Budgets of sediment nitrogen and carbon cycling in the shallow water of Knebel Vig, Denmark

Bente Aa. Lomstein1,*, Anna-Grethe U. Jensen1, Jens W. Hansen1, Jane B. Andreasen1, Lars S. Hansen1, Jørgen Berntsen1, Helmar Kunzendorf2

1Department of Microbial Ecology, Institute of Biological Sciences, Aarhus University, Building 540, Ny Munkegade, DK-8000 Aarhus C, Denmark
2Environmental Science & Technology Department, Gamma Dating Center, Risø National Laboratory, PO Box 49, MIL-124, DK-4000 Roskilde, Denmark

ABSTRACT. Sediment was sampled from a shallow coastal area (Knebel Vig, Denmark). The vertical distribution of pigments, Pb-210 and Cs-137 indicated that organic matter was mixed into the sediment. On an area basis, sediment acid hydrolyzable amino acids accounted for 24% of the particulate organic carbon pool and 53% of the particulate organic nitrogen pool. Similarly, porewater acid hydrolyzable amino acids were an important component of dissolved organic carbon and dissolved organic nitrogen (9 and 27%, respectively). It was inferred that ribonucleic acids potentially were an important component of dissolved organic nitrogen. The estimated efflux of dissolved organic nitrogen from the sediment was higher (3.9 mmol N m⁻² d⁻¹) than the estimated efflux of dissolved inorganic nitrogen (<2 mmol N m⁻² d⁻¹). The high efflux of dissolved organic nitrogen was explained by organic matter hydrolysis close to the sediment surface. The low rates of inorganic nitrogen efflux together with a high carbon oxidation rate suggested degradation of organic matter with a low average nitrogen content and possible bacterial nitrogen assimilation. This was further supported by mass balance calculations on nitrogen incorporation into microbial biomass. The calculated average C/N ratio in the organic matter degraded suggested that only part of the sediment acid hydrolyzable amino acids were available for bacterial degradation. The efficiency of bacterial carbon incorporation was 0.33 and within the range previously encountered in sediments of Danish waters.

KEY WORDS: Sediment - Nitrogen - Carbon - Cycling - Fluxes - Urea - Amino acids

INTRODUCTION

Shallow water sediments are sites where most organic matter mineralization in marine sediments takes place (Jørgensen 1983). Information on mineralization processes in sediments can be drawn from different sources: one is from measurements of the efflux of mineralization products from the sediment and this method has been extensively discussed by Blackburn et al. (1996), another is the geochemical analysis of porewaters and sediment solid constituents combined with diagenetic modeling (e.g. Henrichs & Farrington 1984, Burdige & Martens 1990) and a third source of information is direct measures of the rate of breakdown of specific organic molecules (e.g. Christensen & Blackburn 1980, Lomstein et al. 1989, Sugai & Henrichs 1992). The organic matter pools available for microbial degradation in sediments are composites of dissolved organic matter (DOM) and are often quantified as either dissolved organic carbon (DOC) or dissolved organic nitrogen (DON). These pools are composed of a suite of known and unknown compounds that are generated from bacterial hydrolysis of particulate organic matter and accumulation of intermediate products of anaerobic degradation. Due to the lack of information on the composition of the DOM pool there is also incomplete information on the exact DOM components through which carbon and nitrogen are recycled. Similarly, there is a lack of information on factors regulating recycling and retention of carbon and nitrogen in sediments.

*E-mail: bente@pop.bio.aau.dk

© Inter-Research 1998
The aim of the present study was to obtain detailed information on factors controlling organic carbon and nitrogen cycling with specific focus on the relation between the C/N ratio in the organic matter degraded and bacterial nitrogen assimilation. The following pools were measured: particulate organic carbon (POC), particulate organic nitrogen (PON), sediment acid hydrolyzable amino acids (THAAa), DOC, DON, porewater acid hydrolyzable amino acids (THAApw), dissolved free amino acids (DFAA), urea and NH4+. In addition the rates of urea, alanine and glutamate turnover were measured and the total DFAA turnover was calculated. Carbon oxidation was measured as the \(\Sigma CO_2 \) efflux from the sediment to the water column. Finally, high resolution porewater profiles (1.5 mm) of DOC, DON and NH4+ were used to calculate net diffusional fluxes of these solutes from the sediment to benthic primary producers and/or the water column.

MATERIALS AND METHODS

Sampling. Sediment was sampled at 4 m water depth in Knebel Vig, Denmark, on July 4, 1994, at a station with the coordinates 56° 13.69' N, 10° 27.46' E. Knebel Vig is a small embayment (2100 m²) of the east coast of Kale Vig. The sediment texture is silty sand and is further described in Christiansen et al. (1981). The bottom water temperature was 18.5°C and the salinity 24.3%. Sediment was collected in Plexiglas cores (20 cm, 3.6 cm i.d.) with a bar-core collector. The sediment was stored in the dark and at the in situ temperature until returning to the laboratory (within 1 h). Twenty sediment cores were sectioned into 1.5 mm slices within the upper 7.5 mm of the sediment, into 4.5 mm sections in the 7.5–16.5 mm depth strata, 10.5 mm sections in the 16.5–58.5 mm zone and finally into one 30.0 mm section to a final depth of 88.5 mm. The sediment from each depth stratum was thoroughly mixed and the head space above the sediment was replaced with N2.

Sediment characteristics. The following parameters were determined: specific density, water content, Pb-210 and Cs-137 gamma-radiation activities, pigment content, POC, PON and THAAa. Sediment characteristics were measured at the depths described above, except that pigments were only measured to a final depth of 16.5 mm and THAAa was only measured in every second sediment stratum. Sediment specific density (g cm\(^{-2}\)) was determined gravimetrically on triplicate 1 cm\(^3\) sediment samples and the water content (ml g\(^{-1}\)) was determined as the weight loss from fresh sediment dried at 105°C for 24 h.

Pb-210 and Cs-137 activities were measured on dried sediment in a well-type Ge (Li) detector. As there was a simultaneous detection of U-decay series, these daughter activities (Ra-226, Pb-214, Bi-214) allowed a direct determination of supported Pb-210 (Pb-210\(_{sup}\)).

Samples for pigment analysis were prepared in the following manner: acetone (Lichro solve, Merck 20) was added to 1 cm\(^3\) of frozen sediment to a final concentration of 90% (v/v) in the porewater. The sediment was extracted for 72 h at \(-20°C\) and in the dark and the sediment-acetone extract was gently shaken 3 or 4 times during extraction. Extracts were filtered through a 0.5 μm Teflon micro filtration system (MFS 03JP050AN) and 300 μl TBAA was added to 1 ml acetone extract. TBAA was 1.5 g tetrabutylammonium acetate (Fluka 86849) + 7.7 g ammonium acetate (Fluka 09869) in 100 ml Milli-Q water; the TBAA solution was adjusted to pH 7.0. Chlorophyll a and b standards were obtained from Fluka (Fluka 25730 and 25740, respectively). Pigment separations were performed using the following instrumentation: Waters 501 pumps, Waters 715 Ultra Wisp Sample processor, Waters 470 Scanning fluorescence detector (excitation = 430 nm, emission = 630 nm) and a Baseline data acquisition program (attenuation = 32, gain = \(x\times100\)). Separations were performed on a 25 cm Hypersil 5 C\(_{18}\) column, ODS from Phenomenex. The gradient was a modification of that described in Mantoura & Llewellyn (1983), as the pigments were obtained by a linear gradient elution from 100% A to 100% B in 20 min, followed by an isocratic hold for 20 min at 100% B that was terminated by a 5 min linear gradient from 100% B to 100% A. Eluent A was 80% methanol (Merck 106070) + 15% Milli-Q water + 5% TBAA (v/v) and eluent B was 80% methanol + 20% acetone (v/v). The flow rate was 1.5 ml min\(^{-1}\).

POC and PON were measured on dried, homogenized, H\(_2\)SO\(_4\) treated sediment in a Carlo Erba NA 1500 HCN analyser.

THAAa was determined on 1 cm\(^3\) fresh sediment to which there was added 10 ml 6 N HCl. Hydrolysis of the sediment sample was carried out at 110°C for 24 h. After hydrolysis, samples were adjusted to pH 9.4 with 6 M NaOH in 0.4 M borate buffer and filtered through a 0.2 μm Sartorius filter. The hydrolyzed THAA was measured as DFAA by high performance liquid chromatography (HPLC; Waters Chromatographic System) of o-phthaldialdehyde-derivatized products (Lindroth & Mopper 1979).

Porewater pools of DON, DOC, THAAa, DFAA, urea and NH4+. Porewater was obtained by centrifugation (1000 × g for 10 min) and the supernatant was either filtered through a 0.2 μm Sartorius filter (DON, DOC, THAApw and DFAA samples) or was not filtered (NH4+) and frozen for later analysis. Urea samples were obtained by addition of 2 ml artificial seawater to 1 cm\(^3\) sediment in order to obtain sufficient sample for ana-
Amino acid turnover was measured for the 2 amino acids alanine and glutamate at every second depth described in the sampling section. Incubation was performed as follows: (1) 10 μl 14C-[U]-amino acid tracer was injected into 0.8 cm³ sediment in a N₂-flushed extertainer (0.95 nCi μl⁻¹, 155 nCi nmol⁻¹ alanine; 1.72 nCi μl⁻¹, 266 nCi nmol⁻¹ glutamate; Amersham) and incubated in a time course (0.0, 1.0 and 2.0 h for alanine and 0.0, 3.0 and 11.0 h for glutamate); (2) turnover activity was stopped by addition of 1 ml 2.5% (w/v) NaOH; and (3) the sediment-NaOH suspension was thoroughly mixed and frozen for later analysis.

Radioactivity was counted in a Packard 2200 CA Tri-Carb Liquid Scintillation analyzer. The urea turnover rate was calculated by means of the steady state Model II described in Lund & Blackburn (1989) and the turnover rate of total DFAA was calculated as the average turnover rate constant of alanine and glutamate times the porewater pool of DFAA. Turnover rate constants of alanine and glutamate, in the sediment zones that were not measured, were obtained from linear extrapolation of the respective turnover rate constants in sediment zones above and below. These calculated turnover rate constants were used to obtain the depth-integrated turnover rates. As the alanine and glutamate turnover rate constants were not measured in the 58.5-88.5 mm zone, it was assumed that the turnover rate constants in the 48.0-58.5 mm zone were representative for the underlying zone.

Sediment carbon oxidation. The ΣCO₂ efflux from the sediment to the water column was used as an integrated measure of sediment carbon oxidation. The ΣCO₂ efflux was measured in 5 cores (3.6 cm i.d.). The sediment cores were overlaid with bottom water from the sampling location and were 'sealed' with a glass petri dish without the introduction of air bubbles. The water phase was agitated with a magnet, using an incubation system similar to that described in Blackburn et al. (1988). The 5 cores were incubated in the dark at the in situ temperature for 0.7, 2.1, 2.1, 3.8 and 3.8 h, respectively. The concentration of ΣCO₂ was determined by flow injection analysis (Hall & Aller 1992).

RESULTS

Sediment characteristics

Microscopical examination of the sediment surface revealed that the benthic primary producers were dominated by diatoms and cyanobacteria and there...
Table 1. Distribution of Pb-210 total, Pb-210 supported (Pb-210\textsubscript{sup}), and Cs-137 with sediment depth (n = 3)

<table>
<thead>
<tr>
<th>Depth (mm)</th>
<th>Pb-210 total (Bq kg-1)</th>
<th>Pb-210\textsubscript{sup} (Bq kg-1)</th>
<th>Cs-137 (Bq kg-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD (% of mean)</td>
<td>SD (% of mean)</td>
<td>SD (% of mean)</td>
</tr>
<tr>
<td>0.0-1.5</td>
<td>20.0</td>
<td>12.8</td>
<td>15.4</td>
</tr>
<tr>
<td>1.5-3.0</td>
<td>8.9</td>
<td>17.3</td>
<td>14.1</td>
</tr>
<tr>
<td>3.0-4.5</td>
<td>6.2</td>
<td>12.5</td>
<td>16.9</td>
</tr>
<tr>
<td>4.5-6.0</td>
<td>20.7</td>
<td>20.5</td>
<td>14.5</td>
</tr>
<tr>
<td>6.0-7.5</td>
<td>11.1</td>
<td>13.7</td>
<td>8.5</td>
</tr>
<tr>
<td>7.5-12.0</td>
<td>6.2</td>
<td>13.6</td>
<td>8.6</td>
</tr>
<tr>
<td>12.0-16.5</td>
<td>26.6</td>
<td>10.4</td>
<td>11.5</td>
</tr>
<tr>
<td>16.5-27.0</td>
<td>14.2</td>
<td>8.2</td>
<td>11.0</td>
</tr>
<tr>
<td>27.0-37.5</td>
<td>10.1</td>
<td>5.9</td>
<td>11.4</td>
</tr>
<tr>
<td>37.5-48.0</td>
<td>0.9</td>
<td>11.8</td>
<td>14.9</td>
</tr>
<tr>
<td>48.0-58.5</td>
<td>11.7</td>
<td>6.2</td>
<td>11.0</td>
</tr>
<tr>
<td>58.5-88.5</td>
<td>11.8</td>
<td>12.6</td>
<td>5.5</td>
</tr>
</tbody>
</table>

were a few of the pelagic diatom *Nitzschia longissima*. Visual inspection of sediment cores showed that the benthic macrofauna was dominated by small polychaetes. SCUBA diving observations of the sediment surface showed that *Arenicola marina* was present.

Table 1 gives the data of total Pb-210, Pb-210\textsubscript{sup} and Cs-137 versus sediment depth. The total Pb-210 and Pb-210\textsubscript{sup} activities were of similar magnitude and were all <20.7 Bq kg-1. Therefore, it was not possible to calculate unsupported Pb-210 values. Standard deviations for the activity determinations varied between 7.1 and 20.5% of the means. The activity of Cs-137 varied between 14.0 and 16.9 Bq kg-1 within the upper ~9 mm of the sediment and decreased to 11.5 Bq kg-1 in the 12.0-16.5 mm zone. The Cs-137 activity remained at 11.0 to 11.5 Bq kg-1 throughout most of the underlying sediment, but decreased further to 5.5 Bq kg-1 in the 58.5-88.5 mm zone (Table 1).

There was a decrease in chlorophyll a (chl a) and total pigment with sediment depth and their contents were reduced to 34 and 30%, respectively, in the 12.0-16.5 mm depth zone compared to the contents in the sediment surface (Fig. 1). The total pigment content was the sum of the chl a peak and a peak with a retention time of 10.28 min (results not shown).

There was an almost linear decrease in the total contents of POC and PON within the upper ~14 mm of the sediment from 566 and 72 µmol cm-3, respectively, in the surface to 344 and 41 µmol cm-3, respectively, in the 12.0-16.5 mm zone; the POC and PON contents fluctuated somewhat below this zone (Fig. 2a, b). There was a slight increase in the contents of THAA\textsubscript{c}, carbon (THAA\textsubscript{c}-C) and THAA\textsubscript{c} nitrogen (THAA\textsubscript{c}-N) within the upper few mm of the sediment, where THAA\textsubscript{c}-C and THAA\textsubscript{c}-N reached a maximum of 161 and 37 µmol cm-3, respectively, in the 3.0-4.5 mm zone (Fig. 2a, b). THAA\textsubscript{c} remained almost constant at sediment depths exceeding 7.5 mm. The molar composition of THAA\textsubscript{c} did not show any consistent trend with sediment depth (Fig. 3). Glycine was the most abundant amino acid residue of THAA\textsubscript{c}, followed by aspartate and glutamate (Fig. 3). Unidentified amino acids (named ‘Others’ on Fig. 3) only accounted for 5 to 6% of total THAA\textsubscript{c}.

The integrated (0.0-88.5 mm) pools of POC, PON, THAA\textsubscript{c}-C, THAA\textsubscript{c}-N and the unknown POC and PON pools are shown in Table 2. THAA\textsubscript{c} accounted for 24% of the DOC pool and 53% of the DON pool, whereas the remaining pools of particulate organic matter (POM) were not identified.

Profiles of the average C/N ratio (mol mol-1) in the total POM pool, the THAA\textsubscript{c} pool and the unidentified POM pool are shown in Fig. 2c. The average C/N ratio of the total POM pool increased with depth, from 7.8 in the sediment surface to 11.5 in the 58.5-88.5 mm depth zone, whereas the C/N ratio of the THAA\textsubscript{c} pool remained constant with depth. The average C/N ratio in the unidentified POM pool varied between 11.1 and 15.7.

Porewater contents of DOC, DON, THAA\textsubscript{pw}-C, THAA\textsubscript{pw}-N, DFAA-C, DFAA-N, urea and NH\textsubscript{4}

Fig. 4a, b gives the profiles of the different dissolved carbon and nitrogen pools that were measured. THAA\textsubscript{pw} was the most important of the identified DOM components and accounted for 9.2% of the integrated (0.0-48.0 mm) DOC pool and 26.8% of the DON pool.
Glutamate was the dominating protein amino acid in the THAA$_{pw}$ pool followed by glycine and aspartate (Fig. 3). Unidentified amines (named 'Others' on Fig. 3) comprised up to 19.4% of the THAA$_{pw}$ pool.

Urea and DFAA were of minor importance for the total pools of DOC and DON, as the integrated (0–48.0 mm) urea and DFAA pools only accounted for 0.1 and 3.9% of the DOC pool, respectively, and 1.8 and 10.1% of the DON pool, respectively (Table 2). Glutamate was the dominating protein amino acid in the DFAA pool, except in the upper 1.5 mm of the sediment, followed by glycine and alanine (Fig. 3). The non-protein amino acid taurine and unidentified others accounted for 2.8–19.3% and up to 36.2% (1.5–4.5 mm zone, data not shown), respectively, of the DFAA pool in the sediment.
There was a large pool of DOM that was not identified in the present experiment, which accounted for 86.8% of the DOC pool and 61.2% of the DON pool (Σ 0.0-88.5 mm). The C/N ratio of this unidentified pool was on an area basis 16.6 mol mol⁻¹ and decreased from 37.7 mol mol⁻¹ in the upper 1.5 mm of the sediment to 12.0-19.9 mol mol⁻¹ in the sediment below 7.5 mm (Fig. 4c).

The concentration of NH₄⁺ increased from 7.2 nmol cm⁻³ in the surface to 93.3 nmol cm⁻³ in the 16.5-27.0 mm zone (Fig. 4b). Below this zone there was a decrease in the concentration of NH₄⁺.

Urea and DFAA turnover and sediment carbon oxidation

The turnover rate of urea was highest within the upper ~20 mm of the sediment and decreased from 129.6 nmol N cm⁻³ d⁻¹ in the surface to 26.0 nmol N cm⁻³ d⁻¹ in the 58.5-88.5 mm depth zone (Fig. 5). The total integrated (Σ 0.0-88.5 mm) urea turnover rate was 3.1 mmol N m⁻² d⁻¹ (Table 2). The turnover rate of total DFAA increased from 14.3 nmol N cm⁻³ d⁻¹ in the upper 1.5 mm of the sediment to a maximum of 131.8 nmol N cm⁻³ d⁻¹ in the 27.0-37.5 mm zone (Fig. 5). The total integrated (Σ 0.0-88.5 mm) rate of DFAA turnover was 8.5 mmol N m⁻² d⁻¹ (Table 2).

Alkaline and glutamate turnover activities showed subsurface maxima and alanine turnover increased from 1.4 nmol cm⁻³ d⁻¹ in the upper 1.5 mm of the sediment to a maximum of 131.8 nmol N cm⁻³ d⁻¹ in the 27.0-37.5 mm zone. Glutamate turnover increased from 0.1 nmol cm⁻³ d⁻¹ in the upper 1.5 mm to 10.1 nmol cm⁻³ d⁻¹ in the 12.0-16.5 mm zone.

Sediment carbon oxidation was measured as the ΣCO₂ efflux from the sediment to the water column and amounted to 128.0 ± 26.8 mmol m⁻² d⁻¹ (Table 2).

DISCUSSION

Source of sediment organic matter and bioturbation

Most organic matter input to the sediment was from pelagic and benthic primary producers. Microscopical examination of the sediment surface showed that both benthic and pelagic primary producers were present. Further, the presence of chl a within the upper 16.5 mm indicated a recent input of algal organic matter to the sediment. The unidentified pigment peak that appeared after 10.28 min in the chromatogram was possibly phaeophorbide a. Hurley (1988) obtained phaeophorbide a and chl a after similar retention times as the unidentified peak and chl a, respectively, in the present investigation. The average C/N ratio (7.8 mol mol⁻¹) of the surface POM pool was only slightly elevated compared to the expected C/N ratio of fresh microalgal material (6.6 mol mol⁻¹). Thus, the low C/N ratio in the sediment surface POM indicated that fresh microalgal material accounted for a large fraction of surface sediment POM.

The presence of chl a down to 16.5 mm depth implied that algal material was mixed into the sediment. It is likely that benthic macrofauna was respon-

| Table 2. Integrated particulate and dissolved organic carbon and nitrogen pools and turnover rates. Total pools or rates are given in bold |
|---|---|---|
| **POC (mol m⁻², Σ 0-88.5 mm)** | **28.5** | **% of total pool or rate** |
| THAA₀⁺ | 9.3 | 24.2 |
| Unknown POC | 19.2 | 75.8 |
| **DOC (mmol m⁻², Σ 0-48.0 mm)** | **107.9** | |
| THAA₀⁺ | 10.0 | 9.2 |
| DFAA | 4.2 | 3.9 |
| Urea | 0.1 | 0.1 |
| Unknown | 93.6 | 86.8 |
| **PON (mol m⁻², Σ 0-88.5 mm)** | **4.1** | |
| THAA₀⁺ | 2.1 | 52.5 |
| Unknown | 1.9 | 47.5 |
| **DON (mmol m⁻², Σ 0-48.0 mm)** | **9.2** | |
| THAA₀⁺ | 2.5 | 26.8 |
| DFAA | 0.9 | 10.1 |
| Urea | 0.2 | 1.8 |
| Unknown DON | 5.7 | 61.2 |
| **Σ 0-88.5 mm rates (mmol m⁻² d⁻¹)** | | |
| C oxidation | **128.2** | |
| DFAA-C oxidation | 39.4 | 30.8 |
| Estimated RNA oxidation | 18.6⁺ | 14.5 |
| Unknown C-oxidation | 76.2 | 54.7 |
| N mineralization | **14.7⁺** | |
| DFAA-N turnover | 8.5 | 57.8 |
| Urea-N turnover | 3.1 | 21.1 |
| Deamination | 3.1⁺ | 21.1 |

Carbon mineralization from RNA was calculated based on the assumption in footnote b and an average molar carbon to nitrogen content in RNA of 3.

Since RNA and protein are the major nitrogen-containing organic molecules in cells, it was assumed that the summed turnover of DFAA and urea plus the assumed deamination of RNA accounted for all nitrogen turnover. The summed N mineralization thus represented gross NH₄⁺ mineralization (d) according to Blackburn (1980).

The original substrate for urea turnover was assumed to be RNA and U⁺ as suggested by Therkildsen et al. (1996). Therkildsen et al. (1996) showed that deamination of purines and pyrimidines took place in parallel to urea production. The ratio between deamination and urea production from RNA was chosen to be 1, due to the lack of information on the actual ratio. See text for further discussion.
Lomstein et al.: Sediment nitrogen and carbon cycling in shallow water

Dissolved organic carbon, nmol cm\(^{-3}\)

- Urea
- DFAA-C
- THAA-C
- DOC

Dissolved nitrogen, nmol-N cm\(^{-3}\)

- \(\text{NH}_4^+\)
- Urea
- DFAA
- THAA
- DON

\(\text{C/N ratio in dissolved organic matter, mol mol}\(^{-1}\)\)

- DFAA C/N
- Urea C/N
- THAA C/N
- DOC/DON
- Unknown C/N

Fig. 4. Vertical distribution of (a) DOC, (b) DON and (c) the molar C/N ratio of dissolved organic matter

excreted to the surrounding sediment. The presence of taurine throughout the sediment indicated that it was supplied all through the sediment, as sulfate reducing bacteria can use taurine as a substrate (Hansen et al. 1993) and thus limit the distance of taurine diffusion. Arenicola marina was observed at the sampling locality during a SCUBA diving inspection of the sediment surface. As A. marina is able to mix the upper 20 to 30 cm of a sediment (Cadée 1976), it may have been responsible for the observed sediment mixing. In accordance with the present study, Pedersen et al. (1995) were not able to identify the peak in nuclear weapon testing in 1963 nor the 1987 Chernobyl accident in a sediment disturbed by drifting sea-ice. The most likely explanation for the lack of typical profiles of Pb-210 and Cs-137 activity in the present study was bioturbation activity. Alternatively, mixing could have been due to currents or waves, but we find this latter explanation less likely, as the sediment was composed of silty sand. However, Christiansen et al. (1981) found that even though the area with silty sand sediment in which we sampled could be considered as an area of general deposition, there was no doubt that storm events could bring bottom sediment into suspension.

Composition of sediment POM

THAA\(_2\)-C accounted for 20 to 33% of POC (24% of \(\Sigma_{0.0-88.5\ \text{mm}}\) POC) and THAA\(_2\)-N made up 42 to 63% of PON (53% of \(\Sigma_{0.0-88.5\ \text{mm}}\) PON). For comparison, Henrichs & Farrington (1987) found that THAA made up 24 to 38% of sediment PON in surface sediments of Buzzards Bay, USA, which were extensively bioturbated. Similarly to the present study, Henrichs & Farrington (1987) did not find any detectable changes in THAA composition, as a result of decomposition, with depth. The homogenous molar composition of THAA\(_2\)
with depth was possibly due to macrofauna mixing organic matter into the sediment with a resultant relatively uniform age of the organic matter that was turned over. Contrary to the present study, Burdige & Martens (1990) observed a decrease in the mole percentages of glutamate and alanine with depth, while that of glycine increased. The sediment in the Burdige & Martens (1990) study was not bioturbated and they explained the changes in the molar composition of THAA as a selective utilization of glutamate and alanine and a selective preservation of glycine.

Composition of sediment DOM

The most important DOM constituent was THAA_{pw}, which accounted for 9.2% of DOC and 26.8% of DON on an area basis (20–48.0 mm). Inspection of the molar amino acid composition in THAA_{pw} and DFAA revealed interesting differences in the amino acid composition. There was an increase in the mole percentage of non-protein amino acids (β-alanine + taurine + unidentified others; see Fig. 3) from THAA_s through THAA_{pw} to DFAA. Similarly, Burdige & Martens (1990) found higher mole percentages of many non-protein amino acids in DFAA relative to that observed in sediment THAA. As the sediment in the Burdige & Martens (1990) study was not bioturbated, they suggested that the non-protein amino acids were produced as transient intermediates in the mineralization of certain protein amino acids and other biologically produced nitrogen compounds. Similarly, we suggest that the unidentified ‘Others’ may have been transient intermediates as suggested above.

The present investigation identified 13.2% of the DOC pool and 36.8% of the DON pool as THAA_{pw} + DFAA + urea (Σ0–48.0 mm) of which DFAA and urea only accounted for a minor fraction. The average C/N ratio of the unidentified DOM pool, which varied between 12.0 and 37.7 mol mol^{−1}, was far too high to represent a single dissolved-nitrogen-containing organic molecule. Not surprisingly, this implies that the unidentified DOM pool was a composite pool that contained dissolved organic molecules without nitrogen together with nitrogen-containing organic molecules. Among pure-carbon-containing DOM molecules that may have been important in the present study were saccharides, fatty acids and alcohols. Fatty acids and alcohols are intermediates in anaerobic mineralization and they are transferred between the different physiological types of organisms of the anaerobic detritus food chains (Jørgensen 1983). Similarly, the nitrogen-containing dissolved organic molecules, which were not identified, were likely to have been products of hydrolysis and intermediates in anaerobic organic matter degradation. RNA may have been of particular importance, as this organic molecule is the second most important nitrogen-containing organic molecule in living cells. A microalgal input to the sediment of 2.9 g C m^{−2}, equivalent to ~1% of annual primary production and typical for shallow Danish waters, would roughly supply the sediment with 5 mmol RNA-N m^{−2}. This calculation is based on the RNA content in

Turnover of urea and DFAA

The depth distribution of urea, glutamate, alanine and total DFAA turnover activity showed that maximum urea turnover activity was spatially separated from maximum DFAA turnover activity. This indicates that the turnover of urea and DFAA were independent processes, which both gave rise to NH₄⁺ production. Therkiildsen et al. (1996) showed that urea production and turnover were stimulated after the addition of AMP (adenosine 5′-monophosphate), CMP (cytidine 5′-monophosphate) and RNA (16S ribosomal RNA) to an anoxic marine sediment, whereas the addition of protein only stimulated NH₄⁺ production. In addition, Therkiildsen et al. (1996) suggested that intracellular nucleic acids, especially RNA, may also contribute to urea production together with the turnover of extracellular nucleic acids taken up by the bacterial cells. Based on the above information and the estimated potential input of RNA to the sediment from microalgal cells, it is probable that urea production in the present investigation was mainly due to RNA degradation. In parallel to urea production from RNA, there is also deamination that leads directly to NH₄⁺ production (Therkiildsen et al. 1996). Further, it has been shown that the initial step in the degradation of both adenine and cytosine is deamination (Vogels & Van der Drift 1976, Busse et al. 1984, Gottschalk 1986, Kaspari & Busse 1986). However, it is not possible to predict the ratio between urea production and direct NH₄⁺ production from RNA degradation, as this ratio is dependent on the functional degradation pathway. Previous investigations have shown that up to 80% of added AMP-N can be degraded through urea (Busse et al. 1984, Kaspari & Busse 1986) and Therkiildsen et al. (1996) showed that urea turnover accounted for a significant
fraction of net NH$_4^+$ production in a RNA amended anoxic sediment.

Urea turnover may have been slightly underestimated within the upper 1.5 mm sediment surface due to the anoxic incubation conditions, as A.-G. U. Jensen, L. S. Hansen & B. Aa. Lomstein (unpubl.) showed stimulated urea turnover in the presence of oxygen. We did not measure oxygen penetration into the sediment, but it is likely that oxygen was present within the upper 1.5 mm of the sediment. Further, the turnover of alanine and glutamate may have been overestimated in the upper surface zone of the sediment, due to the anoxic incubation, as oxic conditions have been shown to reduce alanine and glutamate turnover (Jensen et al. unpubl.). The anoxic incubation condition did not, however, affect the area integrated urea, alanine and glutamate turnover rates, as oxygen penetration into the sediment was small compared to the total integration depth (88.5 mm) of urea, alanine and glutamate turnover activities.

Nitrogen and carbon cycling in the shallow water Knebel Vig sediment: conceptual models

Further discussion will be related to Fig. 6 and Table 2, in which the area integrated measured and calculated rates can be seen in relation to each other. Integrated (0.0–88.5 mm) gross NH$_4^+$ production from the degradation of organic matter was calculated as total DFAA turnover + urea turnover + an assumed direct NH$_4^+$ production from deamination of RNA (Table 2). The ratio between direct NH$_4^+$ production and urea-N production from RNA was chosen to be 1,
due to the lack of real information on the functional degradation pathway of RNA within the sediment. In addition, it was assumed that RNA was the only major source for urea production (see the discussion above). This assumption allowed estimation of carbon oxidation from other sources than RNA and DFAA. Carbon oxidation from unidentified DOC was 70 mmol C m\(^{-2}\) d\(^{-1}\) and accounted for 55% of total carbon oxidation. We used the \(\Sigma CO_2\) efflux from the sediment to draw conclusions regarding benthic C oxidation. It is believed that this method approximated benthic C oxidation, as assimilation of CO\(_2\) by chemoeutrophic bacteria could not have altered the \(\Sigma CO_2\) efflux significantly. Previous studies in the same area have shown that denitrification of NO\(_3^-\) from nitrification within the sediment was low (<0.02 mmol N m\(^{-2}\) d\(^{-1}\); Sloth et al. 1996), which indicated that nitrification was also low.

The calculated diffusive efflux of DON from the sediment was high (3.9 mmol N m\(^{-2}\) d\(^{-1}\)) compared to the calculated efflux of NH\(_4^+\) (1.0 mmol N m\(^{-2}\) d\(^{-1}\)). Blackburn et al. (1996) found similar high rates of DON efflux from the sediment and low rates of NH\(_4^+\) efflux in a study from Svalbard, Norway. They suggested that hydrolysis of organic detritus at the sediment surface would lead to a large diffusional loss of DON to the overlying water. This explanation may also be valid for the present study, except that we do not know to what extent DON effluxed to the overlying water or was assimilated by benthic microalgae.

The calculated efflux of NH\(_4^+\) was low (1.0 mmol N m\(^{-2}\) d\(^{-1}\)) compared to NH\(_4^+\) mineralization (14.7 mmol N m\(^{-2}\) d\(^{-1}\)). Values for nitrification and denitrification of 1.0 and 0.5 mmol N m\(^{-2}\) d\(^{-1}\), respectively, were chosen, and these values represent maximum values of nitrification and denitrification in shallow Danish sediments with low concentrations of NO\(_3^-\) in the overlying water (Nielsen pers. comm.). The low DIN efflux from the sediment resulted in a very high C/N ratio in the efflux products (\(\Sigma CO_2\) efflux/DIN efflux > 64). This high ratio implied that the organic matter degraded, on the average, was low in nitrogen. Similar results were obtained by Blackburn et al. (1996). Data from many other studies also suggest high C/N ratios of mineralization (see Blackburn et al. 1996).

The high rate of gross NH\(_4^+\) mineralization and low rates of DIN efflux demand an explanation on what happened to the remaining 12.7 mmol N m\(^{-2}\) d\(^{-1}\). Our proposal is that this NH\(_4^+\) was incorporated into microbial biomass. This suggests that mineralization within the sediment was through a closed cycle of alternate organic nitrogen degradation and resynthesis, driven by carbon oxidation. This explanation is similar to what was suggested by Lomstein et al. (1989) in a study from the northern Bering shelf (USA) sediment. The resultant ratio between the suggested bacterial incorporation (i) and gross NH\(_4^+\) production (d) was 0.86 and thus within the range of previously obtained i/d ratios (0.33 to 1.21) from a study on nitrogen cycling in different types of sediment from Danish waters (Blackburn & Henriksen 1983). Knowledge on the rates of gross NH\(_4^+\) mineralization, NH\(_4^+\) incorporation, C oxidation and the C/N ratio of bacterial cells (mean of 5.0 mol mol\(^{-1}\); Fagerbakke et al. 1996) were used to calculate the average efficiency of carbon assimilation (E) and the average C/N ratio of organic substrate degraded (1/N\(_i\)) according to Blackburn (1980); N\(_i\) was the N/C molar ratio of substrate. Finally, E was used to calculate total carbon degradation (C\(_i\)) and carbon incorporation into bacterial cells (C\(_j\)) by the formulate described in Blackburn (1983). The efficiency of carbon incorporation was 0.33 and within the range of previously obtained data on carbon incorporation efficiencies (0.06 to 0.49) obtained from Danish sediments (Blackburn & Henriksen 1983). The average C/N ratio of organic matter degraded was 13.1, supporting the evidence from the C/N ratio in efflux products that the organic matter degraded on average was low in nitrogen. This information suggests unexpected characteristics of C and N mineralization. Despite the fact that the average C/N ratio of sediment POM was relatively low (7.8 to 11.3 mol mol\(^{-1}\)) and THAA\(_-\)N accounted for 53% of POM, there were high rates of NH\(_4^+\) incorporation into bacterial cell and a high C/N ratio in efflux products. As suggested by Blackburn (1983), the implication of this is that bacteria synthesize cell material as proteins and nucleic acids with a higher nitrogen content than that in the organic matter, which they degrade. This further implied that even though THAA\(_-\)N accounted for a large fraction of the POM pool and the average C/N ratio of THAA\(_-\)N was 4.4, only part of this pool was available for bacterial degradation. Total carbon degradation (C\(_i\)) amounted to 191 mmol C m\(^{-2}\) d\(^{-1}\) and carbon incorporation into bacterial cells (C\(_j\)) was 63 mmol C m\(^{-2}\) d\(^{-1}\). Total POC and PON hydrolysis could probably also be disregarded.

The calculated diffusive efflux of DON from the sediment was high (3.9 mmol N m\(^{-2}\) d\(^{-1}\)) compared to the calculated efflux of NH\(_4^+\) (1.0 mmol N m\(^{-2}\) d\(^{-1}\)). Blackburn et al. (1996) found similar high rates of DON efflux from the sediment and low rates of NH\(_4^+\) efflux in a study from Svalbard, Norway. They suggested that hydrolysis of organic detritus at the sediment surface would lead to a large diffusional loss of DON to the overlying water. This explanation may also be valid for the present study, except that we do not know to what extent DON effluxed to the overlying water or was assimilated by benthic microalgae.

The calculated efflux of NH\(_4^+\) was low (1.0 mmol N m\(^{-2}\) d\(^{-1}\)) compared to NH\(_4^+\) mineralization (14.7 mmol N m\(^{-2}\) d\(^{-1}\)). Values for nitrification and denitrification of 1.0 and 0.5 mmol N m\(^{-2}\) d\(^{-1}\), respectively, were chosen, and these values represent maximum values of nitrification and denitrification in shallow Danish sediments with low concentrations of NO\(_3^-\) in the overlying water (Nielsen pers. comm.). The low DIN efflux from the sediment resulted in a very high C/N ratio in the efflux products (\(\Sigma CO_2\) efflux/DIN efflux > 64). This high ratio implied that the organic matter degraded, on the average, was low in nitrogen. Similar results were obtained by Blackburn et al. (1996). Data from many other studies also suggest high C/N ratios of mineralization (see Blackburn et al. 1996).

The high rate of gross NH\(_4^+\) mineralization and low rates of DIN efflux demand an explanation on what happened to the remaining 12.7 mmol N m\(^{-2}\) d\(^{-1}\). Our proposal is that this NH\(_4^+\) was incorporated into microbial biomass. This suggests that mineralization within the sediment was through a closed cycle of alternate organic nitrogen degradation and resynthesis, driven by carbon oxidation. This explanation is similar to what was suggested by Lomstein et al. (1989) in a study from the northern Bering shelf (USA) sediment. The resultant ratio between the suggested bacterial incorporation (i) and gross NH\(_4^+\) production (d) was 0.86 and thus within the range of previously obtained i/d ratios (0.33 to 1.21) from a study on nitrogen cycling in different types of sediment from Danish waters (Blackburn & Henriksen 1983). Knowledge on the rates of gross NH\(_4^+\) mineralization, NH\(_4^+\) incorporation, C oxidation and the C/N ratio of bacterial cells (mean of 5.0 mol mol\(^{-1}\); Fagerbakke et al. 1996) were used to calculate the average efficiency of carbon assimilation (E) and the average C/N ratio of organic substrate degraded (1/N\(_i\)) according to Blackburn (1980); N\(_i\) was the N/C molar ratio of substrate. Finally, E was used to calculate total carbon degradation (C\(_i\)) and carbon incorporation into bacterial cells (C\(_j\)) by the formulate described in Blackburn (1983). The efficiency of carbon incorporation was 0.33 and within the range of previously obtained data on carbon incorporation efficiencies (0.06 to 0.49) obtained from Danish sediments (Blackburn & Henriksen 1983). The average C/N ratio of organic matter degraded was 13.1, supporting the evidence from the C/N ratio in efflux products that the organic matter degraded on average was low in nitrogen. This information suggests unexpected characteristics of C and N mineralization. Despite the fact that the average C/N ratio of sediment POM was relatively low (7.8 to 11.3 mol mol\(^{-1}\)) and THAA\(_-\)N accounted for 53% of PON, there were high rates of NH\(_4^+\) incorporation into bacterial cell and a high C/N ratio in efflux products. As suggested by Blackburn (1983), the implication of this is that bacteria synthesize cell material as proteins and nucleic acids with a higher nitrogen content than that in the organic matter, which they degrade. This further implied that even though THAA\(_-\)N accounted for a large fraction of the POM pool and the average C/N ratio of THAA\(_-\)N was 4.4, only part of this pool was available for bacterial degradation. Total carbon degradation (C\(_i\)) amounted to 191 mmol C m\(^{-2}\) d\(^{-1}\) and carbon incorporation into bacterial cells (C\(_j\)) was 63 mmol C m\(^{-2}\) d\(^{-1}\). Total POC and PON hydrolysis could probably also be disregarded.
Table 3. Summary of gross NH$_4^+$ mineralization (d), NH$_4^+$ incorporation (i), carbon assimilation efficiency (E), carbon degradation (C_d), carbon incorporation (C_i) and the C/N ratio in the degraded substrate in 3 different examples based on different assumptions on the required integration depth of N mineralization and the importance of urea turnover for NH$_4^+$ production from RNA (see text for further information)

<table>
<thead>
<tr>
<th>Example</th>
<th>d (mmol N m$^{-2}$ d$^{-1}$)</th>
<th>i (mmol N m$^{-2}$ d$^{-1}$)</th>
<th>E</th>
<th>C_i (mmol C m$^{-2}$ d$^{-1}$)</th>
<th>C_d (mmol C m$^{-2}$ d$^{-1}$)</th>
<th>C/N substratea (mol mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1a</td>
<td>14.7</td>
<td>12.7</td>
<td>0.33</td>
<td>191.3</td>
<td>63.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Example 2b</td>
<td>17.4</td>
<td>15.4</td>
<td>0.28</td>
<td>206.8</td>
<td>78.6</td>
<td>11.6</td>
</tr>
<tr>
<td>Example 3c</td>
<td>12.4</td>
<td>10.4</td>
<td>0.29</td>
<td>180.6</td>
<td>51.8</td>
<td>14.5</td>
</tr>
</tbody>
</table>

aData obtained and presented in Table 2 and Fig. 7, where it was assumed that all NH$_4^+$ mineralization took place within the upper 88.5 mm of the sediment and where urea turnover was responsible for 50% of NH$_4^+$ mineralization from RNA degradation.

bEstimates obtained where it was assumed that all NH$_4^+$ mineralization took place within the upper 120 mm of the sediment and where urea turnover was responsible for 50% of NH$_4^+$ mineralization from RNA degradation (see ‘Discussion’ for description of integration of rates to 120 mm).

cEstimates obtained where it was assumed that all NH$_4^+$ mineralization took place within the upper 88.5 mm of the sediment and where urea turnover was responsible for 80% of NH$_4^+$ mineralization from RNA degradation.

dCalculated according to Blackburn (1983) from the formula $C_o = i(1- E)/E N_d$, where C_o was the measured rate of carbon oxidation, i was NH$_4^+$ incorporation and N_d was the N/C ratio in bacterial cells that was obtained from Fagerbakke et al. (1996).

eCalculated according to Blackburn (1983), after substitution of $E = C_i/C_o$ into $C_o = C_o + C_i$, where E was the efficiency of carbon assimilation, C_i was carbon incorporation into bacterial cells and C_o was the measured rate of carbon oxidation.

fCalculated according to Blackburn (1980) as $C_o = C_o - C_d$.

gCalculated according to Blackburn (1980) from the formula $N_i = E N_d d/i$, where N_i was the N/C ratio in substrate degraded and E, N_d, d and i were as described above.

The overall conclusions in the present case study on carbon and nitrogen cycling in a shallow marine sediment: sediment mineralization was through a closed cycle of alternate organic nitrogen degradation and resynthesis, driven by carbon oxidation. The explanation for this closed cycle was that the organic matter degraded was low in nitrogen.

Acknowledgements. We thank Dorte Olsson, Rikke Holm, Preben C. Serensen, Dorthe Thybo Ganzhorn and Susanne Pedersen for excellent technical assistance during the experiments. Thanks to Prof. T.M. Fenchel and Dr J. J. Middelburg for constructive comments. Financial support was obtained from the Centre for Strategic Environmental Research in Marine Areas, Grant no. 4.15.

LITERATURE CITED

N loss by efflux and burial associated with a low efflux of inorganic-N and with nitrate assimilation in Arctic sediments (Svalbard). Mar Ecol Prog Ser 141:283–293

Lomstein BAA, Blackburn TH (1992) Sediment nitrogen cycling in Aarhus Bay, Denmark. The Danish National Environmental Protection Agency, LUNA-Tryk Aps, Copenhagen

Submitted: April 23, 1997; Accepted: August 3, 1997

Proofs received from author(s): September 2, 1997