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exudates 
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ABSTRACT: The enhancement of pico- and nanoplankton 
cell biomass by coral exudates was studied in the laboratory. 
Two types of mesocosms were used, the first one containing 
only a carbonate sand layer (control mesocosm) and the sec- 
ond one contaming a coral layer over the carbonate sand 
layer (coral mesocosm). During 10 h incubations, we followed 
the concentration of bacteria, cyanobacteria, and of auto- and 
heterotrophic flagellates, as well as the concentrations of inor- 
ganic (N and P) and organic (dissolved organic carbon, DOC) 
nutrients. There were no significant differences in inorganic 
nutrient concentrations between mesocosms. However, DOC 
concentrations in coral mesocosms exhibited peaks 5- to 13- 
fold hgher  than control mesocosm levels; these peaks took 
 lace between 13:OO and 17:OO h and lasted for ca 2 h. As a 
consequence, microbial growth was significantly enhanced in 
coral mesocosms. At the end of the incubations, bacterial bio- 
mass was 6-fold higher in coral relative to control mesocosms. 
Autotrophic biomass was 3 to 5 times higher in coral meso- 
cosms. These results indicate that small amounts of coral 
exudates (0.5 to 10% of maximum DOC concentrations) are 
enough to greatly stimulate mcrobial growth. 
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Coral reefs are areas of high productivity (Lewis 
1977) due to a rapid turnover of organic and inorganic 
nutrients (Crossland & Barnes 1983). Heterotrophlc 
bacteria have been recognized as one of the most im- 
portant agents of carbon and nitrogen c y c h g  in coral 
reefs (Ducklow 1990, Sorokin 1994, Charpy-Roubaud 
et al. 1996), and bacterial productivity in reef waters is 
extremely high compared to the open ocean (Moriarty 
et al. 1985, Linley & Koop 1986, Ducklow 1990). Small 
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autotrophs (c20 pm), often representing a large frac- 
tion of the total phytoplanktonic biomass, also show 
high production rates in reef waters (Furnas et al. 1990, 
Charpy et al. 1992, Ferrier-Pages & Gattuso 1998). 

It has therefore been suggested that large amounts 
of dissolved and particulate organic matter (DOM/ 
POM) are needed to sustain these high production 
rates (Moriarty 1979). A number of potential sources - 
such as phytoplanktonic exudates, benthic fluxes, and 
particle degradation - are at the origin of this organic 
matter (D'Elia & Wiebe 1990). Corals have been sug- 
gested to be an  important source of POM and DOM in 
reef waters (Crossland 1987). Indeed, marked changes 
in bacterial and POM concentrations have been ob- 
served over reef flats (Moriarty 1979), and the highest 
pico- and nanoplankton production rates have often 
been measured above corals (Ducklow 1990, Sorolun 
1993, 1994). Studies performed at Lizard Island have 
measured 10-fold increases in bacterial production 
rates in waters flowing off the back reef compared to 
those of the reef front (Moriarty et al. 1985). 

The contribution of coral mucus (POM) to bacterial 
production has been assessed in a number of studies 
(Ducklow & Mitchell 1979, Herndl & Velimirov 1986, 
Paul et al. 1986, Schlller & Herndl 1989, Coffroth 1990). 
However, coral mucus can only be used by microbes if 
it is retained in the reef long enough for decomposition 
to occur (Capone et al. 1992). Moreover, an  important 
fraction of this mucus may be refractory and thus not 
consumed during its short transit time across the reef 
(Hatcher & Sanmarco 1983). Only a few studies have 
reported DOM fluxes from corals (Means & Sigleo 
1986, Crossland 1987, Ferrier-Pages et al. 1998). Labile 
DOM like amino acids and sugars are assimilated ra- 
pidly by free-living bacteria (Williams 1981) as well as 
by autotrophlc plankton (Palenik & More1 1990). How- 
ever, whether DOM fluxes from corals into the overly- 
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ing water could sustain large microbial production rates Mediterranean seawater at the time of the experiment 
remains to be experimentally tested (Ducklow 1990). (25 to 26OC, July to September). The water in the meso- 

The purpose of this work was to study the capacity of cosms was continuously aerated (air pump Alize, Rena) 
dissolved coral exudates to enhance microbial produc- and stirred (powerhead Maxijet 1000 and C20 Rena, 
tion. Our main objectives were: (1) to determine the experiments A and B respectively). The continuous 
extent of coupling between coral exudation and pico- seawater renewal (5% h-') was stopped during the ex- 
and nanoplanktonic growth, and (2) to compare biomass periments. Light was provided by a 400 W metal halide 
production of both auto- and heterotrophic microbes. lamp (300 p 0 1  photons m-' S-', Philips HPI-T) with a 
For this purpose, 2 mesocosms were set up, one con- 12:12 h photoperiod. The reef comrnynity was com- 
taining only a carbonate sand layer and the other one posed of different scleractinian coral colonies collected 
containing a coral layer over the carbonate sand layer, in the Red Sea and introduced in the mesocosms 3 yr 
Auto- and heterotrophic populations of pico- and nano- before the present study. The species composition was: 
plankton were incubated in dialysis bags, directly over Expt A, Stylophora sp., Acropora sp., Favia sp. Galaxea 
the sediment or the corals, and biomass production sp., and Euphyllia ancora; Expt B, Pectinia paeonia, 
rates after 10 h incubations were compared. Montipora sp., Favia sp. and Euph yllia ancora. 

Materiai and methods. Two diiiereni sets of experi- Exppi A: .A micropianitionic community was obiained 
ments were performed. In the first set of experiments from the Mediterranean Sea in the morning at 2 m 
(Expt A), a mesocosm was set up successively with and depth and brought back to the laboratory. This com- 
without a coral cover over the sediment (coral and con- munity was immediately size-fractionated by gravity 
trol mesocosm, respectively). In the second set of ex- and reverse flow filtration, to avoid cell breakage (Fur- 
periments (Expt B), 2 mesocosms (coral and control nas & Mitchell 1986), through nylon screens and Nucle- 
mesocosms) were used simultaneously. These 2 ap- poreTM filters. Three size-classes were obtained in 
proaches were used to eliminate any mesocosm effect. order to remove different predators: <2  pm (bacteria, 

Experimental setup: The mesocosms were assembled cyanobacteria and picoflagellates), <5 pm (previous 
in aquaria (60 X 60 X 60 and 40 X 30 X 30 cm, Expts A cells and nanoflagellates) and c10 pm (previous cells 
and B respectively) following Leclercq et al. (1999) and small ciliates). Aliquots of each fraction were then 
(Fig. 1). A 5 cm carbonate sand layer separated the carefully transferred into 3 perspex chambers (100 rnl) 
main seawater reservoir from a small volume of con- and closed at each end by a dialysis membrane (Furnas 
fined seawater. The aquaria were filled with Mediter- et al. 1990, Ferrier-Pages and Gattuso 1998) of 14 000 
ranean seawater passed through a sand filter and to 20000 Da cut off (Spectra/Por). These membranes 
heated to 26°C (controller EliWell PC 902T and Bio- allowed the exchange of DOM but prevented grazing 
therm 2000 Rena, Expts A and B respectively). T h s  of microbes by the corals. Diffusive exchange of a mix- 
temperature was comparable to the temperature of ture of 14C-labelled amino acids between chamber and 

mesocosm water took <30 rnin to 1 h (unpubl. 
results). The chambers were incubated for 10 h 

0 in the coral mesocosm. The corals were then 
removed from the mesocosm, the water com- 

Light pletely renewed and other chambers incubated 
overflow the following day for 10 h in the control meso- 

Sand-filtered cosm. Samples were taken at the beginning and 
seawater the end of the incubations to measure pico- and 

nanoplanktonic, inorganic nutrient, and dis- 
solved organic carbon (DOC) concentrations. 
These experiments were repeated twice at a 
1 wk interval and will be referred as Expts A1 
and A2. 

Expt B: Seawater was collected at 2 m depth 
and filtered under reverse flow onto 0.8 pm Mih- 
poreR"' filters in order to recover the bacterial 
fraction. Bacteria were transferred into 3 repli- 

Carbonate sand layer cate perspex chambers (50 ml) closed by 2 dial- 

Confined seawater 
ysis membranes of 20 000 Da cut off. The cham- 
bers were then incubated simultaneously in the 

Fig. 1: Deslgn of the experimental setup. Drawing of a mesocosm coral and control mesocosms for 10 h. Samples 
containing a coral cover were taken at the beginning and the end of the 
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incubations to measure bacterial, inorganic nutrient, 
and DOC concentrations. This experiment was re- 
peated 3 times at 1 d intervals and will be referred to as 
Expts B1, B2 and B3. 

Analysis and calculations: Inorganic nutrients and 
DOC: Inorganic nitrogen (nitrate, nitrite and ammo- 
nium) and phosphate were measured on an Alliance I1 
autoanalyser (Stnckland & Parsons 1972), and DOC by 
high temperature catalytic oxidation (HTCO) (DOC 
was not measured in Expt A2). Samples for DOC 
analysis were filtered through acid-washed (10 % HCl) 
0.2 pm polyethersulphone membrane filters (Gelrnan). 
Once placed onto the filtering unit (500°C ignited 
glasswater), the filters were washed again with 20 m1 
Milli-Q water prior to sample collection into 20 m1 ig- 
nited Pyrex tubes. Samples were then acidified to 
pH 5 2 with 2 N HC1 and stored at 5°C pending analy- 
sis. Samples were sparged with an artificial gas mix- 
ture (containing 10.1 CO, CO2 or hydrocarbons) in 
order to eliminate inorganic carbon and measured on a 
Shirnadzu TOC 5000. DOC concentrations were calcu- 
lated with a standard calibration curve made with 
potassium biphthalate. The coefficient of variation of 
duplicate injections was always < 2 %. 

Pico- and nanoplanktonic concentrations: Cells in 
each perspex chamber were enumerated in triplicate. 
Ten m1 samples were fixed with borax-buffered form- 
aldehyde (2 % v/v final concentration) and stained with 
DAPI (4'6 diamidino-2-phenylindole, Porter & Feig 
1980). Following that, they were filtered onto 0.22 pm 
black Nucleporem filters and stored at -20°C prior to 
enumeration. Cells were counted under a magnifica- 
tion of xlOOO with a Leica epifluorescence microscope 
equipped with an HBO-100 epifluorescence illurnina- 
tor and the excitation,barrier filter sets for UV, blue 
and green light. Bacteria and heterotrophic flagellates 
appear blue under W excitation (Caron 1983). Auto- 
trophic flagellates were distinguished by the auto- 
fluorescence of the chlorophyll a (visualized as red) 
and chroococcoid cyanobacteria of the phycoerythrin 
(visualized as yellow, Waterbury et al. 1986). Cell 
abundances were converted into carbon biomass (B, 
pg C 1-') according to the following equation: 

where N is the cell abundance (cell ml-l), V the geo- 
metrical cell volume (pm3), and C the conversion factor 
(125 fg C pmw3 for heterotrophic bacteria [Pelegn et al. 
19991, 183 fg C pm-3 for pico- and nanoflagellates, and 
200 fg C pmw3 for cyanobacteria [Caron et al. 19951). 
Cell volumes were 0.06, 1.77 and 65 pm3 for heterotro- 
phic bacteria, pico- and nanoflagellates respectively. 

Statistical analysis of the differences between coral 
and control mesocosms was performed on StatView by 
using l-factor ANOVAs. When a significant effect was 

Table 1. Nutrient concentrations (PM) and increases in bio- 
mass (pg C 1-l) in control and coral mesocosms during the var- 
ious incubations (mean * standard error of the mean). Expt A: 
the means of <2, < S  and c10 pm size fractions are given for 
bacteria, cyanobacteria and autotrophic pico- and nanoflagel- 
lates (APF, ANF); ANOVAs were performed to test the differ- 
ences between mesocosms. p < 0.5 is significant. Nutrient 
concentrations in Expt B are in the same range as for Expt A 

Group Control Coral ANOVA 
mesocosm mesocosm probability 

Expt A1 
Nutrients (pM) 
Nitrite 0.02 i 0.01 0.02 * 0.01 p = 0.20 
Nitrate 0.20 i 0.01 0.25 t 0.01 p = 0.74 
Ammonium 0.01 i 0.01 0.02 + 0.01 p = 0.10 
Phosphate 0.03 i 0.01 0.03 * 0.01 p = 0.76 

Groups (pg C 1-') 
Bacteria 0.50 i 0.07 3.27 * 0.33 p < 0.001 
Cyanobacteria 0.25 i 0.07 0.78 * 0.05 p < 0.001 
APF 0.05 i 0.01 0.17 * 0.01 p < 0.001 
ANF 2.04 i 1.06 5.90 1.44 p = 0.040 

Expt A2 
Nutrients (pM) 
Nitrite 0.03 i 0.01 0.02 * 0.01 p = 0.20 
Nitrate 0.24 r 0.02 0.21 * 0.04 p = 0.74 
Ammonium 0.02 i 0.01 0.03 r 0.01 p = 0.10 
Phosphate 0.03 i 0.01 0.04 + 0.01 p = 0.76 

Groups (pg C 1-') 
Bacteria 2.44 zt 0.46 14.39 * 1.15 p < 0.001 
Cyanobacteria 0.24 i 0.05 2.50 * 0.25 p = 0.004 
APF 0.01 r 0.01 0.05 * 0.01 p = 0.010 
ANF 0.50 i 0.13 2.40 * 0.39 p = 0.19 

Expt B1 
Bacteria (pg C I-') 2.90 * 1.1 14.30 * 0.55 p < 0.001 

Expt B2 
Bacteria (pg C I-') 4.20 * 0.40 9.15 * 0.60 p = 0.002 

Expt B3 
Bacteria (pg C I-') 3.10 * 0.90 14.80 * 0.40 p < 0.0001 

found, the means were compared with a Bonferroni/ 
Dunn post-hoc test. 

Results. Inorganic nutrients and DOC: No signifi- 
cant differences were observed between initial and 
final nutrient concentrations (ANOVA, p > 0.1) or be- 
tween coral and control mesocosms (Table 1; ANOVA, 
p 2 0.1). DOC concentrations remained low in control 
mesocosms (120 to 163 pM, Table 2)' with some occa- 
sional small peaks (237 to 385 PM). In coral meso- 
cosms, important DOC peaks (ca 1300 to 1900 pM 
increase) were observed between 13:00 and 17:OO h 
and lasted ca 2 h. DOC concentrations during these 
peaks were significantly higher in coral than in control 
mesocosms (Table 2; unpaired t-test, p 5 0.008) 

Pico- and nanoplanktonic concentrations: Initial 
concentrations of pico- and nanoplanktonic cells were 
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Table 2. Dissolved orgamc carbon (DOC) concentrations (PM, 
mean * standard error of the mean) measured during the 
mesocosm experiments. Unpaired t-tests were performed to 
test the Mferences in DOC between mesocosms, p < 0.05 is 

sigmficant 

Time (h) Control Coral P 
mesocosm mesocosm 

First mesocosm experiment 

Expt A1 
10:OO 131 * 10 157 i 17 0.27 
11:OO 128 * 20 132 i 12 0.67 
12:OO 149 * 11 125 i 11 0.19 
14:OO 139 i 44 117 * 12 0.49 
15:30 123 i 13 130 * 17 0.72 
17:OO 149 i 16 2092*41 0.001 
10:OO [next day! 133 * 12 160 i 10 0.12 

Second mesocosm experiment 

Expt B1 
1 1:00 145 * 19 
13:OO 133 * 21 
14:OO 232 * 17 
15:30 146 * 22 
17:OO 137 i 17 
18:OO 133 i 12 

Expt B2 
11:OO 130 i 27 
13:OO 132 * 15 
14:OO 141 * 24 
15:30 147 * 24 
17:OO 237 * 19 
18:OO 163 * 12 

Expt B3 
11:OO 208 r 12 
13:OO 158 i 36 
14:OO 149 i 33 
1530  385 * 37 
17:OO 140 i 25 
18:OO 133 r 12 

comparable in both Expts A and B: 6 rt 1 X 108 cells 1-' 
for bacteria, 1.5 & 0.5 X 10' cells 1-' for cyanobacteria, 
10 * 2 X 105 cells 1-' for autotrophic picoflagellates, and 
7 rt 1 X 10' cells 1-' for autotrophic nanoflagellates. The 
concentration of heterotrophlc flagellates (5.5 r 0.2 X 105 
and 4.5 + 0.1 X 10' cells 1-', in Expts A1 and A2 respec- 
tively) did not change during the incubations (ANOVA, 
p < 0.001) (data not shown). Figs. 2, 3 & 4 show the 
increases in microbial biomass (number of cells 1-' and 
pg C 1-l) for Expts Al ,  A2 and B1 to B3. Biomass in- 
creases were different for the various size fractions, the 
number of predators (and thus grazing) increased with 
increasing size fractionation. The highest increases in 
biornass were therefore generally obtained in the 
smaller fractions, except for autotrophic nanoflagel- 
lates, which were mainly present in the <5  pm size 
fraction, and except when predators were themselves 
grazed by the higher level. Pico- and nanoplankton 

growth was always greater in coral than in control 
mesocosms (ANOVA, p < 0.5; Table 2). The increase in 
bacterial biomass was at least 6-fold higher, while the 
increase in autotrophic cell biomass (cyanobactena 
and autotrophic flagellates) was 3 -  to 5-fold higher in 
coral relative to control mesocosms. 

Discussion. No differences in inorganic nutrient con- 
centrations could be observed between control and 
coral mesocosms; their concentrations remained low 
and comparable to those observed in situ for reef 
waters (Smith et al. 1981). However, DOC concentra- 
tions varied greatly during these incubations. The 
small DOC increases (ca 100 pM) observed in control 
mesocosms could be due to the activity of bacteria and 
algae in the carbonate sand layer (Sorokin 1993). A 
much jugher producnon (ca 1200 to l600 PM, 5- to 
13-fold higher than control levels) was measured in 
coral mesocosms between 13:OO and 17:OO h, and was 
attributed to corals. Similarly, Means & Sigleo (1986) 
measured a huge production of DOC during a 5 h incu- 
bation of the coral Acropora palmata in filtered seawa- 
ter, and Crossland (1987) observed an in situ produc- 
tion of DOC in coral reefs between noon and 16:OO h. 
According to the values of primary production previ- 
ously measured in our coral mesocosms (Leclercq et al. 
1999), the DOC released by the corals represented 
between 12 and 16% of the photosynthetically fixed 
carbon. This is in agreement with the few other pre- 
vious estimates (8 to 25%, Crossland 1987, Sorokin 
1993). 

DOC concentrations in the coral mesocosms de- 
creased ca 2 h after the peak, as has been already 
observed for Galaxea fascicularis (Ferrier-Pages et al. 
1998). In that study, colonies of G. fascicularis were 
incubated in 2 1 filtered seawater and the release of 
DOC monitored each 15 min during 10 h using HTCO 
and 14C-radiolabehng techniques. Two important 
releases of DOC took place, one in the morning and 
another in the afternoon, followed by a 're-uptake' 2 h 
later. The decrease observed could not be attributed to 
free-living bacteria, which were present in very low 
concentrations in the filtered incubation medium. 
Moreover, when prokaryotic inhibitors were added to 
the seawater, no 're-uptake' occurred, suggesting that 
coral-associated bacteria (likely epibiotic bacteria) 
were responsible for the organic carbon disappear- 
ance. High bacterial activity has already been mea- 
sured in the coral surface mucopolysaccharide layer 
(Herndl & Velimirov 1986). In our experiments, even 
assuming that most DOC was rapidly taken up by 
coral-associated bacteria, enough DOC was still avail- 
able for planktonic microbial populations. To obtain 
the total microbial biomass increase measured after 10 h 
in the coral mesocosm, between 5 and 150 pm01 C 1-' 
was needed, if we assume a gross growth efficiency 
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B2 
Experiments 

Takahashi 1983, Berman et al. 1984), and 
the same major microbial lineages are 
widespread (Sorokin 1981, Waterbury et 
al. 1986, Cole et al. 1988, Mullin et al. 
1995). Moreover, gross growth efficien- 
cies of bacterioplankton growing on nat- 
ural DOC sources vary from 2 to 45% in 
marine ecosystems ranging from tropical 
to polar areas (Carlson & Ducklow 1996). 

Grazing of pico- and nanoplankton by 
higher trophic levels can be roughly esti- 
mated in Expt A by calculating the differ- 
ence in biomass increase between 2 size 
fractions (Figs. 2 & 3). Our results indicate 
that at least 25 to 30% of the daily micro- 
L.  ~ i a ~  1 -..- rluduction was consunzd by higher 

trophic levels (mainly heterotrophic nano- 
flagellates and ciliates). This active proto- 

Fig. 4 .  Expts B1, B2 and B3. Increases in bacterial concentrations (cell m]-') 
and carbon biornass (pg C I-') during a 10 h incubation in the control (white 'Oan grazing Of growing piCO- and 

bars) and the coral (grey bars) mesocosms nanoplankton led to an efficient transfer 
of energy from lower to higher trophic lev- 
els. This seems to be the case for most 

varying from 2 to 45 % (Carlson & Ducklow 1996). This coral reefs characterized by fast and efficient nutrient 
corresponds to 0.3-10% of the maximum DOC concen- recycling and low inputs of new nutrients (Crossland & 

trations in these mesocosms. Thus, only small amounts Barnes 1983). 
of nutrients were needed to sustain high microbial pro- In conclusion, planktonic bacteria seem to take 
duction rates. Indeed, other authors (Carlson & Duck- up small amounts of coral exudates. However, these 
low 1996, Zweifel et al. 1996) have calculated that free- amounts are sufficient to enhance bacterial production 
living bacterioplankton consume 0.04 to 1 pm01 C 1-' by 6-fold and autotrophic production by 3- to 5-fold. 
h-' DOC. Moreover, DOC excreted by corals is likely a Further studies should be directed to determine the 
by-product of photosynthesis, and is thus more labile lability of DOC compounds excreted by corals. 
than seawater DOC. 

Our findings indicate that the growth of both auto- 
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