a random effect of experiment, 

which accounted for differences in experimental setup between studies (Eq. 13c)
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of experiment in the model (with an estimated stan-
dard deviation of 0.86). The number of successful
and un successful copepodids in each experiment
were as sumed to be binomially distributed and the
model was fitted using the ‘glmer’ function in the
‘lme4’ package in R. To apply the correction in our
model, we scaled infestation pressure using Eq. (13a)
and average NorKyst800 sea temperature at the
experimental cage location during the experimental
period.

As an alternative, we used the function for temper-
ature- and time-dependent infectivity reported by
Skern-Mauritzen et al. (2020, see Fig. 5b):

(13b)

Here, infectivity of lice larvae from farm j at time t is
a function of farm temperatures and age measured in
degree-days after hatching (Aj,t ; degree-days). As
this polynomial function predicted unrealistic in -
creases in infectivity at very high ages, we set Ij,t = 0
for Aj,t > 200 degree-days. For computational rea-
sons, we also as sumed that larvae remained infective
for a maximum of 40 d after hatching. To avoid
extrapolation, we used predicted values for 5°C for
all temperatures ≤5°C and predicted values for 15°C
for all temperatures ≥15°C. Note that as Eq. (13b)
gave infectivity as a continuous function of time since
hatching, larval development time did not enter into
this model formulation. We then used the following
equation to calculate the fraction of eggs produced
from farm j at time t that were infectious larvae at
time T (s’j,t,T in Eq. 1b):

(5c)

The terminology follows that of Eq. (5b). Note that for
computational reasons this correction was based on
temperatures at the farm from which the larvae
 originated.

2.4.8.  Salinity-dependent egg viability (H10)

We considered a model formulation in which egg
production depended on a salinity-dependent egg
viability factor, vSal:

(3d)

This factor was a logistic function of farm-location
salinity (Sal; ppt) from Nor Kyst 800 at the time of egg
formation (Fig. 4e):

(14)

We calculated the salinity function based on experi-
mental results on the percentage of L. salmonis onco -
 rhynchi eggs that developed into active nauplii for
salinities ranging from 10−30 ppt at 10°C (using data
from Table 3 in Johnson & Albright 1991). We consid-
ered viability at 30 ppt (65.9%) to represent a base-
line viability (vSal = 1) and rescaled the data by divid-
ing on this value before fitting a logistic regression
curve to the rescaled data (i.e. Eq. 14, with assump-
tions as for Eq. 12).

2.4.9.  Salinity-dependent infectivity (H11)

We estimated salinity-dependent infectivity from
published experiments that had quantified infestation
success of L. salmonis copepodids on Atlantic salmon
post-smolts at 2 or more salinity levels (Fig. 5c).
Tucker et al. (2000) determined infestation success in
2 salinity experiments, both conducted at 24 and
34 ppt. Bricknell et al. (2006) determined in festation
levels following short-term exposure to re duced
salinity, investigating 5 salinities from 4− 34 ppt. We
scaled the reported number of attached lice after 6 d
to proportions by assuming 40% infestation success at
34 ppt, which is the predicted infestation success at
the experimental temperature of 12°C according
to Eq. (13a). By analysing the data using a mixed-
effects generalized linear model (similarly to temper-
ature), we found that infestation success (I; scaled
from 0−1) could be explained as a function of salinity
with the following equation (Fig. 5c):

I = logit–1 (–5.88 + 0.185 Sal) (13c)

The standard errors for the coefficients −5.88 and
0.185 were 0.25 and 0.003, respectively, and the ran-
dom effect of experiment had a standard deviation of
0.40. There were not enough data to reliably esti-
mate possible non-linear effects of salinity. When
testing for salinity effects on infestation success, we
also applied the correction for temperature (Eq. 13a)
by assuming that the salinity and temperature effects
were additive on the linear scale of the predictors
and scaling the intercept so that infestation success
at a salinity of 34 ppt was as given by Eq. (13a):
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(13d)

2.4.10.  Statistical estimation of additional
 temperature and salinity effects (H12)

The available experimental data were not suffi-
cient to pre-define functions for temperature and salin-
ity effects on mortality rates. Environmental effects
on mortality during the planktonic stages are difficult
to assess experimentally because of the likely key
role of predation as a mortality cause (Brooker et al.
2018) and because the larvae may actively avoid
water layers with unfavourable physical conditions
(Crosbie et al. 2019). To investigate possible addi-
tional environmental effects, we estimated these func-
tions from the data by entering temperature and salin-
ity as covariates in the negative-binomial model of
salmon lice counts on salmon post-smolts as a func-
tion of infestation pressure:

(9c)

The terminology follows that for Eqs. (9a) & (9b),
with the addition of a function of mean NorKyst800
temperature and salinity at the cage location during
the experiment, F(Tempi,T’, Sali,T’). Preliminary analy-
ses using generalized additive models (Wood 2017)
suggested that the temperature effect could be ap -
proximated by a quadratic function and the salinity
effect by a linear function:

F(Tempi,T’, Sali,T’) = β2 (Tempi,T’ – 12) +
β3 (Tempi,T’ – 12)2 + (15a)
β4 (Sali,T’ – 27)

Temperature and salinity values were centred at
12°C and 27 ppt for more stable model estimation. We
also considered a formulation with non-additive ef -
fects (interaction terms) of temperature and salinity:

F(Tempi,T’, Sali,T’) = β2 (Tempi,T’ – 12) +
β3 (Tempi,T’ – 12)2 +
β4 (Sali,T’ – 27) + (15b)
β5 (Tempi,T’ – 12) (Sali,T’ –27) +
β6 (Tempi,T’ – 12)2 (Sali,T’ –27)

2.5.  Model development

The model development was done stepwise. We
first assessed whether using the alternative calcula-
tion of infestation pressure (H1) improved the

explanatory power; second, the alternative distance
function (H2); and third, the alternative mortality
rates (H3). We then found the combination of devel-
opment time functions (H4−H6) that gave the best
explanatory power. Subsequently, we assessed pos-
sible temperature de pendence in egg batch size
(H7), egg viability (H8) and larval infectivity (H9).
Because of correlation be tween temperatures at dif-
ferent developmental stages, we reconsidered H7‒
H8 when testing H9. We then tested for possible
salinity dependence in egg viability (H10) and/or
infectivity (H11). We finally added temperature and
salinity to the selected model. The explanatory
power was assessed using sentinel cage data from
2012−2017. The explanatory power was measured
based on the random-effect estimates in the ne -
gative binomial model, which showed the un ex -
plained variance between area− year− periods (σ1

2)
and be tween cages within area− year− periods (σ2

2).
We aimed to reduce both variance components and
considered the infestation pressure to be more ac -
curate if the sum of the random-effect variance (σ1

2

+ σ2
2) was reduced. Statistically estimated tempera-

ture and salinity terms (H12) were included in the
final model if the random-effect variance was re -
duced and the terms were statistically significant at
p < 0.05.

The capability of the model to predict lice abun-
dance in sentinel cages was assessed by linear re -
gression (following Kristoffersen et al. 2018):

(16)

Here, is the mean number of lice per fish in
sentinel cage i at time T, is the expected mean
abundance, β0 is the intercept, β1 is the slope, and εi,T

is a normal-distributed error term. We added 0.033,
being the lowest non-zero observation, to avoid tak-
ing the logarithm of zero.

2.6.  Assessment of predictive power

We used sentinel cage data from 2018−2020 to as sess
the out-of-sample predictive power of the model. This
data set included 298 sentinel cages that were not
used in model development. Predictions of ex pected
mean abundance per cage were calculated from alter-
native models (parameterized for 2012− 2017 data) and
compared with the cage data observations (2018−
2020) by using linear regression (Eq. 16). The input
data for the predictions were, as for the model fitting,
the reported lice counts and temperatures at farms,
NorKyst800 salinities at farms and NorKyst800 tem-
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peratures and salinities at sentinel cage locations. We
approximated 95% pre diction intervals for ex pected
mean abundance by the interval ( , 

). Note that these intervals show the 

uncertainty caused by random variability between
time periods, areas and cages, but not the uncer-
tainty in model parameters. We calculated predic-
tions from the baseline model, the final model, as
well as from selected models from intermediate steps
of the model selection. To measure predictive power,
we calculated root-mean-squared prediction error
(RMSE) and mean absolute prediction error (MAPE),
both on scale .

The statistical computing platform R version 3.61
(R Core Team 2019) was used for all analyses. The
mixed-effects models were fitted using the ‘glmer.nb’
function in the R package ‘lme4’ version 1.1-21
(Bates et al. 2015).

3.  RESULTS

3.1.  Which model formulations (H1−H11) provided
most accurate calculation of infestation pressure

for 2012−2017?

The calculation of infestation pressure became
more accurate by using cumulative infestation pres-
sure (H1, Eq. 8b) and the new distance function (H2,
Eq. 7b). With these changes in the calculation of in -
festation pressure, the unexplained variance be -
tween cages (σ1

2 + σ2
2) was reduced from 2.18 to 1.92

and R2 increased from 0.378 to 0.417 (Table 1).
We found no improvement in model accuracy by

decreasing egg mortality to 0.12 d−1, increasing lar-
val mortality to 0.3 d−1 and/or increasing chalimus
mortality to 0.01 d−1 (H3; Table 1).

The calculations became slightly more accurate by
using the ‘developmental fraction’ approach (H4,

Ni Tln( 0.033), +

eln 2, 1
2

2
2Ni T

Pred( )+ σ + σ

eln 2, 1
2

2
2Ni T

Pred( )− σ + σ
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IP calculation                                                    Negative binom. model   Linear model of cage-level data
                                                                        σ1               σ2          σ1

2 + σ2
2                    Regression equation                         R2

None (constant IP)                                        1.40            1.13            3.22                           y = −0.19 ± 0.06                              0
Baseline model                                             1.21            0.85            2.18              y = −0.08 ± 0.05 + 0.82 ± 0.04 ŷ              0.378
*H1. Cumulative IP: Eq. (8b)                       1.20            0.83            2.14              y = −0.09 ± 0.05 + 0.85 ± 0.04 ŷ              0.412
*H2. New distance func.: Eq. (7b)               1.11            0.84            1.92              y = −0.02 ± 0.05 + 1.01 ± 0.04 ŷ              0.417
H3. Egg mortality 0.12 d−1                           1.12            0.84            1.95              y = −0.01 ± 0.05 + 1.03 ± 0.05 ŷ              0.412
H3. Larval mortality 0.3 d−1                         1.12            0.84            1.96              y = −0.03 ± 0.05 + 0.99 ± 0.04 ŷ              0.412
H3. Chalimus mortality 0.01 d−1                  1.11            0.84            1.93              y = −0.02 ± 0.05 + 1.01 ± 0.04 ŷ              0.416
*H4. Dev. frac. approach: Eq. (11a)            1.08            0.83            1.87              y = −0.03 ± 0.05 + 0.98 ± 0.04 ŷ              0.426
H5. New egg dev. time: Eq. (4b)                 1.11            0.83            1.92              y = −0.03 ± 0.05 + 0.99 ± 0.04 ŷ              0.421
*H6. Larv. dev. time: Eq. (11b)                    1.08            0.83            1.87              y = −0.03 ± 0.05 + 0.98 ± 0.04 ŷ              0.425
H6. Larv. dev. time: Eq. (11c)                      1.08            0.84            1.87              y = −0.03 ± 0.05 + 0.98 ± 0.04 ŷ              0.424
*H7. Temp. dep. egg batch: Eq. (3b)          1.08            0.83            1.86              y = −0.02 ± 0.04 + 1.00 ± 0.04 ŷ              0.430
*H8. Temp. dep. egg viabil.: Eq. (3c)          1.07            0.83            1.85              y = −0.03 ± 0.04 + 1.00 ± 0.04 ŷ              0.432
*H9. Temp. dep. infectivity: Eq. (13a)        1.06            0.83            1.82              y = −0.04 ± 0.04 + 0.96 ± 0.04 ŷ              0.435
H9. Temp. dep. infectivity: Eq. (13b)          1.06            0.84            1.83              y = −0.04 ± 0.04 + 0.95 ± 0.04 ŷ              0.434
(*)H10. Sal. dep. egg viabil.: Eq. (3d)         1.06            0.82            1.79              y = −0.04 ± 0.04 + 0.97 ± 0.04 ŷ              0.442
*H11. Sal. dep. infectivity.: Eq. (13d)          1.04            0.77            1.66              y = −0.00 ± 0.04 + 1.03 ± 0.04 ŷ              0.453
H12. TI + Temp + Temp2                              0.97            0.76            1.52              y = −0.02 ± 0.04 + 0.99 ± 0.04 ŷ              0.477
H12. TI + Sal × (Temp + Temp2)                  0.98            0.75            1.52              y = −0.03 ± 0.04 + 0.98 ± 0.04 ŷ              0.476

Table 1. Salmon lice model development. Lice counts for 2012−2017 were analysed in a negative binomial model as a function
of ln-scale infestation pressure (IP) (n = 756 sentinel cages with a total of 18 573 fish). The model included random effects of
area−year−period and cage, with standard deviations σ1 and σ2, respectively. At each step of the model development, we con-
sidered the calculated IP to be more accurate if the unexplained variance (σ1

2 + σ2
2) was reduced. The dispersion parameter

was estimated to be θ = 15.3 for all models. An asterisk (*) implies that a hypothesis (H) was supported and the modification
was applied to all subsequent models shown. An asterisk in parentheses for H10 means that the hypothesis was not supported
when reassessed after applying the correction tested under H11 and hence not applied. The linear model analysed cage-level
lice count data (observed versus predicted) for the same years, with the regression equation being unbiased if the intercept
was near 0 and the slope near 1. R2 was the amount of variance explained by the linear model. None: variation in lice counts
without IP as a predictor in the negative binomial model. The baseline model used IP: Eq. (8a); distance function: Eq. (7a); total
development time: Eq. (6); egg. dev.: Eq. (4a); egg mortality: 0.17 d−1; larval mortality: 0.17 d−1; and chalimus mortality: 0.001 d−1.
Total development time in the development fraction approach (Eq. 11a) initially used egg development time: Eq. (4a); larval
development time: Eq. (11a). The last 2 rows show results when salinity (Sal) and temperature (Temp) were covariates to total
infestation pressure (TI) in the negative binomial model (Eq. 9c). Temp was included as a quadratic term, either additively (Eq. 15a)
or non-additively (Eq. 15b; shown by the symbol ×) to salinity. y = ln(mean observed salmon lice per fish in a cage + 0.033); 

ŷ = ln(predicted mean salmon lice per fish in a cage + 0.033)
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Eq. 11a; leading to unexplained variance σ1
2 + σ2

2 =
1.87 and R2 = 0.426) but slightly less accurate by in -
cluding the newest estimates of egg development
time (H5, Eq. 4b). The old egg development time
function (Eq. 4a) was used in the subsequent models
shown in Table 1. We found no practical change in
model accuracy by changing the larval development
time function (H6, Eqs. 11a, 11b & 11c; Table 1). We
used Eq. (11b) in subsequent models shown in
Table 1, as this function integrated results from the
highest number of studies.

We found that model accuracy was only marginally
improved by including temperature-dependent egg
batch size (H7, Eq. 3b), with unexplained variance
σ1

2 + σ2
2 = 1.86 and R2 = 0.430 (Table 1). Model accu-

racy was further slightly improved by accounting for
temperature-dependent egg viability (H8, Eq. 3c) and
temperature-dependent infectivity (H9, Eq. 13a), re -
sulting in unexplained variance σ1

2 + σ2
2 = 1.82 and

R2 = 0.435 (Table 1). Accounting for temperature- and
time-dependent infectivity (Eq. 13b)
provided similar explanatory power as
Eq. (13a) (Table 1). The apparent small
advantage of Eq. (13a) over (13b) in
Table 1 is possibly caused by Eq. (13a)
using temperatures at experimental
cage locations, while Eq. (13b) used
farm temperatures. If both used farm
temperatures, Eq. (13a) performed
slightly worse (σ1

2 + σ2
2 = 1.84 and R2 =

0.432) than Eq. (13b).
The largest improvement in ex -

planatory power came when account-
ing for salinity. The correction for
salinity-dependent egg viability (H10,
Eq. 3d) was initially supported, but not
when salinity-dependent infectivity
(H11, Eq. 13d) was included (Table 1).
The best model hence corrected for
salinity dependence in infectivity but
not egg viability, and resulted in unex-
plained variance σ1

2 + σ2
2 = 1.66 and

R2 = 0.453 (compared to σ1
2 + σ2

2 = 1.68
and R2 = 0.447 with both salinity cor-
rections).

3.2.  Statistical estimation of
 additional salinity and temperature

effects (H12)

The linear effects of salinity and
temperature were not statistically sig-

nificant, but the quadratic temperature term was
highly significant (Table 2, Fig. 6). This finding
implied an association between sea temperature and
lice abundance beyond the temperature effects that
were assumed in the calculation of infestation pres-
sure. Specifically, the results suggested lower lice
abundance than expected from the infestation pres-
sure at both low and high temperatures, with an esti-
mated 75% reduction for 8°C compared to 12°C, and
58% reduction for 16°C compared to 12°C. Adding a
quadratic effect of temperature during sentinel cage
experiments resulted in a re duction in unexplained
variance to σ1

2 + σ2
2 = 1.52 and an increase in R2 to

0.477 (Table 1).
There were significant interaction effects between

salinity and temperature (Fig. 7), although the un -
explained variance was similar for the interaction
model and the additive model (Table 1). This analysis
 suggested that lice abundance was most strongly re -
duced when both salinity and temperature were sub-
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Coeffi-            Interpretation Coefficient (mean ± SE)
cient                                                              Full model         Reduced model

β0         Intercept                                       −6.17 ± 0.37***      −6.01 ± 0.30***
β1         Infestation pressure effect         0.452 ± 0.023***  0.441 ± 0.017***
β2         Linear temperature effect           0.053 ± 0.055        0.064 ± 0.053   
β3         Quadratic temperature effect   −0.072 ± 0.020***  −0.070 ± 0.019***
β4         Salinity effect                           −0.0064 ± 0.0088    

Table 2. Parameter estimates for additive effects of temperature and salinity
on salmon lice (Eqs. 9c & 15a). Random-effect standard deviations were σ1 =
0.98 and σ2 = 0.76, and the dispersion parameter was θ = 15.3 in both the full
model and the reduced model with the non-significant salinity term removed.
Sample size was n = 756 sentinel cages with a total of 18573 fish. *p < 0.05; 

**p < 0.01; ***p < 0.001
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ity-dependent infectivity. The tick marks on the x-axes show the locations of 

the data



Stige et al.: Modelling salmon lice infestation pressure

optimal. That is, low temperatures were estimated to
have the strongest negative effect on lice abundance
when salinity was also low, and high temperatures
appeared only to have adverse effects when salinity
was low (Fig. 7, right panel).

Note that salinity and temperature during sentinel
cage experiments not only measured physical condi-
tions of lice larvae when they potentially infected
salmon hosts but also correlated with conditions  earlier
in life. The corrections for temperature-dependent
egg viability (i.e. the difference in infestation pres-

sure calculated using Eqs. 3b & 3c)
were strongly correlated with the tem-
perature during sentinel cage experi-
ments (Spearman’s rank correlation,
ρ = 0.82). Similarly, the corrections for
salinity-dependent egg viability were
strongly correlated with the salinity
during sentinel cage experiments (ρ =
0.65). Salinity at cage locations was,
on the other hand, not strongly corre-
lated with temperature (Pearson’s co -
efficient of correlation, r = −0.32),
allowing us to assess the individual
contributions of both these factors.

3.3.  Predictions for 2018‒2020

The 95% prediction intervals for
ex pected mean lice abundance per
cage contained the observed mean
value for 91‒97% of the 298 sentinel
cages in 2018‒2020 (depending on

model formulation; Table 3). For models without the
statistically estimated temperature effect (H12), the
prediction intervals contained the observed value in
93‒97% of the cases. Hence, these intervals were
reasonable approximations of the uncertainty of the
predictions.

Predictions for 2018‒2020 became more accurate
by using cumulative infestation pressure (H1, Eq. 8b)
and the new distance function (H2, Eq. 7b). With
these changes in the calculation of infestation pres-
sure, RMSE was reduced from 1.28 to 1.23 and MAPE

from 1.00 to 0.95 (Table 3). The predic-
tive power remained practically un -
changed by using the ‘developmental
fraction’ approach (H4, Eq. 11a),
changing the larval development time
function (H6, Eq. 11b) and including
temperature-dependent egg batch size
(H7, Eq. 3b), temperature-dependent
egg viability (H8, Eq. 3c) and tempera-
ture-dependent infestation rate (H9,
Eq. 13a). Including salinity-dependent
infestation rate (H11, Eq. 13d) led
to worse predictions for 2018‒2020
(Table 3, Fig. 8). Predictive power also
became worse by adding the statisti-
cally estimated temperature function
(H12, using the re duced model in
Table 2), with RMSE increasing to 1.43
and MAPE increasing to 1.16 (Table 3).
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Fig. 7. Estimated non-additive effects of salinity and temperature on ln(lice per
fish). The figure shows partial effects with 95% pointwise confidence bands.
Estimated salinity effects at 3 representative temperatures are shown in the
left-side panel. Estimated temperature effects at 3 representative salinities are
shown in the right-side panel. The model also includes infestation pressure as
a covariate, which assumes temperature-dependent production of lice larvae
and temperature- and salinity-dependent infectivity. The tick marks on the x-
axes show the locations of the data. The interaction effect between salinity
and the quadratic temperature term is highly significant (p < 0.001) while that
between salinity and the linear temperature term is not statistically significant 

(p = 0.2)

Infestation pressure (IP)                        Coverage       R2       RMSE     MAPE
calculation

Baseline model                                           0.96          0.19       1.28         1.00
H1. Cumulative IP: Eq. (8b)                      0.97          0.19       1.24         0.95
H2. New distance func.: Eq. (7b)              0.97          0.19       1.23         0.95
H4. Dev. frac. approach: Eq. (11a)            0.96          0.18       1.23         0.95
H6. Larv. dev. time: Eq. (11b)                    0.96          0.18       1.23         0.95
H7. Temp. dep. egg batch.: Eq. (3b)         0.96          0.19       1.22         0.94
H8. Temp. dep. egg viabil.: Eq. (3c)         0.96          0.18       1.23         0.95
H9. Temp. dep. infectivity: Eq. (13a)        0.96          0.19       1.23         0.95
H11. Sal. dep. infectivity: Eq. (13d)          0.93          0.08       1.40         1.13
H12. TI + Temp + Temp2                           0.91          0.09       1.43         1.16

Table 3. Out-of-sample predictive power for salmon lice infestations in 2018−
2020 (n = 298 sentinel cages). Coverage is the proportion of observations within
the 95% prediction interval. Variance explained (R2), root-mean-squared pre-
diction error (RMSE) and mean absolute prediction error (MAPE) were calcu-
lated based on mean observed and predicted lice per cage at the scale ln(lice 

per cage + 0.033). TI: total infestation pressure
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The RMSE and MAPE of the predic-
tions for 2018‒ 2020 were similar to
RMSE and MAPE for the test data years
2012‒2017 while R2 was lower (Fig. 8).
The lower R2 was a result of 38% lower
between-cage variance in lice levels in
2018‒2020 than in the test data years.

To investigate why predictions for
2018‒2020 were not improved by ac-
counting for salinity and the statistical
temperature effect, we also fitted the
model (Eqs. 9c & 15a) to data on salin-
ity, temperature and calculated infesta-
tion pressure only for 2018‒ 2020. Data
for these years alone showed that lice
abundance was significantly (p < 0.05)
higher than ex pected from the calcu-
lated infestation pressure at low salinity
(Fig. 9). As for the earlier years, lice
abundance was significantly lower at low temp -
erature, whereas no reduction was found at high tem-
perature (Fig. 9). We also tested whether the low pre-
dictive power for 2018−2020 was caused by the
inter action effect between temperature and salinity;
the interaction model (Eq. 15b) did not provide lower
RMSE or MAPE than the additive model (results not
shown). The salinity and temperature ranges ob -
served in 2018−2020 were similar to the earlier years
(shown by the tick marks on the x-axes in Figs. 6 & 9).
Sensitivity analysis suggested that errors in NorKyst -
800-modelled temperature and salinity may have
contributed to, but seem unlikely to be the main cause
of, the changing relationship be tween lice infestations
and temperature and salinity (see Supplement).

4.  DISCUSSION

We have provided field validation of laboratory re -
sults on how temperature and salinity influence salmon
louse rates of development, reproduction, mortality
and infestation and improved a model (Kristoffersen
et al. 2014, 2018) for quantifying the spatial and tem-
poral variation in salmon lice infestation pressure.
The model improvements enable more precise esti-
mation of the rate at which salmon lice from fish
farms infest salmon post-smolts on their outward mi -
gration through coastal areas with high farm densi-
ties. In the following paragraphs, we discuss which
factors improved the model, and why, in relation to
the 12 hypotheses proposed in Section 1.

Hypothesis H1 was mostly of a technical nature
and addressed how best to link the sentinel cage

data to the calculated infestation pressure to estimate
infestation rate. As hypothesised, we found that the
abundance of salmon lice on salmon post-smolts in
sentinel cage experiments was better predicted by
the cumulative number of infective larvae in the ex -
perimental period than by the mean production of
infective larvae during the last 2 wk of the experi-
ment. We note that this methodological improvement
was important for comparing different methods to
calculate infestation pressure, but probably of lim-
ited im portance for predicting lice infestation of wild
post-smolts, which either way uses infestation pres-
sure during the entire post-smolt migration period
(Kristoffersen et al. 2018).

Our results supported hypothesis H2 by showing
that the predictions became more precise by using
new (Aldrin et al. 2019) rather than old (Aldrin et al.
2013) estimates for how the dispersal probability of
salmon lice larvae decreases with distance. The new
dispersal probability function differs from the old one
by decreasing faster with distance (Fig. 2), meaning
that distant fish farms (e.g. >5 km away) contribute
somewhat less to infestation pressure than previ-
ously assumed. The new function is possibly more
precise than the old one because it is based on
weekly rather than monthly salmon lice counts.

Our results did not support hypothesis H3, propos-
ing that predictions would become more precise if
the mortality rate of adult (egg-bearing) female lice
was reduced from 0.17 to 0.12 (Aldrin et al. 2017), the
mortality of planktonic lice larvae was increased
from 0.17 to 0.30 (Aldrin et al. 2017) and/or the post-
infestation mortality of lice larvae was increased
from 0.001 to 0.01 (Stien et al. 2005). The mortality of
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adult female lice on farmed salmon may be higher
than the tested value of 0.12, as this estimate repre-
sented the baseline mortality rate with no reported
anti-lice treatment (Aldrin et al. 2017). We are not
aware of estimates of adult lice mortality on farmed
salmon that integrate all mortality sources, as needed
for our modelling purpose. On the other hand, the
mortality of planktonic lice larvae may be lower than
the tested value of 0.30, as this estimate included loss
of larvae that drifted away from the farm (Aldrin et
al. 2017). Predation is thought to be a main cause of
mortality at this stage, as it is for other zooplankton
organisms (Brooker et al. 2018). In addition, the
planktonic salmon lice larvae do not feed and will die
if they fail to attach to a fish host before their energy
stores are used up (Johnson & Albright 1991). We
lack estimates of predation rates on salmon lice lar-
vae, but the baseline value of 0.17 is more consistent
than 0.30 with mortality rates reported for other
planktonic copepods of similar size and hence shar-
ing many of the same predators (Melle et al. 2014,
Kvile et al. 2016 and references therein). Results
appeared insensitive to choosing a post-infestation
mortality of 0.001 or 0.01. In summary, our results as
well as the current literature thereby support that the
mortality rates assumed in the baseline model re -
main valid best guesses.

Our results supported hypothesis H4 by showing
that the predictions for 2012‒2017 became more pre-
cise by calculating development time by a tempera-
ture-dependent development fraction approach
(Hamre et al. 2019) rather than by assuming that the
sum of egg and larval development required 126
degree-days. When testing H4, the development
fraction approach used the functions for tempera-
ture-dependent egg and larval development times
published by Stien et al. (2005). The 2 approaches
predicted the same development time around 10°C,
whereas the development fraction approach implied
that development takes more than 126 degree-days
at temperatures lower than 10°C and less than 126
degree-days at temperatures higher than 10°C
(Fig. 3c). At 5°C the difference between approaches
is around 5 d (26 degree-days), and at 15°C the dif-
ference between approaches is around −2 d (−26
degree-days). Recent studies for both eggs and lar-
vae supported that development requires a lower
number of degree-days when temperatures are high
than low. For example, Hamre et al. (2019) found that
the number of degree-days between egg batches
decreased from 100 at 6°C to 72 at 18°C, and Sams-
ing et al. (2016) found that larval (naupliar) develop-
ment time decreased from 59 degree-days at 5°C to

33 degree-days at 20°C. While approximating devel-
opment time by using a fixed number of degree-days
may be convenient in some circumstances, our re -
sults suggest that such approximation may lead to a
measurable loss in the precision of estimates of salmon
lice infestation pressure. The difference in precision
is small, however, and using the development frac-
tion approach did not improve predictive power for
years 2018‒2020.

Our results failed to support hypothesis H5, pro-
posing that predictions would become more precise
if the function for temperature-dependent egg devel-
opment time (Stien et al. 2005) was updated with
new experimental data (Samsing et al. 2016, Hamre
et al. 2019). The results from Hamre et al. (2019)
were highly consistent with the previous function
(Stien et al. 2005), while the results of Samsing et al.
(2016) suggested shorter egg development time
(Fig. 3a). The numbers by Hamre et al. (2019) are time
between egg batches, which is a measure directly
relevant for egg production rate. The egg develop-
ment times of Samsing et al. (2016) were only pub-
lished as supplementary data and were in vitro times
to hatching of egg strings that were removed from
female lice. These numbers may underestimate total
egg development time, as development of egg strings
and eggs prior to removal of egg strings from females
is not included. Our results suggest that these num-
bers should not be used as estimates of total egg
development time (although included in a recent
review on the topic; Brooker et al. 2018).

Our results neither supported nor refuted hypothe-
sis H6, proposing that predictions would become
more precise if the function for temperature-depen-
dent larval development time (Stien et al. 2005) was
updated with new experimental data (Samsing et al.
2016) or replaced by a newly published function
(Samsing et al. 2016). The updated function with re-
estimated parameters using old as well as new data
was nearly indistinguishable from the old function,
while the published function by Samsing et al. (2016)
suggested slightly longer development time at the
lowest temperatures considered (Fig. 3b). This differ-
ence was only distinguishable at temperatures lower
than about 8°C. Mean seawater temperatures during
sentinel cage experiments ranged from 7.8−16.6°C,
with 90% of experiments conducted between 8.9 and
14.5°C. We therefore lacked data from cold tempera-
tures, when the functions differ. We note that the
function of Stien et al. (2005) applies for the experi-
mental temperature range of 2−19°C and that of
Samsing et al. (2016) for 5−20°C, with the combined
function for 2−20°C. The updated function (Eq. 11b),
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therefore, has the lowest risk of extrapolation when
applied to a wide temperature range.

Our results provided weak support for hypothesis
H7, proposing that predictions would become more
precise if we accounted for temperature-dependent
egg batch size (Samsing et al. 2016), and for hypothe-
sis H8, proposing that predictions would become
more precise if we accounted for temperature-depen-
dent egg viability (Samsing et al. 2016). Accounting
for these effects of temperature slightly improved pre-
dictions of lice infestations for 2012‒2017, whereas the
accuracy for 2018‒2020 remained practically un -
changed. The modelled relationship between tem-
perature and egg production rate depended on the re-
lationships assumed between temperature and 3
factors: egg batch release rate (an inverse function of
egg development time), egg batch size and egg via-
bility. Temperature effects on egg batch release rate
dominated over the effects on the other 2 factors, with
egg production rate increasing with increasing tem-
peratures for all models considered, only with differ-
ent functional forms (Fig. 4a‒c). Our results suggest
that the accuracy of predictions of salmon lice infesta-
tion pressure depends at most weakly on the assump-
tions made for temperature effects on egg batch size
and egg viability, at least within the temperature
range we have data for. Accounting for temperature
effects on egg batch size (Samsing et al. 2016) may
nonetheless be important to avoid overestimating in-
festation pressure at very high or low temperatures
(Fig. 4c). Temperature-dependent egg batch size is
consistent with field studies showing that egg batch
size decreased from winter, with temperatures around
4°C, to summer, with temperatures around 14−15°C
(Ritchie et al. 1993, Gravil 1996). Accounting for tem-
perature effects on egg viability has very little effect
on the temperature−egg production function (Fig. 4c).

Our results provided some support for hypothesis
H9, proposing that predictions would become more
precise if temperature-dependent infectivity was ac -
counted for (Tucker et al. 2000, Samsing et al. 2016,
Dalvin et al. 2020, Skern-Mauritzen et al. 2020). Ap -
plying this correction improved predictions of lice
infestations for 2012‒2017, whereas the accuracy
for 2018‒2020 remained unchanged. Both the tested
functions, i.e. temperature-dependent infectivity
(Eq. 13a) and temperature- and time-dependent in -
fectivity (Eq. 13b), improved predictions for 2012‒
2017, and results did not clearly favour one function
over the other. It was therefore not possible to deter-
mine whether the time-dependence in infectivity
estimated by Skern-Mauritzen et al. (2020) was sup-
ported by the data.

Our results did not support hypothesis H10, pro-
posing that predictions would become more accurate
by accounting for salinity-dependent egg viability
(Johnson & Albright 1991). Specifically, we found
that such a correction improved predictions for 2012‒
2017, but not when salinity-dependent infectivity
was accounted for. On the other hand, correcting for
salinity-dependent infectivity improved predictions
whether or not salinity-dependent egg viability was
accounted for. Therefore, we think that the salinity
correction of egg viability improved predictions be -
cause the correction acted as a proxy for correlated
salinity effects later in life. Note that the correction
for salinity-dependent egg viability can be ques-
tioned, as the function was calculated for salinity con-
trolled in laboratory experiments (Samsing et al.
2016), whereas we applied the correction based on
sea surface salinity, which may differ from the ambi-
ent salinity experienced by the salmon lice. As salmon
hosts are distributed in the water column and salinity
generally increases with depth, most adult, egg-bear-
ing salmon lice probably experienced higher salinity
than we assumed. A more realistic representation of
the ambient salinity experienced by the egg-bearing
salmon lice would require the use of depth-resolved
salinity data as well as information about the vertical
behaviour of lice-infested farmed salmon in salinity
gradients.

The results for 2012‒2017 provided clear support
for hypothesis H11, proposing that predictions would
become more precise by accounting for salinity-
dependent infectivity (Tucker et al. 2000, Bricknell et
al. 2006). While this correction was parameterized
based on experimental results on infestation success
(Tucker et al. 2000, Bricknell et al. 2006), several
mechanisms could contribute to low lice levels at low
salinities. Experimental studies have shown that low
salinity reduces not only infestation rate, but also sur-
vival of free-swimming Lepeophtheirus salmonis lar-
vae (Gravil 1996, Bricknell et al. 2006) and post-in -
festation survival of the lice on the salmon (Bricknell
et al. 2006). Furthermore, low-saline upper water
layers may form a refuge for salmon post-smolts from
lice larvae, as lice larvae actively avoid low salinity in
surface layers by staying deeper in the water column
(Bricknell et al. 2006, Crosbie et al. 2019). Surpris-
ingly, predictions for 2018‒2020 became worse by
applying the correction. The statistical model fitted
to data for 2018‒2020 showed a statistically positive
salinity effect that effectively cancelled out the cor-
rection for salinity-dependent infectivity, meaning
that for these years, there was no association be -
tween salinity and lice levels. Several explanations
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are possible for this finding, including data issues
and time-varying correlations between salinity and
factors that influence lice levels. We will return to
this issue in the discussion of Hypothesis H12.

The statistical testing for additional effects of salin-
ity and temperature (H12) showed no effect of salin-
ity and a cubic effect of temperature for 2012‒2017.
Hence, for these years, the correction for salinity-
dependent infectivity seemed to fully account for the
relationship between salinity and lice levels. The cal-
culated infestation pressure seemed to overestimate
infestation levels at low as well as high temperatures,
however. Temperature influences salmon lice infes-
tation dynamics through a number of processes, and
erroneous model assumptions for several of these
processes could explain such a pattern. Temperature
could, for example, have a more strongly dome-
shaped effect on infectivity than assumed (as indi-
cated by the results of Samsing et al. 2016, see our
Fig. 5a). Temperature could also have other effects
than those modelled, such as through mortality rates
of salmon lice. Especially the planktonic salmon lice
larvae are likely to be exposed to spatial and tempo-
ral variation in predation mortality, as predation
pressure depends on time-varying and potentially
temperature-dependent factors such as plankton
community composition and activity levels of preda-
tors and prey (Brooker et al. 2018). We lack data on
how predation on salmon lice larvae varies in space
and time, but note that mortality rates of eggs and nau-
plii of the ubiquitous copepod Calanus finmarchicus
scale positively with temperature, with higher mor-
tality in warm than cold periods and locations in the
Northwest Atlantic (Plourde et al. 2009). Key biotic
factors that correlated with mortality were abun-
dances of adult C. finmarchicus and phytoplankton,
suggesting that adults of C. finmarchicus ate cope-
pod eggs and nauplii at the highest rate when the
concentration of their main prey, phytoplankton, was
low (Plourde et al. 2009).

Correcting for the statistical association with tem-
perature led to worse predictions for 2018‒2020,
showing that the relationship with temperature had
changed. This mirrors the finding for salinity, which
also showed a change in the relationship with lice
infestations. These changes may reflect inter-annual
changes in the relative importance of the many direct
and indirect mechanisms by which salinity and tem-
perature affect salmon lice abundance. Similarly,
correlations between temperature and fish recruit-
ment, which also operate through a number of direct
and indirect mechanisms, are often non-stationary
(Ottersen et al. 2013). If, for example, the abundance

of a predator on lice larvae in the plankton varies
between years and this predator is associated with a
particular water mass (e.g. warm and saline waters),
the correlations of temperature and salinity with lice
predation mortality will vary. The effect of sea sur-
face salinity may further depend on the steepness
and depth of the halocline in relation to the depth of
the salmon (here, around 1 m), as lice larvae tend to
aggregate at or immediately below the halocline
(Bricknell et al. 2006, Crosbie et al. 2019). A weaker
effect of salinity in recent years could hypothetically
be caused by the freshwater layer being thinner than
in earlier years, as, for a given sea surface salinity, a
thin freshwater layer would reduce host−parasite
contact rates less than what a thick freshwater layer
would do. The depth of the thermocline does not
seem to affect the depth of salmon lice during the in -
fective larval stage (Crosbie et al. 2020) but could
nonetheless influence our results, as a thermocline
shallower than 3 m would cause a discrepancy be -
tween the modelled 3 m temperature and tempera-
ture at the 1 m depth of the salmon. We lack data for
how the depths of the halocline and thermocline var-
ied between years. The available observation data
suggested, however, a strong association between
temperatures at 1 and 3 m, and, moreover, that errors
in modelled temperature and salinity were probably
not large enough to explain the discrepancy between
modelled and observed lice levels at low salinity and
high temperature in 2018‒2020 (see the Supplement).
There is, nonetheless, a risk that the statistical asso-
ciations were spurious or influenced by inaccuracies
in the data. We conclude that our results do not sup-
port using the statistical relationships in predictive
modelling, and point to a knowledge gap in our
understanding of how temperature and salinity indi-
rectly or directly affect salmon lice dynamics.

We found that the effects of salinity and tempera-
ture were synergistic: the negative effect of the 2
stressors in combination was stronger than the sum
of their individual effects. The negative effect of sub-
optimal temperature was stronger when salinity
was low (e.g. 20‒30 ppt) than high (34 ppt, i.e. full-
strength seawater). In comparison, the majority of
combined effects of multiple abiotic stressors on mar-
ine embryos and larvae have been reported to be
synergistic (Przeslawski et al. 2015). However, tem-
perature and salinity appear to have compensatory
effects on larval survival of the sea louse Caligus
rogercresseyi, with temperature only influencing
survival when salinity is favourable (salinity > 20 ppt;
Montory et al. 2018). The possible mechanisms be -
hind the apparent synergistic effects in L. salmonis
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remain unclear, and accounting for these effects did
not improve the precision of our model. We consider
it premature to incorporate this possible synergistic
effect in models of salmon lice infestation of wild
salmon post-smolts, but urge experiments that quan-
tify combined effects of salinity and temperature on
lice larval survival and infectivity.

While these results show that the modelled infesta-
tion pressure explains a large part of the observed
variation in lice counts in sentinel cage experiments,
there are some caveats. Firstly, it is uncertain how
well the experiments with salmon placed in station-
ary sentinel cages represent actively swimming wild
salmon post-smolts (see Kristoffersen et al. 2018).
Experiments with towed cages and analyses of data
from trawl-caught post-smolts of wild salmon may
potentially throw light on this issue in the future.
Secondly, it was not always clear which reductions in
unexplained variance truly reflected real improve-
ments in the model’s predictive power and which dif-
ferences arose just by chance. This problem was
underlined by the out-of-sample predictions for 2018−
2020, which showed that several of the model formu-
lations performed similarly well. Therefore, the small
differences in model performance between some of
the alternative formulations should be interpreted
with caution. Finally, we acknowledge the need for
further model improvement to reduce un certainty in
model predictions. Reduced uncertainty can be
obtained by improved input data quality, as, for
example, harvesting cages where salmon are stored
before slaughtering as well as farms the last 2 wk
before slaughter are currently not required to report
lice numbers (Ministry of Trade, Industry and Fish-
eries 2012). More precise temperature and salinity
data at relevant depths can also reduce the uncer-
tainty, with, for example, farm-specific temperature
measurements at more depths than 3 m allowing for
a more realistic representation of temperatures of
egg-bearing female lice (Oppedal et al. 2011), and
higher spatial resolution of the ocean model in topo-
graphically complex areas improving the accuracy of
modelled temperature and salinity further (Asplin et
al. 2020). Reduced uncertainty can also potentially be
obtained through new knowledge about key model
parameters such as natural mortality rates, or through
reformulating the model, for example to take into ac -
count ocean currents. To estimate mortality of migrat-
ing wild salmon post-smolts, there are also other
important sources of uncertainty, such as incomplete
knowledge about migration timing and routes and
incomplete knowledge about what effect a given lice
load has on the mortality of the juvenile salmon (see

Kristoffersen et al. 2018 and Vollset 2019 for sensitiv-
ity analyses for the role of some of these factors).

5.  CONCLUSIONS

We have reviewed and synthesized studies on key
processes in salmon lice infestation dynamics, with a
focus on experimental investigations of salinity and
temperature effects. The relevance of the new find-
ings for predicting lice infestations on salmon post-
smolts in the sea was assessed by a statistical−mech-
anistic modelling approach. Using this modelling
approach, the spatial and temporal variation in infes-
tation pressure was mechanistically modelled based
on (1) extensive monitoring data on female salmon
lice in Norwegian fish farms and (2) functions for
potentially temperature- and salinity-dependent
salmon lice egg production, development, mortality
and infectivity. A statistical model element linked the
calculated infestation pressure to observations of
salmon lice infestations on salmon post-smolts in ex -
perimental cages. We found that predictions of salmon
lice infestations for 2012−2017 were improved by a
series of changes in model formulation, most notably
by taking into account salinity- and temperature-
dependent infectivity and by a change from a
degree-days approximation of development time to a
fractional development approach. We did not find
statistical support for changing the function for tem-
perature-dependent egg development time, stage-
dependent mortality rates or for taking into account
salinity-dependent egg viability. Results were in -
conclusive regarding the alternative functions for
 temperature-dependent larval development time,
egg batch size and egg viability. Results further sug-
gested that the association between salinity and ob -
served lice levels for 2012‒2017 was well explained
by the calculated infestation pressure, whereas lice
levels appeared to be overestimated at both low and
high temperatures. Such overestimation appeared to
be accentuated at low salinity, suggesting a possibly
synergistic interaction effect of sub-optimal salinity
and temperature. Out-of-sample predictions for 2018−
2020 supported that the model quantified the uncer-
tainty realistically. However, correcting for salinity-
dependent infectivity or the statistical association with
temperature did not improve predictions for 2018−
2020 and point to a gap in our knowledge about the
mechanisms that link temperature and salinity to
salmon lice dynamics.

These results contribute to quantify and reduce the
uncertainty in future estimates of the effects of fish

359



Aquacult Environ Interact 13: 339–361, 2021

farming on wild salmon populations, a matter of
large societal and economic importance and consid-
erable debate (Vollset et al. 2018). The Ministry of
Trade, Industry and Fisheries in Norway recently
enforced biomass reductions for open-net salmonid
fish farming in parts of the coast where the salmon
lice-induced mortality of wild salmon post-smolts
was considered to be too high for the production to
be environmentally sustainable. Model-based esti-
mates of lice-induced mortality (Kristoffersen et al.
2018, Myksvoll et al. 2018, Sandvik et al. 2020) were
important parts of the decision support, and contin-
ual development and refinement of these models is
important for regulating the fish-farming industry in
a way that protects wild salmon populations while
providing predictable regulatory conditions for fish
farmers. Our study contributes to this end by synthe-
sizing experimental results from multiple studies and
testing the relevance of these findings for salmon lice
in the sea, to make the best use of the available
knowledge.
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