Generalized gene transfer by virus-like particles from marine bacteria

Hiroshi X. Chiura*

Institut für Medizinische Biologie, Abt. Allgemeine Mikrobiologie, Universität Wien, Währingerstr. 17/2, A-1090 Wien, Austria

ABSTRACT: Spontaneous VLP (virus-like particle) production and VLP-mediated gene transfer into Escherichia coli AB1157 as recipient was demonstrated. Five marine isolates (Alc 096, Alc 233, Alc 252, Agrobacterium kieliense and Flavobacterium sp. 11604) were investigated for their potential to produce VLP as well as for the gene transfer capability of these VLPs to the E. coli recipient. These strains are classified as ubiquinone-10-possessing marine bacteria (QIOMB) in the 16s-rRNA Superfamily IV. VLPs were obtained from 100 h cultured broth of all strains examined. VLP-host ratio after 100 h growth culture was: Alc 233, 1.54; Alc 252, 1.26; Alc 096, 1.06; Flavobacterium sp. 11604, 0.69; and A. kieliense, 0.06. These ratios were smaller than those found in the marine environment. However, the spontaneously produced VLP number can be considered as high because the reported numbers are relatively low from coliphage h (0.005) and phage Mu (-0.0001). VLP-mediated gene transfer was examined using an auxotrophic mutant of E. coli (AB1157) with 4 amino acid deficiencies (leu, pro, his, arg) as recipient at multiplicity of infection (MOI) of 0.1. Through this treatment, VLPs showed lethal effect on the recipient. The survival rate of control was: Alc 096, 7%; Alc 252, 8%; A. kieliense, 17%; Flavobacterium sp. 11604, 31%; and Alc 233, 40%. At the same time, all the purified VLPs derived from these 5 strains successfully transferred genes to rescue genetic defects of the recipient. Overall average efficiency of VLP-mediated gene transfer at MOI of 0.1 was estimated to be between 2.62 x 10^{-3} and 3.58 x 10^{-3} per VLP particle. Loci of employed genetic markers were dispersed on the E. coli chromosome with mutual distance of 121, 1154, 1397 and 364 kb between them. Since VLPs from different sources showed similar gene transfer efficiency in respect to the genetic marker rescued, it is suggested that VLPs from QIOMB transferred genes as generalized transduction. These results indicate that the VLPs produced by certain marine bacteria may be an important element for both non-specific generalized horizontal gene transfer towards a broad range of bacterial hosts and population control in the marine environment.

KEY WORDS: Virus-like particles (VLPs) · Generalized transducing ability · Horizontal gene transfer · Transductants · Bactericidal effect · Marine bacteria · Ubiquinone-10

INTRODUCTION

Correspondence address: Department of Biology, Division of Natural Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181, Japan. E-mail: chiura@icu.ac.jp

© Inter-Research 1997
Horizontal gene transfer is assumed to be important for the evolution and genetic diversity of natural microbial communities and is therefore an important phenomenon to be understood (Saye & Miller 1989). However, it is well known that bacterial cells generally restrict their acceptance of foreign genetic materials (Streips & Yasbin 1991). Although ‘trans-kingdom’ gene transfer has been reported (Stachel et al. 1986, Heinéman & Sprague 1989, Zambryski et al. 1989, Sikorski et al. 1990), the occurrence of gene transfer between different bacterial species and genera in nature is so far known to be mediated by plasmids (Don & Pemberton 1981, Brisson-Noel et al. 1988, Schaefer et al. 1990, Mazodier & Davies 1991). Promiscuous gene transfer, when observed, is predominantly mediated by plasmids (Lorenz & Wackernagel 1994). Hence, virus-mediated gene transfer (transduction) has been considered to be a factor of minor importance for genetic diversity and evolution in the natural microbial community. Only recently has transduction become apparent as a potentially important means for the redistribution of genetic information in natural microbial habitats (Miller & Sayler 1992, Ripp et al. 1994, Schickmaier & Schmieger 1995).

During a study on properties of marine bacterial endonucleases (Chiura et al. 1988, 1992a, b), excretion of VLPs bearing nucleic acid into the broth was incidentally observed from the strains used for the investigation (Chiura & Takagi 1994, Chiura et al. 1995). These rod-shaped marine strains were classified as members of the Superfamily IV by 16s-rRNA analysis (De Ley 1991), and by having ubiquinone-10 as the sole component of coenzyme Q (abbreviated as ubiquinone-10-possessing marine bacteria: Q10MB). Spontaneous releases of VLPs from eubacterial strains have been seldom reported, and are considered as being quite unusual, although some similar phenomena in archaea and photosynthetic bacteria were mentioned by Reiter et al. (1987), Shaw et al. (1974), Soloz & Marrs (1977), Wall et al. (1975), Wood et al. (1989), and Schleper et al. (1992). Recently, a high occurrence of spontaneously induced temperate phages together with high frequency of a generalized transducing trait in natural isolates of Salmonella have been reported (Schickmaier & Schmieger 1995). The authors pointed out that the potential for phage-mediated gene transfer may be much higher than expected.

VLPs from Flavobacterium sp. 11604 belonging to Q10MB have been shown to mediate chromosomal gene transfer in Escherichia coli with lethal effects (Chiura et al. 1995). Hence, VLPs derived from several marine bacteria which were not related to recipient E. coli, at least at the family level, were investigated. The purpose of this study was to determine if VLPs derived from some Q10MB are on the one hand capable of controlling bacterial population diversity and on the other capable of mediating gene transfer.

MATERIALS AND METHODS

Bacterial strains as the source of VLPs and gene transfer recipient bacteria. Aerobic Gram-negative marine eubacterial strains of Agrobacterium kielense, Alc 096, Alc 233, Alc 252 and Flavobacterium sp. 11604 were used in this study as sources of VLPs. Sampling and isolation sites are summarized in Table 1. A. kielense IAM 12618 was obtained from the IAM Culture Collection, Center for Cellular and Molecular Research, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan. This strain is classified in the rRNA Superfamily IV (the α-subdivision) in the class Proteobacteria, however there are no known close relatives (De Ley 1991). Rüger & Höfe (1992) also indicated that the strain could not be placed in a subdivision of the genus Agrobacterium. Strains Alc 096, Alc 233, and Alc 252 were obtained from M. Akagawa-Matsushita, Minakikushu University. Based on rDNA-DNA hybridization experiments (Akagawa-Matsushita pers. comm.), Alc 096 had been shown to have no relationship to any members of rRNA Superfamilies I, II, III and IV, and therefore its phylogenetic position is not yet determined. The strains Alc 233 and Alc 252 have been shown to belong to the rRNA Superfamily IV, however they are not closely related to each other and there are

Table 1. Ubiquinone-10-possessing marine bacterial (Q10MB) strains, sampling site, material and source (year). They are Gram-negative, rod-shaped, aerobic, marine eubacteria. ‘Alc’ numbers are arbitrary, given by Akagawa-Matsushita. Although their phylogenetic position was determined using 16s-rRNA analysis (De Ley 1991), they do not have strain nomenclature.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Sampling site</th>
<th>Material</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrobacterium kielense</td>
<td>Kiel Bay, Baltic Sea</td>
<td>Seawater</td>
<td>M. Akagawa-Matsushita (1988)</td>
</tr>
<tr>
<td>Alc 096</td>
<td>Iou-Tou Is., Pacific Ocean</td>
<td>Seawater</td>
<td>M. Akagawa-Matsushita (1988)</td>
</tr>
<tr>
<td>Alc 233</td>
<td>Chiba, Japan</td>
<td>Seaweed</td>
<td>M. Akagawa-Matsushita (1988)</td>
</tr>
<tr>
<td>Alc 252</td>
<td>Kanagawa, Japan</td>
<td>Seaweed</td>
<td>M. Akagawa-Matsushita (1988)</td>
</tr>
<tr>
<td>Flavobacterium sp. 11604</td>
<td>Indian Ocean</td>
<td>Seawater</td>
<td>U. Simidu (1983)</td>
</tr>
</tbody>
</table>
Chiura: VLP-mediated horizontal gene transfer

As Escherichia coli belongs to rRNA Superfamily I (γ-subdivision) in the class Proteobacteria (De Ley 1991), these 5 strains are not related to E. coli, at least at the family level. Flavobacterium sp. 11604 was donated from the natural isolate culture collection of the Ocean Research Institute, the University of Tokyo, Nakano-ku, Tokyo, Japan. The strain Flavobacterium sp. 11604 has ubiquinone-10 (Q10) and its mole percent guanine plus cytosine content (mol% G+C) in DNA is 65.2% (Akagawa-Matsushita pers. comm.). This strain is probably not a member of the Flavobacterium because of its lack of menaquinones. Although its phylogenetic position is still unknown, the presence of Q10 suggests that it should be assigned to the rRNA Superfamily IV in the class Proteobacteria (abbreviated as ubiquinone-10 possessing marine bacteria, Q10MB). All the species in the rRNA Superfamily IV have Q10 as coenzyme Q (CoQ) with a few exceptions (Collins & Jones 1981, Yokota et al. 1992).

Escherichia coli AB1157 was obtained from the National Institute of Genetics (Shizuoka, Japan), and has the following genetic features: F−; thr−1 leuB6 thr−1 lacY1 galK2 ara−14 xyl−5 mtl−1 proA2 his−4 argE3 rpsL31 tsx−33 supE44. E. coli AB1157 was used as the recipient bacterium for VLP-mediated gene transfer.

Culture conditions. PPES II [modified seawater broth: 0.1% proteose peptone no. 3, 0.2% polypeptone, 0.1% yeast extract and 0.1% Bacto soyton in Jamarin S (artificial seawater, Jamarin Laboratory), pH 7.5] (Chiura et al. 1988) was used as nutrient medium for the culture of marine strains at 25°C and the liquid culture (3 l) was shaken at 120 rpm. LB [Luria Bertani medium: 1% polypeptone, 0.5% yeast extract, 1% sodium chloride in distilled and deionized water (DDW), pH 7.5] (Sambrook et al. 1989) was used to culture Escherichia coli at 30°C and liquid cultures were shaken at 120 rpm. Bacteria were grown in the dark during experiments to eliminate any light effects.

Selection medium. For selection of VLP-mediated gene transferred Escherichia coli, minimal media (MM) after Davis (in Difco Manual 1985) supplemented with 3 out of 4 amino acids, namely, leucine, proline, histidine, and arginine were used. MM contained 10% Davis salt solution [0.2% KH₂PO₄, 0.7% K₂HPO₄, 0.1% (NH₄)₂SO₄, 0.05% sodium citrate], 0.01% MgSO₄, 0.2% glucose and 1 mg l⁻¹ thiamine. Amino acids of 20 mg l⁻¹ each were supplemented to the selection media.

Preparation of VLPs. VLPs were isolated and purified as previously described from prolonged culture broth of respective strains (Chiura et al. 1995). In brief, culture filtrate was obtained by centrifugation (7500 x g, 40 min) from 100 h cultured marine strains in PPES II broth at 25°C with shaking. Cell washing was done with 0.5 M NaCl and 1 mM EDTA (Chiura et al. 1995) by centrifugation (7500 x g, 40 min). DNase I, RNase A and phenylmethylsulfonyl fluoride (PMSF) (Sigma, USA) were added to the culture filtrate as 1 µg ml⁻¹, 1 µg ml⁻¹ and 100 nM and kept at 25°C overnight. The culture filtrate was then passed through a 0.2 µm membrane filter (Millipore, USA) and concentrated to ca 50 ml using a Minitan S (Millipore, USA) system with 10 kDa cut-off filter.

The concentrated culture filtrate was filtered again through 0.45 µm and 0.22 µm membrane filters, then centrifuged at 80,000 x g, 40 min) from 100 h cultured marine strains in PPES II broth on the electronmicroscopic grid for the culture filtrate. Following staining for brief centrifugation and dilution, direct counts of VLPs were conducted for the culture filtrate. Following staining for 30 s with 2% uranyl acetate, grids were examined at ~75000 at an accelerating voltage of 60 kV with a JEM-1200EX electron microscope (JEOL Inc., Japan).

Enumeration of cells and VLPs. Prior to the harvest of the culture filtrate, a viable count of cells and number of VLPs was investigated. A viable count of cells was determined on PPES I1 solid medium at 25°C. The number of VLPs was determined according to Bnr-sheim et al. (1990) for culture filtrates with 0.22 µm membrane (Millex-GS, Millipore, USA) filtration, because the marine strains used as VLP sources secreted a murein-like substance during culture. Since this murein-like substance could not be removed even with brief centrifugation and dilution, direct counts of VLPs from culture broth on the electronmicroscopic grid were impractical. Therefore enumeration was conducted for the culture filtrate. Following staining for 30 s with 2% uranyl acetate, grids were examined at ×75000 at an accelerating voltage of 60 kV with a JEM-1200EX electron microscope (JEOL Inc., Japan). Eye fields were randomly selected and counted until the total count exceeded 250 VLPs. The size of the eye field was used to keep track of the area.

VLP-mediated gene transfer protocol to Escherichia coli. In order to ensure reproducible physiological condition of the recipient E. coli AB1157, the bacterium was cultured at 30°C by shaking (120 rpm) until a cell density of 4 x 10⁶ cfu ml⁻¹ was attained, then glycerin (Merck, Germany) was added to the culture to a final concentration of 7%, and the culture dispensed as 2 ml aliquots. Seed culture aliquots were frozen immediately in liquid nitrogen and kept at −85°C until use. For gene transfer experiments, a 2 ml aliquot of frozen seed culture was mixed with 3 ml of fresh LB broth in an L-shaped test tube and grown to mid-exponential phase at 30°C with shaking, then centrifuged at 5000 x g in a Kubota RT20000 refrigerated centrifuge using an RA3 rotor (Kubota, Japan) and suspended in 5 ml of TBT buffer. The cell suspension then obtained gave a viable count of ca 2 x 10⁸ colony forming units (cfu) ml⁻¹. One ml of this suspen-
Bacterial growth and VLP production

All 5 marine strains (Q10MB) spontaneously released VLPs into the culture medium after prolonged incubation. None of the VLPs obtained in the present study gave plaques on lawns of both the original host bacteria and recipient *Escherichia coli*. VLP and cell numbers and ratios after 100 h culture are summarized in Table 2. In descending order, VLP:host bacteria ratios were: Alc 233, 1.54; Alc 252, 1.26; Alc 096, 1.06; *Flavobacterium* sp. 11604, 0.69; and *Agrobacterium kielense*, 0.06. Although direct comparison of these ratios with values from the natural water column is not appropriate, it should be pointed out that the highest ratio was far smaller than values found in the natural aquatic environment (Schicklmaier & Schmieder 1995). Marine strains used in this study are most probably lysogens.

The spontaneous release of VLPs has been reported from archaeabacteria, *Methanococcus voltae* (Wood et al. 1989), *Sulfobolus* (Zilling et al. 1988), and the photosynthetic bacterium *Rhodopseudomonas capsulata* (Wall et al. 1975, Solioz & Marris 1977), but the phenomenon has not been considered ubiquitous in nature. However, preliminary experiments to examine spontaneous VLP production using marine isolates such as *Alcaligenes* (1 strain), *Flavobacterium* (2 strains), *Oceanospillirum* (1 strain), *Vibrio* (3 strains) and 6 unidentified strains showed positive results (Chiura unpubl. data). All of these strains were isolated from an ordinary, not extreme, marine environment (Table 1). Recently, high occurrence of spontaneously induced temperate phages were found in natural isolates of *Salmonella* with a high generalized transducing trait, which suggested a high rate of existence of spontaneously induced phage production and higher potential of phage-mediated gene transfer in an natural habitat (Schicklimayer & Schmieder 1995). Therefore, spontaneous production of VLP might be a common feature shared among certain marine bacteria, at least in the strains of Q10MB. Such VLP-host coexistence allows us to speculate that naturally occurring gene exchange processes may occur in the marine microbial community.

Table 2. VLP and cell number at 100 h culture with specific reference to VLP:host bacteria ratio

<table>
<thead>
<tr>
<th>Strain</th>
<th>Cells ml⁻¹</th>
<th>VLP ml⁻¹</th>
<th>VLP:cell no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrobacterium kielense</td>
<td>1.29 × 10⁹</td>
<td>7.07 × 10⁸</td>
<td>0.055</td>
</tr>
<tr>
<td>Alc 096</td>
<td>6.69 × 10⁸</td>
<td>7.11 × 10⁸</td>
<td>1.062</td>
</tr>
<tr>
<td>Alc 233</td>
<td>2.93 × 10⁹</td>
<td>4.51 × 10⁹</td>
<td>1.541</td>
</tr>
<tr>
<td>Alc 252</td>
<td>4.67 × 10⁹</td>
<td>5.88 × 10⁹</td>
<td>1.260</td>
</tr>
<tr>
<td>Flavobacterium sp. 11604</td>
<td>2.32 × 10⁹</td>
<td>1.60 × 10⁹</td>
<td>0.689</td>
</tr>
</tbody>
</table>
Chiura: VLP-mediated horizontal gene transfer

Morphology of VLPs

Characteristic features of obtained VLPs are summarized in Table 3. VLPs from Agrobacterium kieiense were especially characterized for an envelope structure of varying length (0.8 to 1.5 μm) in which 1 to several spherical particles (number of particles inside ± SD, 5.1 ± 2.8 particles; examined number of envelopes, n = 60) were encapsulated (Chiura & Takagi 1994). Though some eukaryotic viruses, such as the influenza virus, have envelopes, this is not a common feature for prokaryotic viruses. RNA phage ø6 of Pseudomonas is a typical example of an encapsulated prokaryotic virus whose particle is incorporated into the recipient cell during infection (Calender 1988). The gene transfer agent (GTA) of Rhodopseudomonas is reported to be encapsulated (Wall et al. 1975, Solioz & Marris 1977). Transformasomes from Haemophilus are reported to produce membranous material which is capable of encapsulating exogenous DNA in the surroundings of the cell (Kahn et al. 1983). However nothing is known about the relationship between those reported membranous encapsulated particles and the particles studied in this study.

VLPs from Alc 252 had a short tail (ca 25 nm) structure with an ellipsoid head. VLPs of Alc 233 were observed to be icosahedrons. Flavobacterium sp. 11604 gave ellipsoid VLPs (Chiura et al. 1995) and Alc 096 were almost complete spherical particles. In terms of head size, VLPs from Agrobacterium kieiense were classified in the largest category of head size class and VLPs from the other 4 strains were in the most abundant head size class found in the sea, namely 60 to 80 nm (Beisheim 1993).

VLP-mediated gene transfer experiment to Escherichia coli AB1157

2,4-Dichlorophenoxynoacetonic acid utilization (2,4-D) and some chromosomal gene transfer mediated by VLPs derived from Agrobacterium kieiense and Flavobacterium sp. 11604 to recipient Escherichia coli AB1157 have been demonstrated earlier (Chiura & Takagi 1994, Chiura et al. 1995). In order to examine the possibility of non-specific VLP-mediated gene transfer, sources of VLPs were extended to other Q10MB, namely Alc 096, Alc 233 and Alc 252. E. coli AB1157 is an auxotrophic mutant with 5 amino acid deficiencies (thr, leu, pro, his, arg), however thr was not used because of its considerably high spontaneous reversion frequency (≈ 10^{-7}). For the other 4 markers, spontaneous reversion frequencies were found to be below the level of detection. Experimental control of VLP specimens (UV +/−) plated without adding recipient cells gave no colony formation by plating. DNase I did not affect the gene transfer frequency of any VLP sources. Observed gene transfer frequency with DNase was between 89 and 112% when compared with the efficiency without DNase, defined as 100%.

Experiments were designed to obtain the expected MOI of 0.1. Observed MOI for each type of VLP were: Agrobacteriun kieiense, 0.22; Alc 096, 0.18; Alc 233, 0.14; Alc 252, 0.13; and Flavobacterium sp. 11604, 0.12. Efficiency of plating (EOP) after exposure to MOI of 0.1 was used to observe the lethal effect of VLPs to recipient cells. These VLPs showed lethal effects on recipient Escherichia coli by reducing EOP up to 1 order of magnitude. Observed EOP (± SD) for each VLP was as follows: Alc 096, 6.90 ± 3.1 x 10^{-2}; Alc 252, 7.80 ± 5.2 x 10^{-2}; A. kieiense, 1.73 ± 1.6 x 10^{-1}; Flavobacterium sp. 11604, 3.06 ± 0.33 x 10^{-1}; and Alc 233, 4.03 ± 0.45 x 10^{-1}. Under the same MOI and experimental conditions (MOI = 0.09, 30°C, 15 min adsorption), the lethal effect of coliphage T4 on E. coli was 2.44 x 10^{-5} (data not shown). Such low virulence for these VLPs explains why we could not obtain any plaques on the original host strains and E. coli. The extent of VLP lethality was comparable to that of piocin R, a bacteriocin produced by Pseudomonas (Amako & Yasunaka 1979). Although these VLPs had a lower killing rate on E. coli than the typical lytic coliphage T4, they showed lethality on bacteria of a different phylogenetic group. Hence, they can be taken into account as contributing to the 'phage-induced mortality' in the natural water column (Weinbauer & Peduzzi 1994, Hennes & Simon 1995).

Amino acid deficiencies of Escherichia coli were successfully repaired through the gene transfer experiment using VLPs as summarized in Table 4. When UV-irradiated VLPs were used as gene transfer mediators,

<table>
<thead>
<tr>
<th>Source strains of VLP</th>
<th>Head size ± SD, nm (n)</th>
<th>Envelope / Tail</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrobacterium kieiense</td>
<td>123.0 ± 3.9 (46)</td>
<td>+/-</td>
<td>Chiura & Takagi (1994)</td>
</tr>
<tr>
<td>Alc 096</td>
<td>55.0 ± 2.2 (18)</td>
<td>+/-</td>
<td>This study</td>
</tr>
<tr>
<td>Alc 233</td>
<td>78.6 ± 8.8 ± 67.3 ± 6.3 (23)</td>
<td>+/-</td>
<td>This study</td>
</tr>
<tr>
<td>Alc 252</td>
<td>78.2 ± 15.7 ± 46.2 ± 10.2 (26)</td>
<td>+/-</td>
<td>This study</td>
</tr>
<tr>
<td>Flavobacterium sp. 1 1604</td>
<td>85.0 ± 5.7 ± 70.0 ± 2.4 (54)</td>
<td>+/-</td>
<td>Chiura et al (1995)</td>
</tr>
</tbody>
</table>
no gene transfer frequencies were detected. Although transfer efficiencies for respective markers varied upon applied VLP source, distinctive preference of marker transfer was not observed among markers. At a MOI of 0.1, leu, pro, his and arg markers on the E. coli chromosome exhibited gene transfer frequencies ranging between 2.62×10^{-3} and 3.58×10^{-3} per VLP. Transducing frequencies of those VLPs were found to be higher by 4 to 7 orders of magnitude than those reported for naturally isolated transducing phages (Saye et al. 1990, Ripp et al. 1994). The marine strains used as VLP source produced a murein-like substance in the broth which was difficult to remove from VLP specimens even after density gradient ultracentrifugation. It is speculated, however, that such a concomitantly isolated murein-like substance together with VLP might play an important role during the gene transfer process. It may stabilize VLP adhesion at a certain receptor site of the recipient cell to promote further gene transfer. Some analogous features of the substance might be membranous materials found during the transformation process in Bacillus (te Riele & Venema 1984), Haemophilus (Kahn et al. 1983) and Neisseria (Doward et al. 1989).

Consistent gene transfer frequencies for every genetic marker were displayed by VLPs from the same source. Since the loci of employed genetic markers did not come across closely but were dispersed on the Escherichia coli chromosome, it is suggested that all the VLPs examined here carry out generalized gene transfer. As described above, efficiency of lethality was different from source to source and no correlation was found between lethality and gene transfer.

Bacterial conjugation is considered to be the most widespread mechanism of gene exchange in the microbial community (Birge 1986) and this process includes cell to cell contact. Thus, unless the density of the recipient is substantial, one would not expect a high frequency of conjugal gene transfer (Levin & Lenski 1983). It has been reported that under starvation conditions found in the aquatic habitat the establishment of lysogeny is favoured (Romig & Brodetsky 1961). Viruses may adsorb to clay minerals and other particles, which appears to protect them against degradation or loss of infectivity from UV exposure over long periods of time (Stozky 1980). An important point to mention is that viruses may persist in the environment under such conditions. This increases the probability of transduction occurring even in environments where the cell density is low. In fact, bacteriophages adsorbed on clay minerals may serve as reservoirs of bacterial DNA in soil and other natural habitats (Stozky 1989). Under the coexistence of lysogenic viruses and bacteria, viruses may be seen as partners of coevolution for the supply of complementary genetic source to the bacterial community (Levin & Lenski 1983). The packaging of genetic material in a transducing particle probably represents an evolutionary survival mechanism for bacterial genes (Stozky 1989, Veal et al. 1992).

It is generally accepted that the accessible host range for a virus is restricted to the same species, and, even if possible, among the receptors of related species (Calender 1988, Kokjohn 1989, Borsheim 1993, Fuhrman & Suttle 1993, Birge 1994). The surface features of VLPs might have been one of the factors that determined the uptake of nucleic acids by recipient cells (Hirsch 1990, Dreiseikelmann 1994). Accordingly, virus-mediated gene transfer has not been considered as an important process for redistribution of genetic information. Recently, sufficient evidence has accumulated to exploit the idea that transduction is a meaningful way of gene exchange, being more important in natural ecosystems than has been traditionally envisioned (Novick et al. 1986, Kokjohn 1989, Saye & Miller 1989, Stozky 1989, Saye et al. 1990, Miller et al. 1992, Schickmaier & Schmieger 1995). The present results imply that spontaneously produced VLPs are important factors for non-specific gene transfer in the marine environment. These VLPs must have interaction with receptors on the recipient bacteria that are not closely related in terms of phylogeny. Hence receptors for such VLPs examined here must share common features in a wide range of different bacterial genera. Phage P1 is also known for its wide host range (Birge 1986, Yarmo-

Table 4. VLP-mediated gene transfer of chromosomai genes. Markers and map location for respective marker on recipient Escherichia coli chromosome. Gene transfer frequencies are expressed per 10^7 VLPs. Values represent mean of triplicate independent experiments (3 subsamples per experiment). No gene transfer frequencies were detected from selection plates to which UV irradiated VLP were used as the VLP sources. DNase I did not affect the gene transfer frequency of any VLP sources.

<table>
<thead>
<tr>
<th>Mark</th>
<th>Source: Agrobacterium kleriense</th>
<th>Gene transferred cells per 10^7 VLPs</th>
<th>Source: Flavobacterium sp. 11604</th>
<th>Gene transferred cells per 10^7 VLPs</th>
<th>Source: Alc 233</th>
<th>Gene transferred cells per 10^7 VLPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu, 2'</td>
<td>26364</td>
<td>1065</td>
<td>1015</td>
<td>578</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>Pro, 6'</td>
<td>21591</td>
<td>1438</td>
<td>1526</td>
<td>996</td>
<td>767</td>
<td></td>
</tr>
<tr>
<td>His, 44'</td>
<td>23500</td>
<td>3546</td>
<td>1336</td>
<td>602</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>Arg, 90'</td>
<td>10500</td>
<td>1164</td>
<td>1518</td>
<td>760</td>
<td>822</td>
<td></td>
</tr>
</tbody>
</table>

Source: Agrobacterium kleriense Alc 252 Flavobacterium sp. 11604 Alc 233 Alc 096
linsky & Sternberg 1988). P1 mutants with extended host range were used to facilitate gene mapping of bacterial hosts, so it is still possible to suspect the existence of viruses (VLPs) with a wide host range in nature (Calender 1988).

This study demonstrated that some marine isolates produce VLPs without artificial induction. These VLPs showed bactericidal effect on Escherichia coli, which belongs to a totally different genus compared to the marine bacterial sources of VLP. Furthermore, such VLPs are capable of intergeneric generalized gene transfer. The importance of this observation is that this is the first demonstration of interspecific and/or intergeneric VLP-mediated gene transfer found among marine bacteria and enteric bacteria. This study implies the existence of spontaneous VLP production mechanism and gene transfer kinetics in the marine environment. The results also suggest that there is a high potential of population control by such VLPs. The source strains of VLPs were not collected from extreme sites, such as hot vents or hypersaline environments, but ordinary marine environments (Table 1). Such facts, together with the results of the present experiment, strongly suggest the prevalent existence of an interspecific and/or intergeneric natural genetic transfer system.

Acknowledgements. The author sincerely thanks M. Akagawa-Matsushita for permission to use unpublished data and for providing marine strains. He also thanks U. Simidu for providing marine strains, K. Kato, B. Velimirov, R. W. Ridge and 3 anonymous reviewers for critical reading, advice, useful comments and suggestions on the manuscript. He is grateful to G. Bratbak, M. Heldal and F. Thingstad for encouragement. Last and certainly not least thanks are given to J. Takagi, H. Moribe, D. L. Kato, M. Segawa and other members of the laboratory at ICU and the author's family.

LITERATURE CITED

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 25-39
Howe MM, Bade EG (1975) Molecular biology of bacterio-
phage Mu. Science 190:624–632
Kahn MG, Barany F, Smith HO (1983) Transformasomes: spe-
cialized membranous structures that protect DNA during
Haemophilus transformation. Proc Natl Acad Sci 80:
6927–6931
Kokjohn TA (1989) Transduction: mechanism and potential
for gene transfer in the environment. In: Levy SB, Miller
RV (eds) Gene transfer in the environment. MacGraw-
Hill, New York, p 73–97
Levin BR, Lenski RE (1983) Coevolution in bacteria and
their viruses and plasmids. In: Futuyma DJ, Slatkin M (eds)
Ljungquist E, Bukhari AI (1977) State of prophage Mu DNA
upon induction. Proc Natl Acad Sci 74:3143–3147
Lorenz MG, Wackernagel W (1994) Bacterial gene transfer
by natural genetic transformation in the environment. Micro-
bio1 Rev 58:293–316
of virus-sized non-DNase digestible DNA (coated DNA)
in eutrophic seawater. Appl Environ Microbiol 59:
712–717
Mathias CB, Kirschner AKT, Velimirov B (1995) Seasonal
variations of virus abundance and viral control of the bac-
tenal production in a backwater system of Danube river.
Appl Environ Microbiol 61:3734–3740
Miller RV, Ripp S, Relicon J, Ogunseitan OA, Kokjohn TA
(1992) Virus-mediated gene transfer in freshwater envi-
ronment. In: Gauthier MJ (ed) Gene transfers and envi-
ronment. Springer-Verlag, Berlin, p 51–62
Miller RV, Sayler GS (1992) Bacteriophage-host interactions
in aquatic systems. In: Wellington EMH, Van Elsas JD
(eds) Genetic interactions among microorganisms in the
natural environment. Pergamon Press, Oxford,
 p 176–193
Nagasaki K, Ando M, Imai I, Ikakura S, Ishida Y (1993) Virus-
like particles in an apochlorotic flagellate in Hiroshima
aureus plasmids are transduced as linear multimers that
are formed and resolved by replicative process. J Molec
Biol 192:209–220
Ogunseitan OA, Sayler GS, Miller RV (1990) Dynamic inter-
actions of Pseudomonas aeruginosa and bacteriophages in
of viral abundance in the reef environment of Key Largo,
Proctor LM, Fuhrman JA (1990) Viral mortality of marine bact-
eria and cyanobacteria. Nature 343:60–62
in archaeabacteria: physical mapping of constitutive and
UV-inducible transcripts from the Sulfolobus virus-like
Ripp S, Ogunseitan OA, Miller RV (1994) Transduction of a
freshwater microbial community by a new Pseudomonas
aeruginosa generalized transducing phage, UT1. Molec
Ecol 3:121–129
Romig WR, Brodetsky AM (1961) Isolation and preliminary
characterization bacteriophages of Bacillus subtilis. J Bac-
teriol 82:135–141
Ruger H, Höfe MG (1992) Marine star-shaped-aggregate-
forming bacteria: Agrobacterium atlanticum sp. nov.;
Agrobacterium meteori sp. nov.; Agrobacterium terrug-
ineum sp. nov., nom. rev.; Agrobacterium gelatinovorum
sp. nov., nom. rev.; and Agrobacterium stellulatum sp.
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning:
a laboratory manual, 2nd edn. Cold Spring Harbor Labo-
ratory Press, Cold Spring Harbor, NY
Saye DJ, Miller RV (1989) The aquatic environment:
consideration of horizontal gene transmission in a di-
versified habitat. In: Levy SB, Miller RV (eds) Gene transfer
Saye DJ, Ogunseitan OA, Sayler GS, Miller RV (1990) Trans-
duction of linked chromosomal genes between Pseudo-
onas aeruginosa during incubation in situ in a freshwa-
ter habitat. Appl Environ Microbiol 56:140–145
Schaper A, Kalinowska J, Simon R, Seep Feldhaus AH, Puhler
A (1990) High-frequency conjugal plasmid transfer from
Gram-negative Escherichia coli to various Gram-positive
transducing phages in natural isolates of the Salmonella
typhimurium complex. Appl Environ Microbiol 61:
1637–1640
Schleper C, Kubo K, Zilling W (1992) The particle SSV1 from
the extremely thermophilic archaean Sulfolobus is a virus:
demonstration of infectivity and of transfection with viral
DNA. Proc Natl Acad Sci 89:7645–7649
Sikorski RS, Michaud W, Levin HL, Boeke JD, Hieter P (1990)
Solioz M, Mares B (1977) The gene transfer agent of Rhino-
pseudomonas capsulata, purification and characterization
of its nucleic acid. Arch Biochem Biophys 181:300–307
Stachel SE, Timmerman B, Zambryski P (1986) Generation of
single-stranded T-DNA molecules during the initial stages
of T-DNA transfer from Agrobacterium tumefaciens to
Stokey G (1980) Surface interactions between clay minerals
and microbes, viruses and soluble organic and probable
importance of these interactions to the ecology of microbes in soil.
Haworth, Chichester, p 231–249
Streips US, Yasbin RE (eds) (1991) Mordan m~crobial genet-
ics. Wiley-Liss, New York
Suttle CA, Chan AM (1994) Dynamics and distribution of
cyanophages and their effect on marine Synechococcus spp.
Appl Environ Microbiol 60:3167–3174
Suttle CA, Chan AM, Cottrell MT (1996) Infection of phyto-
plankton by viruses and reduction of primary productivity.
Nature 347:467–469
te Kleie HPJ, Venema G (1984) Molecular late of heterologous
bacterial DNA in competent Bacillus subtilis: further char-
acterization of unstable association between donor and
recipient DNA and the involvement of the cellular mem-
brane. Mol Gen Genet 195:200–208
Veal DA, Stokes HW, Daggard G (1992) Genetic exchange in
natural microbial communities. In: Marshall KC (ed)
York, p 35-50
Wall JD, Weaver PF, Gest H (1975) Gene transfer agents, bac-
teriophages, and bacteriocins of Rhodopseudomonas cap-

Responsible Subject Editor: G. Bratbak, Bergen, Norway

Manuscript received: October 4, 1996
Revised version accepted: April 8, 1997