INTRODUCTION

The ocean is aphotic and therefore aphotosynthetic below the upper few tens to hundreds of meters, yet there is animal and microbial life throughout, including down to the greatest depths. Except for communities around hydrothermal vents, which produce organic matter by bacterial chemosynthesis, the
organic matter required to maintain deep-water pelagic and benthic ecosystems must ultimately derive from the photosynthetic system in the epipelagic. This has been recognized at least since Agassiz (1888) proposed that ‘...deep-sea organisms are nourished by a "rain" of organic detritus from overlying surface waters.’ Since sedimenting organic particles are subject to a gauntlet of microbial degradation, it has long been thought that fast-sinking materials such as zooplankton fecal pellets are primary agents of the downward flux in the sea.

Turner & Ferrante (1979) reviewed literature on transport potential, nutritional content, recycling by decomposition and coprophagy, and pollutant content of zooplankton fecal pellets in marine and freshwater ecosystems. During the intervening 2 decades, it has become apparent that zooplankton fecal pellets remain important agents of vertical flux under some circumstances, but that in other cases, most fecal pellets are reprocessed in the water column by microbial decomposition or coprophagy. Further, in many instances, most of the vertical flux is due not to fecal pellets, but to marine snow or sedimenting phytoplankton blooms that descend to the benthos without entering water-column consumer food webs. It is also apparent that the dynamics of fecal pellets, marine snow and sinking phytoplankton blooms are important not only in the flux to the benthos but also to pelagic communities throughout the water column.

IMPORTANCE OF ZOOPLANKTON FECAL PELLETS

‘Indeed, this concern for bioenergetics, energy flow, and processes has been so pervasive that biological oceanography now suffers from an agricultural mentality that would have us believe that bioenergetics is the only valid subject of investigation. At times this narrow outlook has even degenerated into the peculiar belief that the waste products of an animal are somehow more important than the animal itself.’

Hamner (1985) p. 417

Many sediment-trap studies have revealed that zooplankton fecal pellets or fecal matter are important components of rapid particulate flux in the sea. Perhaps the most dramatic evidence for this was the discovery that radionuclides from the Chernobyl disaster were present in zooplankton fecal pellets in sediment traps at 200 m depth in the Mediterranean an average of 7 d after peak radioactivity was delivered to the surface and <2 wk after the explosion (Fowler et al. 1987). On the basis of theoretical considerations, Jumars et al. (1989) have also concluded that the principal pathway of dissolved organic carbon from phytoplankton back to bacterioplankton (i.e., ‘closing the microbial loop’) is through rapid release from zooplankton fecal pellets.
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Banse, Bathmann et al., Berger & Wefer, Bernstein et al., Iseki et al., Tanoue & Handa, Volkman et al., Wakeham et al.</td>
</tr>
<tr>
<td>1991</td>
<td>Blomqvist & Kofoed, Chester & Larrance, Deuser et al. a,b, Dunbar & Berger, Dymond et al., Fellows et al., Iseki, Knauer & Martin, Landing & Feely, Lorenzen et al., Sasaki & Nishizawa, Svyitskii & Murray, Takahashi & Horio, Urrère & Knauer</td>
</tr>
<tr>
<td>1992</td>
<td>Ducklow et al., Feely et al., Gagosian et al., Honjo, Horio et al. a,b, Lee & Cronin, Repeta & Gagosian, Staresinic et al., Taguchi a,b, Wefer et al.</td>
</tr>
<tr>
<td>1993</td>
<td>Burns & Villeneuve, De Baar et al., Deuser et al. a,b, Falkowski et al., Fowler & Fisher, Fowler et al., Gagosian et al. a,b, Gardner et al., Gowing & Silver, Guillard, Lee et al., Livingston & Anderson, Lorenzen & Welschmeyer, Lorenzen et al. a,b, Small et al., Staresinic et al., Wassmann</td>
</tr>
<tr>
<td>1994</td>
<td>Andrews et al., Betzer et al. a,b, Bishop & Marra, Cowen & Silver, Davies & Payne, Dunbar, Gardner et al., Ittekot et al., Ilyas et al., Jickells et al., Karl & Knauer a,b, Karl et al., Knauer, Lee et al., Cronin, Murphy & Dymond, Repeta & Gagosian, Silver et al., Tett, Wakeham et al., Wassmann, Welschmeyer et al.</td>
</tr>
<tr>
<td>1995</td>
<td>Altabet & Deuser, Bacon et al., Baker et al., Bé et al., Burns et al., Cadée, Cowen & Bruland, Deming, Deming & Colwell, Downs & Lorenzen, Ducklow et al., Dymond & Lyle, Gowing & Silver, Noriki et al. a,b, Schnack, Wassmann, Welschmeyer & Lorenzen</td>
</tr>
<tr>
<td>1996</td>
<td>Bishop & Joyce, Bishop et al. a,b, Bodungen, Bodungen et al., Bishop et al., Cadée et al., Cowen et al., Deuser et al., Emerson et al., Feeley et al., Fowler et al., Harada & Tsunogai, Kajihara et al., Knap et al., Larsson et al., Matsuoka & Honda, Muller et al., Noji et al., Noriki & Tsunogai, Peinert, Pisias et al., Simonet et al., Skjoldal & Wassmann, Takahashi, Taylor et al., Tsunogai et al. a,b, Wassmann, Wassmann et al.</td>
</tr>
<tr>
<td>1997</td>
<td>Asper, Atkinson & Wacasey, Bathmann et al., Benli, Bernstean et al., Bodungen et al., Broman et al., Buesseler et al., Carey, Coale & Bruland, Deuser, Emerson & Roff, Fowler et al., Harding et al., Heusssner et al., Honjo et al., Hsiao, Ilyas et al., Kempe & Nies, Kempe et al., Liebezeit, Martin et al., Michaelis et al., Nelson et al., Peinert et al., Pinska et al. & Horio, Richardson & Hollister, Small et al., Smith et al., Takahashi et al., Tambiev, Tanoue & Handa, Tsunogai & Noriki</td>
</tr>
<tr>
<td>1998</td>
<td>Altabet, Baker et al., Bathmann, Biscaye et al., Bodungen et al., Deuser et al., Dymond & Collier, Emerson & Hedges, Fischer et al., Fisher et al., Hedges et al. a,b, Heusssner et al., Honjo & Dothery, Honjo et al., Karl et al., Kempe & Jennerjahn, Kusakabe et al., Laws et al., Lee et al., Lim et al., Moore & Dymond, Morris et al., Naes et al., Sancetta & Calvert, Sasaki et al., Walsh et al. a,b, Wefer et al.</td>
</tr>
<tr>
<td>1999</td>
<td>Altabet et al., Atlas et al., Aypu & Heusssner, Bishop et al., Boyd et al., Calilou et al., Charette et al., Gardner et al., González et al. a,b, Gust & Krounski, Gylfenfeldt et al., Haidar et al., Hebbeln, Hebbeln et al., Honjo et al., Kemp et al., Kincaid et al., Lampitt et al., Lohr & Baur, Prabh et al., Reigstad et al., Rixen et al., Rixen et al., Rixen et al., Romer et al., Roy et al., Sempré et al., Stavrekakis et al., Sumida et al., Thunell et al., Waite et al., Wand et al., Wassmann et al., 2000</td>
</tr>
</tbody>
</table>
The relative importance of zooplankton fecal pellets in sedimentary flux and water-column recycling depends on various factors. These include fecal pellet sinking rates, chemical and particulate contents (including pollutants), fate of fecal pellets in terms of microbial decomposition or coprophagy and organisms producing (and therefore sizes of) fecal pellets, and the possible importance of zooplankton fecal pellets in oceans of the geological past. These will be reviewed before addressing the variable contribution of zooplankton fecal pellets to the sedimentary flux in the present-day ocean and the emerging view that much of the sedimentary flux in the ocean is due to marine snow and direct sedimentation of phytoplankton blooms.

Fecal pellet sinking rates

Fecal pellets sink rapidly. All published sinking rates for fecal pellets reviewed by Turner & Ferrante (1979) were for fecal pellets of unknown origin or those produced by copepods or euphausiids. These rates ranged from <10 to typically hundreds of meters per day. Subsequent sinking rate data for fecal pellets of various other animals (Table 2) considerably broaden the range of sinking rates.

Fecal pellets of salps and pteropods generally sink from hundreds to thousands of meters per day, whereas less dense, more flaky pellets of doliolids (Bruland & Silver 1981, Madin 1982, Deibel 1990) or discarded houses and fecal pellets of the appendicularian *Oikopleura dioica* (Gorsky et al. 1984) sink only tens to hundreds of meters per day.

The high rates of sinking of fecal pellets from salps and pteropods appear related to the larger volumes of these pellets. Due to the widespread abundance of salps and pteropods in oceanic waters, the high organic content of their fecal pellets (Bruland & Silver 1981, Madin 1982) and the rapid defecation rates of salps (Madin 1982), fecal pellets of these gelatinous zooplankters may contribute disproportionately to the vertical flux to the benthos.

A mass occurrence of salps was recorded by Wiebe et al. (1979) in the northwest Atlantic. *Salpa aspera* performed diel vertical migrations over distances of 800 m, resulting in evacuation of 85 to 90% of the zooplankton biomass from the upper 500 m during daylight. Since salps feed upon small particles in the epipelagic, such a migration would have removed massive amounts of primary production to depth. Salp fecal pellet production and mortality during this event were estimated to contribute over 100% of the daily energy requirements of the deep-sea benthos. Other mass occurrences of salps that produced episodic fecal pellet fluxes in the benthos were recorded by Bathmann (1988), Morris et al. (1988), Pfannkuche & Lochte (1993), and Perissinotto & Pakhomov (1998).

Variations in consumer diets can affect sinking rates of resulting fecal pellets. Small et al. (1979) reported that natural copepod fecal pellets sank at higher and more variable rates than those produced on laboratory phytoplankton diets. This was presumably due to variations in fecal pellet contents and densities, since pellets produced from diets of cultured phytoplankton mixed with sediment sank faster than those produced on phytoplankton diets alone. Small et al. (1979) recommended against extrapolating measurements of sinking rates made on pellets produced on laboratory diets to those of fecal pellets produced on natural diets. For natural fecal pellets of both small copepods and the large copepod *Anomalocera pateroni*, collected under calm sea conditions, there was an increase in sinking rates with increases in fecal pellet volumes, but there was no such relation for fecal pellets collected in rough seas. Bienfang (1980) found no relationship between fecal pellet sinking rates and volumes for pellets of the copepod *Calanus finmarchicus* produced on

Table 2. Sinking rates of zooplankton fecal pellets, marine snow and phytodetritus

<table>
<thead>
<tr>
<th>Particles</th>
<th>Sinking rate (m d⁻¹)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecal pellets of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphausiids</td>
<td>16–862</td>
<td>Fowler & Small (1972), Youngbluth et al. (1989), Yoon et al. (2001)</td>
</tr>
<tr>
<td>Appendicularians</td>
<td>25–166</td>
<td>Gorsky et al. (1984)</td>
</tr>
<tr>
<td>Chaetognaths</td>
<td>27–1313</td>
<td>Dilling & Allredge (1983)</td>
</tr>
<tr>
<td>Heteropods</td>
<td>120–646</td>
<td>Yoon et al. (2001)</td>
</tr>
<tr>
<td>Salps</td>
<td>43–2700</td>
<td>Madin (1982), Yoon et al. (2001)</td>
</tr>
<tr>
<td>Phytodetritus</td>
<td>100–150</td>
<td>Billett et al. (1983), Lampitt (1985)</td>
</tr>
</tbody>
</table>
diets of diatoms versus flagellates but found that the fecal pellets produced on the diatom diets sank significantly faster. Bienfang (1980) suggested that this difference was due to higher densities of pellets containing remains of diatom frustules. Komar et al. (1981) concluded that a modified version of the Stokes equation gave a reasonable approximation of measured rates of Small et al. (1979) for sinking rates of cylindrical fecal pellets of copepods and euphausiids, and that most variations in sinking rates of such fecal pellets were due to diet-related pellet densities. Indeed, euphausiids fecal pellets in the Antarctic were larger and sank faster when produced on diets dominated by diatoms than on non-diatom phytoplankton (Cadée et al. 1992, González 1992a). Deibel (1990) discovered that doliolid fecal pellets produced on diets of natural particulates did not sink but that pellets produced on diets of microflagellate, dinoflagellate and diatom cultures sank at rates of 59 to 405 m d−1. Dilling & Allardregge (1993) concluded that while chaetognath fecal pellets were large (approximately 1 to 4 mm long), due to their contents (copepod parts) pellet density was low, and with sinking rates 5 to 10 times slower than those of comparably sized herbivores such as salps and doliolids. Urban et al. (1993a) reported that densities of fecal pellets of a larvacean and a copepod varied with season, depending on types of phytoplankton ingested and the extent to which remains were compacted in pellets. Frangoulis et al. (2001) found that sinking rates of copepod fecal pellets decreased from 100 to 70 m d−1 during the transition from diatom- to Phaeocystis-dominated spring blooms, and suggested that the lower sinking rates were due to decreases in pellet density and volume when feeding on Phaeocystis sp.

Sinking rates of copepod fecal pellets vary with pellet size, and pellet size varies with food concentration, food composition and ingestion rate. Dagg & Walser (1986) found that pellet size increased with increasing food concentration up to chlorophyll levels of 3 μg l−1, above which size remained constant. Below this level, ingestion and defecation were balanced so that copepod guts did not fill and fecal pellet size was smaller, but above this level, copepod guts did fill, producing fecal pellets of maximum size. Dagg & Walser (1986) concluded that fecal pellets produced by copepods under low food conditions would likely sink at lower rates than pellets produced by the same copepods at higher food levels. Ayukai & Nishizawa (1986) also reported that pellet sizes were smaller at lower food concentrations and that the ratio of defecated volume to ingested volume was higher with a dinoflagellate than a diatom diet. Tsuda & Nemoto (1990) found that ingestion rates, fecal pellet production rates and fecal pellet size increased with increasing food concentrations. Feinberg & Dam (1998) reported that various characteristics (length, width, density, calculated sinking rate) of fecal pellets of the copepod Acartia tonsa were significantly different with different laboratory diets of diatoms, photosynthetic and heterotrophic flagellates, dinoflagellates and ciliates. Sinking rates of fecal pellets from other copepods vary with food conditions (Butler & Dam 1994) and size of the fecal pellet producer (Harris 1994). Rates of sinking of salp fecal pellets can vary with the decomposition state of the pellets (Yoon et al. 1996). Dam & Feinberg (2001) found significant relationships between fecal pellet sinking rate and weight of fecal pellet producers, and between fecal pellet sinking rate and volume.

Silver & Bruland (1981) and Bruland & Silver (1981) concluded that diets of salps and pteropods in the California Current differed considerably, and that this would affect the vertical chemical fluxes resulting from their fecal pellets. Salps fed mainly upon small phytoplankton, so when coccolithophorids were abundant, their fecal pellets presumably contributed to enhanced calcite flux. Pteropods in the same area fed primarily upon larger phytoplankton, especially diatoms, so their fecal pellets would be expected to facilitate enhanced silicate flux.

In an exaggerated example of the effects of ingested mineral particles on fecal pellet sinking rates, Taghon et al. (1984) and Komar & Taghon (1985) found that fecal pellets of a deposit-feeding polychaete were large (up to 9.7 mm long), had high density due to ingested sediment (1.086 to 1.282 g cm−3) and high sinking rates (2618 to 5132 m d−1). Similar processes might also apply to planktonic organisms, since abundant fine-grained lithogenic particles were filtered by Oikopleura dioica (Dagg et al. 1996) and by copepods (Turner 1984a,b, 1987) in the plume of the Mississippi River.

Fecal pellet contents

Contents of fecal pellets have long been used to examine the diets of the zooplankters that produce them (Fig. 1). These analyses include studies of copepods (Turner 1977, 1978, 1984a,b,c, 1985, 1986a,b, 1987, 1991, Turner & Anderson 1983, Bathmann et al. 1990a,b, Voss 1991, Urban et al. 1992, 1993b, González et al. 1994a,b), euphausiids grazing on epontic (underice) algae (O’Brien 1987, González et al. 1994a) and protists (Buck & Newton 1995).

Levels of photosynthetic pigments and phaeopigments, and other chemicals such as carbon, nitrogen, phosphorus and radiolabeled compounds in fecal pellets have also been used to examine patterns of zooplankton feeding and fecal pellet decomposition

There have been several reports of intact or even live phytoplankton cells in fecal pellets. Johnson et al. (1982) found intact Synechococcus cells in Calanus sp. fecal pellets, and ultrastructural studies revealed that the cells were apparently undigested. Pfannkuche & Lochte (1993) found apparently undigested chlorophyll-bearing cyanobacteria cells in salp feces. Conversely, Silver & Bruland (1981) observed many coccolithophorid and diatom cells in fecal pellets of salps and pteropods that appeared intact based upon scanning electron microscopy of external morphology, but transmission electron microscopy revealed that internal protoplasm had been digested. Cells that appear to be identical to the aphotic zone ‘olive-green cells’ described by Fournier (1970, 1971) have been found in fecal pellets of salps and pteropods by Silver & Bruland (1981) and bathypelagic marine snow (Silver & Alldredge 1981). These were suggested to be waste products from either partial degradation of algae ingested by herbivores, cells that had undergone autoysis, egested vacuolar residues of protozoans or fecal pellets of microzooplankton, which had been eaten by consumers, evacuated in fecal pellets and then after subsequent fecal pellet sinking and degradation were released back into the water column at depth. The finding of photosynthetically competent phytoplankton cells from 1000 m prompted Platt et al. (1983) to suggest that the cells had reached depth after surviving grazer gut passage and fecal pellet sinking and decomposition.

There have been several reports of intact or even live phytoplankton cells in fecal pellets. Johnson et al. (1982) found intact Synechococcus cells in Calanus sp. fecal pellets, and ultrastructural studies revealed that the cells were apparently undigested. Pfannkuche & Lochte (1993) found apparently undigested chlorophyll-bearing cyanobacteria cells in salp feces. Conversely, Silver & Bruland (1981) observed many coccolithophorid and diatom cells in fecal pellets of salps and pteropods that appeared intact based upon scanning electron microscopy of external morphology, but transmission electron microscopy revealed that internal protoplasm had been digested. Cells that appear to be identical to the aphotic zone ‘olive-green cells’ described by Fournier (1970, 1971) have been found in fecal pellets of salps and pteropods by Silver & Bruland (1981) and bathypelagic marine snow (Silver & Alldredge 1981). These were suggested to be waste products from either partial degradation of algae ingested by herbivores, cells that had undergone autoysis, egested vacuolar residues of protozoans or fecal pellets of microzooplankton, which had been eaten by consumers, evacuated in fecal pellets and then after subsequent fecal pellet sinking and degradation were released back into the water column at depth. The finding of photosynthetically competent phytoplankton cells from 1000 m prompted Platt et al. (1983) to suggest that the cells had reached depth after surviving grazer gut passage and fecal pellet sinking and decomposition.

The existence of viable phytoplankton cells in euphausiid fecal pellets was confirmed by Fowler & Fisher (1983). Fecal pellets from sediment traps as well as those produced by euphausiids grazing on laboratory diets contained live cells, mostly diatoms. Viability was confirmed by growth of cells both in fecal pellets and subsequently in unenriched seawater. In some cases, cells had survived in natural fecal pellets for up to 10 d.

Bathmann & Liebezeit (1986) found that many fecal pellets produced by copepods during a declining spring phytoplankton bloom in the Baltic contained high levels of chlorophyll a (chl a) but low levels of phaeopigments, indicating that pellets contained undigested cells. Scanning electron microscopy of these fecal pellets confirmed that they contained abundant intact diatom cells. As the bloom became terminated, chl a and intact diatoms in copepod fecal pellets progressively declined.

The existence of viable phytoplankton cells in euphausiid fecal pellets was confirmed by Fowler & Fisher (1983). Fecal pellets from sediment traps as well as those produced by euphausiids grazing on laboratory diets contained live cells, mostly diatoms. Viability was confirmed by growth of cells both in fecal pellets and subsequently in unenriched seawater. In some cases, cells had survived in natural fecal pellets for up to 10 d.

Bathmann & Liebezeit (1986) found that many fecal pellets produced by copepods during a declining spring phytoplankton bloom in the Baltic contained high levels of chlorophyll a (chl a) but low levels of phaeopigments, indicating that pellets contained undigested cells. Scanning electron microscopy of these fecal pellets confirmed that they contained abundant intact diatom cells. As the bloom became terminated, chl a and intact diatoms in copepod fecal pellets progressively declined.

significant portion of the lipids collected in sediment traps deployed over the upper 1500 m in the equatorial North Pacific (Wakeham & Canuel 1986).

Fecal pellets and pollutants

The Chernobyl nuclear power plant accident on 26 April 1986 provided a serendipitous 'tracer experiment' for measuring vertical flux of radionuclides into the deep sea at 3 distant European locations (Bacon 1987). Fowler et al. (1987) recorded peaks of the signature radionuclides 144Ce and 144Ce from Chernobyl in zooplankton fecal pellets in time-series sediment traps at 200 m in the Mediterranean off Corsica from 8 to 15 May, within a few days of delivery of these radionuclides to the surface by a pulse of rainfall on 4 to 5 May. The sediment traps had been deployed prior to the Chernobyl event, and their particulates were primarily (>70%) composed of zooplankton fecal pellets in the size range of those produced by copepods. Kempe & Nies (1987) and Kempe et al. (1987) also recorded Chernobyl radionuclides within 10 d in sediment traps already in place at 222 m depth in the North Sea off Norway. This was during the time of the spring diatom bloom. Chernobyl radionuclides were also recorded in sediment traps deployed in the Black Sea prior to the accident (Buessler et al. 1987, Kempe et al. 1987). Radionuclides arrived at a depth of 1071 m over the course of the 2 months following the accident, during the time of the normal summer bloom of the coccolithophorid *Emiliania huxleyi*. Kusakabe et al. (1988) also recorded Chernobyl radionuclides at depths of 110 to 780 m in June and July of 1986 in the North Pacific and Bering Sea, indicating long-distance transport over several months. Levels of Chernobyl radionuclides in sediment traps in the Black Sea continued to decline throughout the fall and winter of 1986, and by a year after the explosion were undetectable (Buesseler et al. 1990). The Chernobyl episode clearly showed that biologically mediated vertical flux mechanisms in the sea can deliver pollutants to depth with previously unappreciated rapidity.

Fate of fecal pellets

'Utilization of fecal particles would appear to be a race between microorganisms and coprophages, both working against the effects of gravity on the falling particles.'

Pomeroy et al. (1984) p. 434

There is increasing evidence that many zooplankton fecal pellets are recycled in the water column through microbial decomposition and coprophagy. Urban-Rich et al. (1999) compared potential fecal pellet carbon flux, determined from fecal pellet production rates, fecal pellet carbon and zooplankton abundance, with actual levels of carbon flux due to zooplankton fecal pellets recovered from sediment traps off Norway (see Wassmann et al. 1999). Potential fecal pellet carbon flux was estimated to be 2 to as much as >100% of the measured fecal pellet carbon flux in the upper 200 m, but recovery of fecal pellets in sediment traps, which amounted to only 5 to 35% of total carbon flux, suggested that substantial recycling of fecal pellets was occurring in surface waters. Using a similar approach, Viitasalo et al. (1999) calculated that >99% of potential copepod fecal pellet production in the Baltic was recycled in the upper water column, although this varied somewhat with season, location, composition of the zooplankton community and turbulence. Much of the loss of fecal pellet carbon in the water column appears to be through release of dissolved organic carbon from fecal pellets during their descent (Noji et al. 1999a, Urban-Rich 1999, 2001). Also, despite extensive biodegradation (>98%), the bulk organic composition of sinking particulate matter appears to undergo minimal changes (Hedges et al. 2001), suggesting that organic matter in sinking particles such as fecal pellets might be protected from degradation by inorganic components.

Some zooplankton fecal pellets become repackaged through coprophagy by other zooplankters. Gowing & Silver (1986) have found recognizable zooplankton fecal pellets in the guts of deep-sea copepods. Paffenhofer & Knowles (1979) and Ayukai (1986) have shown...
that adult copepods feed upon fecal pellets of con-
specific juveniles, often at higher filtering rates than on
co-occurring diatoms. Neal et al. (1986) fed fecal
pellets of barnacle nauplii to copepods. Green et al.
(1992) found that nauplii of the large copepod Calanus
heigolandicus ingested fecal pellets of nauplii of the
smaller copepod Pseudocalanus elongatus.

Lampitt et al. (1991) reported that copepods break
up their own fecal pellets while ingesting only a small
portion of the pellets, and named this behavior
‘coprorhexy.’ These authors speculated that copepods
strip the peritrophic membrane off fecal pellets and
consume the membrane in order to ingest attached
microbiota. Indeed, Youngbluth (1982) observed myosis
larvae of pelagic shrimps feeding on microbes, phyto-
plankton, protozoans and metazoans attached to the
peritrophic membrane of their own fecal material, as
well as fecal pellets of other zooplankters.

Noji et al. (1991) distinguished 3 types of behavior by
copepods when feeding on fecal pellets, all of which
can potentially modify particle-size spectra of particle
assemblages. Coprorhexy, or the fragmentation of
fecal pellets, resulted in decreasing the number of
large particles and increasing the abundance of smaller
particles. At the same time, the smallest size
fractions of particles had an increase in particle sizes,
due to addition of larger particles from broken fecal
pellets, which were larger than the small natural parti-
cles most abundant in the water. Coprophagy, or
ingestion of fecal pellets, removes large particles.
‘Coprochaly’ was defined as disruption of peritrophic
membranes of fecal pellets by copepods, resulting in
partial dispersal of fecal pellet contents into the water,
thereby increasing the relative abundance of small
particles. Noji et al. (1991) suggested that disruption of
fecal pellets by these processes would increase resi-
dence times of fecal materials by converting large par-
ticles to smaller ones with lower sinking rates. This
could also enhance microbial degradation of feces by
increasing microbial substrate by converting larger
particles to smaller ones. Additional effects might
clude enhancement of diffusion processes oxygenat-
ing the interior of fecal particles (Aldredge & Cohen
1987), as well as leaching of dissolved organics and
inorganics from such particles to the surrounding
water (Jumars et al. 1989). All of these processes would
be expected to convert large fast-sinking particles to
smaller suspended ones, thereby increasing the re-
cycling of fecal pellets in the upper layers of the sea,
while retarding their transport to depth.

The copepod Oithona similis has been shown to
ingest fecal pellets of several calanoid copepods,
whereas the calanoids did not appreciably ingest their
own fecal pellets (González & Smetacek 1994,
González et al. 1994b). This led González & Smetacek
(1994) to speculate that specialization for coprophagy
by O. similis may contribute to the ubiquitous abun-
dance of this species in the ocean. Coprophagy of fecal
pellets produced by calanoid copepods by cyclooids
(mainly Oithona spp.) was also indicated by results
from mesocosm studies of Svensen & Nejstgaard

There is also indirect evidence for zooplankton
reprocessing of fecal pellets by coprophagy at depth.
Honjo (1978) collected ‘green’ and ‘red’ fecal pellets in
sediment traps in the Sargasso Sea, which had differ-
ent composition. The green pellets contained abun-
dant phytoplankton pigments, coccoliths and diatom
fragments, and appeared to have resulted from zoo-
 plankton grazing in the surface layer, with rapid sedi-
mentation to depth. The red pellets, however, con-
tained clay particles and few phytoplankton remains,
and were collected only in the deepest sediment traps.
Honjo (1978) concluded that red pellets had been pro-
duced at depth by deep-water zooplankters reprocess-
ing fecal pellets and other particulates sinking from
above. Similarly, Urrère & Knauer (1981) found an
increased fecal pellet flux in sediment traps at 1500 m,
relative to traps at 500 m, and Conte et al. (2001) found
increased lithogenic fluxes between 500 and 3200 m
compared to depths closer to the surface. Both of these
increases in fluxes at depth suggested repackaging of
fecal pellets through coprophagy by mesopelagic and
bathypelagic zooplankton.

Fecal pellets are subject to microbial decomposition,
and questions have been raised as to whether fecal
pellets contain bacteria primarily on surfaces or inter-
nally, and whether pellet decomposition is primarily
from the ‘inside out’ or from the ‘outside in’.

There is increasing evidence for decomposition of
fecal pellets by internal bacteria. Gowing & Silver
(1983) confirmed that natural fecal pellets collected
from either sediment traps or freshly produced by
pelagic crabs contained bacteria primarily inside the
pellets, and that pellet surfaces had few attached bac-
teria. This was in contrast to observations of labora-
tory-produced fecal pellets, which were reported to
have few internal bacteria (Honjo & Roman 1978). Fur-
ther, Gowing & Silver (1983) discovered that with
aging in the laboratory, fecal pellets that initially had
few surface bacteria developed a ‘surface microbial
lawn’ over time during laboratory incubations, similar
to observations of Turner (1979). Gowing & Silver
(1983) concluded that extensive rapid bacterial colo-
nization of fecal pellet surfaces was likely an artifact of
laboratory conditions, and that decomposition of most
fecal pellets in the sea initiates with internal bacteria
that are either enteric or ingested, or both. Since guts
of copepods have been reported to contain an exten-
sive microbial flora (Ogawa 1977, Sochard et al. 1979),
Gowing & Silver (1983) concluded that fecal pellet decomposition in the sea is primarily from the inside out. However, Nott et al. (1985) reported that bacteria were present in copepod fecal pellets only during periods of feeding, and no bacteria were found in empty guts of non-feeding copepods, suggesting that bacteria in fecal pellets were ingested along with food and not derived from resident populations in the gut. Lawrence et al. (1993) concluded that bacteria were abundant in copepod fecal pellets produced from feeding on food that contained bacteria, but bacteria were absent from fecal pellets produced from feeding on axenic food. Bacteria within copepod fecal pellets grew during incubation, suggesting that some had survived gut passage, and high aminopeptidase activity in fecal pellets suggested that internal bacteria participated in pellet degradation. Nagasawa & Nemoto (1988) found bacteria in the guts, within the interior of fecal pellets and colonizing the outside of fecal pellets of marine amphipods and copepods. In some cases, bacteria within copepod fecal pellets were more abundant than, and taxonomically different from, bacterial assemblages in surrounding waters (Delille & Razouls 1994). Hansen & Bech (1996) observed that copepod fecal pellets became colonized by bacteria from the surrounding water but could not dismiss the possibility that some bacteria were from inside fecal pellets or copepod guts.

Bianchi et al. (1992) identified both methanogenic (obligate anaerobes) and nitrifying (aerobic) bacteria in natural fecal pellets from sediment traps and copepods, and suggested that the bacteria originated from copepod guts, most likely as ingested species for nitrifiers and enteric for methanogens. Karl & Tilbrook (1994) concluded that most methane in the upper layers of the Pacific is associated with sinking fecal pellets. Jacobsen & Azam (1994) observed that copepod fecal pellets became colonized by bacteria from the surrounding water. There is a microbial succession of colonizers of fecal pellets. Jacobsen & Azam (1984) concluded that bacteria originating in feces of salps and doliolids developed rapidly within the first 24 h, causing increases in respiration, net uptake of phosphate, loss of total primary amines and little change in ammonium. After 24 h protozoans invaded the feces and rapidly consumed most bacteria. After about 2 d fecal pellet microbial activity had largely ceased. Pomeroy et al. (1984) concluded that the efficiency of conversion of tunicate feces to microbial biomass was 10 to 20% and that fecal pellets were rapidly biodegraded by their own internal microbial community. In contrast, Caron et al. (1989) found that fecal pellets of oceanic salps remained intact over 10 d periods of experimental decomposition, despite becoming colonized by abundant bacteria and protozoans. Silver et al. (1984) also found that detrital particles collected in sediment traps had abundant ciliates, which were suggested to be endemics within consumer guts, rather than colonists from the surrounding water. Fecal pellet degradation rates may depend on the diets producing the fecal pellets. Hansen et al. (1996) fed the copepod Acartia tonsa unialgal diets designed to simulate the boreal seasonal succession of phytoplankton dominated by diatoms in spring, nanoflagellates in summer and dinoflagellates in fall. Fecal pellets produced on diatom diets degraded significantly more slowly than those produced on nanoflagellate or dinoflagellate diets. Bacteria decreased over time on diatom-based pellets but increased on nanoflagellate- and dinoflagellate-based diets. Hansen et al. (1996)
concluded that flagellate-based fecal pellets produced during summer and fall periods are most likely degraded in the epipelagic, whereas diatom-based fecal pellets are more likely to sediment to the benthos in spring.

Smetacek (1980a) also found evidence for considerable reprocessing of copepod fecal pellets in Kiel Bight. The contribution of calanoid copepod fecal pellets to particulate carbon in detritus averaged <10% from April through September and <5% for the rest of the year. Periods of lowest fecal pellet contribution were those of highest zooplankton abundance and vice versa. Calculated residence times for fecal pellets in the 20 m deep water column were only a few hours in summer. Smetacek concluded that reprocessing of fecal pellets by zooplankton coprophagy and microbial degradation was high in summer and that this conserved essential nutrients in the water column.

Hofmann et al. (1981) simulated the contribution of fecal pellets by the various stages of dominant small copepods of the genus *Paracalanus* to the benthos of the southeastern USA continental shelf. The model indicated that nauplii produced daily averages of 50% of total fecal pellet mass, but only 4% of pellet flux. Adults produced daily averages of 13% of total fecal pellet mass but only 63% of pellet flux. Because most copepod fecal pellets were small, they sank slowly and were presumably consumed by coprophagy or microbiologically degraded in the epipelagic, the model indicated that only 0.2% of the average daily primary production reached the sea floor (35 m depth) as fecal pellets.

Krause (1981) suggested that most fecal pellets are biodegraded in near-surface waters and questioned the notion that fecal pellets sink at all. During a study of vertical distributions of fecal pellets in the North Sea, fecal pellets were generally found above the main thermocline, within 30 m of the surface. Most fecal pellets appeared to be those of the copepod *Calanus finmarchicus*. Even when this copepod migrated below the thermocline, the fecal pellet maximum remained in the uppermost layers of the water column. Krause (p. 325) conjectured that "faecal pellets, probably enriched with bacteria in the gut of the copepod, inevitably have an anaerobic metabolism. The gas bubbles which develop during the bacterial activity in the faeces, at first cause a floating or even a buoyancy of the faecal pellets. This causes them to remain in the euphotic zone, where they can be re-cycled." Krause then speculated that the high sinking rates for various types of fecal pellets recorded from laboratory investigations (references in Turner & Ferrante 1979) were artifacts caused by such things as storage of fecal pellets in cold water or "counting and measuring under a warm light microscope, where the material is heated."

He concluded that fecal pellets remain in the upper mixed layer because they are, in fact, buoyant and do not naturally sink. This conclusion is at odds with the numerous studies conducted prior to his showing that fecal pellets are collected in deep-sea sediment traps. An alternative explanation might be that fecal pellets sometimes remain in the upper mixed layer because it is mixed. Indeed, Alldredge et al. (1987) observed that large fecal pellets, probably produced by euphausiids, had sustained residence times in the upper 20 m off California, even though these pellets had measured sinking rates of 18 to 170 m d⁻¹. Alldredge et al. (1987) attributed this accumulation of large fecal pellets in surface waters to turbulent mixing, which retained the pellets in the upper mixed layer. Martens & Krause (1990) also found that most fecal pellets were at depths above 100 m in the North Sea in summer.

Microzooplankton fecal pellets

Most studies of zooplankton fecal pellets have focused on pellets produced by larger mesozooplankters such as copepods, euphausiids and tunicates, which have high sinking rates. However, some microzooplankters such as protozoans and small metazoans are now known to produce tiny fecal pellets, which presumably do not sink and are likely remineralized in the epipelagic.

Gowing & Silver (1985) discovered that small fecal pellets from 3 to 50 µm in diameter were ubiquitous and abundant in sediment traps and water samples throughout the upper 2 km of the eastern tropical Pacific. These ‘minipellets’ were thought to be wastes of radiolarians, other protozoans and small metazoans. Fluxes of minipellets exceeded those of larger fecal pellets (>50 µm) by 3 orders of magnitude, and carbon flux of minipellets was 11 to 49% that of larger pellets. Minipellets contained intact bacteria and picoplankton cells, some of which appeared identical to previously described olive-green cells. Gowing & Silver (1985) concluded that minipellet producers are major re-processors of detritus originating in the euphotic zone and that these organisms are important in biological transformation of organic matter in the sea.

Nöthig & Bodungen (1989) observed that small fecal pellets (30 to 150 µm) were abundant in the water column and in sediment traps in the Weddell Sea. These pellets were suggested to originate from protozoan grazers such as ciliates, heterotrophic dinoflagellates, radiolarians and foraminiferans. They constituted 36% of the total sedimented feces volume in sediment traps. The majority of fecal pellets remaining in sediment traps were larger (150 to 300 µm) spherical fecal pellets, suggested to be those of small metazoans.
Other studies have confirmed that protozoans produce minipellets. Stoecker (1984) found that tintinnids and aloricate ciliates produce small fecal aggregates (18 × 32 µm), which overlap in size with cells of their dinoflagellate prey (16 × 22 µm). Buck et al. (1990) confirmed that a phagotrophic athecate dinoflagellate found in Antarctic sea ice produced small fecal pellets that averaged 30 µm in diameter and were filled with frustules of the pennate diatom *Nitzschia cylindrus*. Buck et al. (1990) suggested that the release of such fecal pellets from melting ice into the underlying water column may constitute a substantial portion of the flux of organics from the euphotic zone to depth. González (1992b) also found that minipellets (5 to 100 µm) were abundant in the Antarctic. These minipellets contained numerous unbroken diatom frustules and originated from heterotrophic unarmored dinoflagellates and phaeodarian radiolarians. Gowing et al. (2001) reported that minipellets from athecate heterotrophic dinoflagellates and ciliates were the dominant types of fecal pellets in sediment traps at several stations in the Ross Sea.

Dinoflagellate minipellets have also been reported from temperate localities. Buck & Newton (1995) found that during a spring bloom in Dabob Bay (Puget Sound, Washington, USA) the dominant diatom *Thalassiosira pacifica* was extensively eaten by an unarmored dinoflagellate of the genus *Gymnodinium*, which produced abundant fecal pellets. These pellets averaged 69 × 83 µm, were covered with a peritrophic membrane and were packed with *Thalassiosira* frustules, which were devoid of cytoplasm. Dinoflagellate minipellets accounted for an average of 29% of the total fecal pellet flux to 50 m depth. Elbrächter (1991) showed that a variety of photosynthetic and heterotrophic dinoflagellates and other protists produce minipellets.

Other studies have revealed abundance of fecal pellets from metazoan microzooplankton. Minipellets from copepod nauplii also contained frustules of the diatom *Nitzschia sicula* during a bloom of this species in the Adriatic (Vilicic et al. 1994), and pellets <80 µm in the longest dimension, likely from copepod nauplii, were important components of the fecal pellet assemblage in a Norwegian fjord (Pasternak et al. 2000).

Fish fecal pellets

The fecal pellets of fish also appear to be important in some marine ecosystems. Fecal matter of 7 species of mid-water fish sank at rates of hundreds to thousands of meters per day (Robison & Bailey 1981), and pellets of larger volumes sank faster. Due to the high abundance of mid-water fish in many oceanic environments and the high nutrient content of their fecal pellets, mid-water fish fecal matter may be a major source of organic export from the pelagic community to the benthos. Bray et al. (1981) have shown that fish that forage during the day on pelagic zooplankton and then return to shelters in a rocky reef at night import substantial amounts of carbon to the reef through defecation in nocturnal shelters. Fecal pellets of reef fishes also appear important in the import of minerals to reef communities (Geesey et al. 1984). Similarly, Robertson (1982) showed that many coral reef fishes are coprophagous on feces of other fish, which can have high nutritional content (Bailey & Robertson 1982). Fecal pellets of reef fishes that prey on cnidarians that contain zooxanthellae, themselves contain live zooxanthellae, which are photosynthetically active and capable of re-establishing symbioses with cnidarians (Parker 1984).

Fecal matter of anchovies in the Peru upwelling system was a major component of the downward flux into sediment traps (Staresinic et al. 1983). Fecal fragments sank at rates averaging >1 km d⁻¹, and had high organic carbon and nitrogen contents as well as abundant diatom fragments. Due to fast sinking rates, anchovy feces have a relatively short residence time in the water column, and since they fall into sediments that are primarily anoxic below the superficial layers, fecal organic matter should remain intact before burial in deeper sediments. Staresinic et al. (1983) speculated that the decline in anchovy stocks off Peru in the early 1970s might have led to reduced fluxes of particulate organic matter and that a relative increase in the contribution of smaller slower-sinking particles such as phytoplankton, zooplankton fecal pellets might have contributed to the increased denitrification recorded off coastal Peru since the decline of fish stocks (Codispoti & Packard 1980). An alternative hypothesis by Walsh (1981) suggested that the decline in anchovy stocks off Peru would decrease utilization of organic matter in the water column by anchovies, making more organic matter available for deposition. Either way, feeding and fecal production by anchovies off Peru, and presumably in other coastal upwelling systems, are potentially important processes. In fact, Scheidegger & Krissel (1983) have suggested that unusually fine-grained terrigenous sediments confined to the inner continental margin off Peru are due to fecal pelletization of these particles by zooplankton and anchovies while feeding upon phytoplankton. Since zooplankton and fish populations increase together with phytoplankton during enhanced upwelling intensity in December through April, also a period of peak river discharge, the coincidence of maximum biological removal of terrigenous sediments at
the time of their maximum input may explain why so few terrigenous sediments are found beyond the continental margin. Scheidegger & Krissek (1983) concluded that such a biological ‘filter’ or barrier to seaward transport of terrigenous sediments in the wind-driven surface layer enhanced deposition of terrigenous and pelagic particulates into anoxic sediments off Peru, thereby helping to preserve the sedimentary record of upwelling characterized by various chemical and biological indicators (references in Scheidegger & Krissek 1983).

Zooplankton fecal pellets in ancient oceans

There is paleontological evidence for zooplankton fecal pellets. Porter & Robbins (1981) discovered what appear to be fossil zooplankton fecal pellets in black shales 11 to 300 million yr old that represent coastal, epicontinental sea and lake environments. These black shales are associated with phosphate, oil and coal deposits. Porter & Robbins (1981) suggested that zooplankton fecal pellets contributed to the deposition of organic matter in anoxic basins, contributing to formation of the black shale deposits. Robbins et al. (1985) described microfossils resembling fecal pellets of modern zooplankters in Middle Cambrian and Early Proterozoic shale. These microfossils were in rocks that also preserved sulfides analogous to modern anoxic environments that preserve fecal pellets. Rocks containing putative pellets were 0.53×10^9 to 1.9×10^9 yr old. Similar rocks of Archaean age (2.68×10^9 to 3.8×10^9 yr old) did not contain pellet-like microfossils.

Robbins et al. (1985) argued that if the Proterozoic microfossils were fossilized fecal pellets, then they provided evidence of metazoan life and a complex food web 1.9×10^9 yr ago, which predates macroscopic metazoan body fossils 0.67×10^9 yr ago, animal trace fossils 0.9×10^9 to 1.3×10^9 yr ago and fossils of unicellular eukaryotic algae 1.4×10^9 yr ago.

Fecal pellets may have facilitated oxygenation of the ocean, leading to the Cambrian ‘explosion’ of multicellular life (Walter 1995, Oliwenstein 1996). G. A. Logan et al. (1995) found that hydrocarbons extracted from Terminal Proterozoic to Early Cambrian marine sediments (570 to 590 million yr old) were derived mainly from bacteria and other heterotrophs rather than from autotrophs. They proposed that prior to the Cambrian, slowly sinking organic matter in the sea was repeatedly reworked by bacterial degradation, leading to sulfate reduction and oxygen depletion in the surface layer of the sea. High 13C/12C ratios in sediments suggested long heterotrophic microbial food webs. An abrupt decline in 13C/12C ratios at the beginning of the Cambrian, coincident with evolution of the metazoan gut, suggests that organic matter in the sea became increasingly packaged in rapidly sinking fecal pellets, which plummeted to depth before they could be extensively decomposed, resulting in increases in ocean oxygenation and allowing the Cambrian radiation of multicellular animal life.

Butterfield (1997) has proposed that the advent of metazoan guts and increased zooplankton grazing in the sea at the Proterozoic-Cambrian interface would have had the opposite effect from that described above, namely a decrease in export to depth via zooplankton fecal pellets. By removing phytoplankton and packaging it as animal biomass, which stayed in the upper water column, Butterfield suggested that zooplankton grazing might have reduced carbon burial, causing the observed drop in 13C/12C ratios at the beginning of the Cambrian. If this were the case, then the drop in carbon ratios would be a consequence, rather than a cause, of the Cambrian explosion.

Kitchell (1983) and Haberyan (1985) have suggested that if zooplankton fecal pellet sedimentation is a dominant means by which phytoplankton remains reach the seafloor and become part of the micropaleontological fossil record, then selective feeding by the zooplankton producing the fecal pellets might heavily bias the fossil record toward phytoplankton species preferred by grazers.

The variable importance of fecal pellets in sedimentary flux

Numerous studies have shown that the contribution of zooplankton feces to sedimentary flux can be substantial (Table 3). Bishop et al. (1977) estimated that in the upper 400 m of the equatorial Atlantic, zooplankton fecal pellets and fecal matter constituted only 4% of the total suspended mass concentration but accounted for 99% of the vertical mass flux through the upper 388 m. Urrère & Knauer (1981) reported that fluxes of recognizable zooplankton fecal pellets varied with depth, accounting for 10 to 19% of total carbon fluxes for near-surface waters (35 to 150 m), declining to 9.7% at 500 m and 3.4% at 1500 m. Fowler et al. (1991) found that fecal pellet carbon fluxes increased with depth, accounting for 25, 29 and 33% of total particulate carbon fluxes at 50, 150 and 250 m, respectively. Graf (1989) concluded that a pulse of fecal pellets from the copepod *Calanus finmarchicus* accounted for 92% of the total carbon settling to the deep North Atlantic at the end of a spring bloom in May. Fecal pellets constituted averages of 11 to 37% but up to 66% of the vertical flux of particulate organic carbon (POC) over the upper 200 m off Norway (Wassmann et al. 1999). Roy et al. (2000) found that zooplankton fecal
pellets accounted for 3 to >100% of total POC flux over the upper 150 m in the Gulf of St. Lawrence but that during June, the period of maximum fecal pellet carbon flux, all values were >66%. The average contribution of zooplankton fecal pellets to POC flux at 50 m in this study was 50% over the annual cycle. Other studies have shown that euphausiid and copepod fecal pellets could be the dominant components of flux during major blooms of the prymnesiophyte Phaeocystis pouchetii (Lutter et al. 1989, Riebesell et al. 1995, Hamm et al. 2001) and coccolithophorids such as Emiliania huxleyi (van der Wal et al. 1995, Fischer et al. 1996). Small et al. (1983) investigated the proportions of vertical particulate flux made up of fecal pellets and amounts of primary production converted by zooplankton to fecal pellets and dissolved excretions in the tropical Pacific. Both small (<300 µm) and large (300 to 500 µm) zooplankton (not counting euphausiids, salps and red crabs) constituted <2% of daily primary carbon and nitrogen production into fecal pellets. If all such fecal pellets sank below 100 m and into the oxygen minimum zone without being eaten or decomposed, then upward nutrient flux from below 100 m would only have to be equivalent to a loss of 2% or less to maintain daily production. That would mean that ‘new production’ (Dugdale & Goering 1967, Eppley & Peterson 1979) would have to be only 2% of total production, and 98% could be recycled production, if the only losses were due to sedimentation of fecal pellets from small and large zooplankton (mostly copepods). Considering that there are other fecal pellet producers and that some small fecal pellets are recycled in the epipelagic and do not sink below 100 m, whereas other small pellets are exported to depth via attachment to marine snow, Small et al. (1983) estimated that total fecal pellet removal of carbon and nitrogen from surface waters would not exceed 10% of daily primary production and would more closely approximate 5%. The percentages of vertical flux measured at 120 m composed of various types of fecal pellets were much greater. Small et al. (1983) estimated that 41% of the carbon flux to this depth came from fecal pellets of small and large zooplankton, and that 21% came from the red crab Pleuroncodes planipes. Small et al. (1983) concluded that after adding contributions from all other organisms that were not accounted for in these categories, ‘almost all’ of the carbon flux to 120 m could result from fecal pellet flux.

Other studies have shown the proportion of vertical fluxes attributable to fecal pellets is comparatively low. Despite collection of large numbers of zooplankton fecal pellets in sediment traps at various depths, fecal pellets contributed averages of only <5 to 10% of the vertical fluxes of organic, carbonate, silicate and lithogenic materials at several oceanic deep-water sites (Pilskaln & Honjo 1987). However, since fecal pellets had elevated C:N ratios and high organic content, they may have been an important source of organic carbon for deep-sea benthos. Fecal pellet fluxes accounted for only 2 to 4% and 5 to 25% of the total organic carbon fluxes in summer and winter, respectively, to a depth of 74 m in Funka Bay, Hokkaido (Maita et al. 1988). Particulate flux to 390 m in the Panama Basin was dominated by marine snow, and fecal pellet flux was insignificant (Asper 1987). Taylor (1989) found that fecal pellet flux was only 6% of total particulate carbon flux in the upper 200 m in the North Pacific central gyre, and Ayukai & Hattori (1992) reported that fecal pellet carbon flux was only 0.4 to 1.7% of total POC flux to 100 m off Japan. Lane et al. (1994) estimated that copepod fecal pellet flux in the upper 42 m over the Virginia continental shelf

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Fecal pellets (%)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1430</td>
<td>92</td>
<td>Graf (1989)</td>
</tr>
<tr>
<td>200</td>
<td>Up to 66</td>
<td>Wassmann et al. (1999)</td>
</tr>
<tr>
<td>150</td>
<td>3 to >100</td>
<td>Roy et al. (2000)</td>
</tr>
<tr>
<td>120</td>
<td>‘Almost all’</td>
<td>Small et al. (1983)</td>
</tr>
<tr>
<td>400</td>
<td>99% of total mass</td>
<td>Bishop et al. (1977)</td>
</tr>
<tr>
<td>200</td>
<td>92.8 (sum of all sizes)</td>
<td>Wassmann et al. (2000)</td>
</tr>
<tr>
<td>1500</td>
<td>84.0 (sum of all sizes)</td>
<td>Wassmann et al. (2000)</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>389 to 5068</td>
<td>5 to 10</td>
<td>Pilskaln & Honjo (1987)</td>
</tr>
<tr>
<td>74</td>
<td>2 to 25</td>
<td>Maita et al. (1988)</td>
</tr>
<tr>
<td>390</td>
<td>‘Insignificant’</td>
<td>Asper (1987)</td>
</tr>
<tr>
<td>200</td>
<td>6</td>
<td>Taylor (1989)</td>
</tr>
<tr>
<td>100</td>
<td>0.4 to 1.7</td>
<td>Ayukai & Hattori (1992)</td>
</tr>
<tr>
<td>42</td>
<td><1</td>
<td>Lane et al. (1994)</td>
</tr>
<tr>
<td>500</td>
<td>Mean 20, range 10 to 30</td>
<td>Passow et al. (2001)</td>
</tr>
<tr>
<td>Moderate to variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10 to 19</td>
<td>Urrère & Knauer (1981)</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
<td>Urrère & Knauer (1981)</td>
</tr>
<tr>
<td>1500</td>
<td>3</td>
<td>Urrère & Knauer (1981)</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>Fowler et al. (1991)</td>
</tr>
<tr>
<td>150</td>
<td>29</td>
<td>Fowler et al. (1991)</td>
</tr>
<tr>
<td>250</td>
<td>33</td>
<td>Fowler et al. (1991)</td>
</tr>
<tr>
<td>2300</td>
<td>3 to 35</td>
<td>Carroll et al. (1998)</td>
</tr>
<tr>
<td>1000</td>
<td>1.6 to 62.0</td>
<td>Miquel et al. (1994)</td>
</tr>
<tr>
<td>860</td>
<td>18 to 199</td>
<td>Small & Ellis (1992)</td>
</tr>
<tr>
<td>500</td>
<td>10 to 30%</td>
<td>Bauerfeind et al. (2001)</td>
</tr>
<tr>
<td>300</td>
<td>Pre-El Niño 5 to 10</td>
<td>González et al. (2000a)</td>
</tr>
<tr>
<td>El Niño</td>
<td>24 to 38</td>
<td>González et al. (2000a)</td>
</tr>
<tr>
<td>Post-El Niño 3 to 11</td>
<td>González et al. (2000a)</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>5 to 48</td>
<td>Gowing et al. (2001), Asper & Smith (1999)</td>
</tr>
</tbody>
</table>
constituted <1% of total particulate carbon collected in sediment traps and 0.3% of particulate carbon in the water column. The contribution of zooplankton feces to particulate carbon flux was at 80, 200 and 1000 m depths in the Mediterranean was variable over the annual cycle (1.6 to 62%) (Miquel et al. 1994). Similarly, Carroll et al. (1998) found that fecal pellet flux over 2300 m in the Mediterranean varied with depth and season, and in terms of types of fecal pellets collected, and that the proportion of total carbon flux attributable to fecal pellets averaged 18%, ranging from 3 to 35%. Lundsgaard & Olesen (1997) concluded that most copepod fecal pellets produced in the Kattegat sank out of the surface layer but that, due to the large component of vertical flux from sources other than copepod fecal pellets, copepod fecal pellet contribution to flux was insignificant. Roman & Gauzens (1997) calculated that the proportion of export flux due to copepod fecal pellets in the equatorial Pacific was small, suggesting that most copepod fecal pellets produced in the euphotic zone decomposed or were ingested by other zooplankton. Landry et al. (1995) calculated that mesozooplankton (>200 µm) grazing in the Southern California Bight seasonally accounted for 16 to 44% of phytoplankton growth but that only 23 to 32% of this grazing was lost rapidly enough from the euphotic zone to be recovered as fecal pellets in sediment traps down to 100 m. Zeldis (2001) concluded that <4% of the POC in sediment traps was due to copepod fecal pellets during an iron enrichment experiment in the Southern Ocean.

The relative contribution of zooplankton fecal pellets to vertical carbon flux can depend on the depth interval being considered. In the euphotic zone of an oligotrophic oceanic station in the sub-tropical North Pacific, there was a 2-layered system (Small et al. 1987) where, in the upper 40 m, there was higher primary production, low chlorophyll concentration and low zooplankton biomass, and the zooplankton produced mainly small fecal pellets that were recycled. In the lower layer from 40 to 100 m depth, there was low primary productivity but high chlorophyll and zooplankton, and many larger zooplankton fecal pellets. There was no fecal pellet flux into sediment traps at 30 m but at 120 m, fecal pellet flux was 30% of total carbon flux. Small et al. (1987) concluded that zooplankton fecal pellets are coupled more to carbon flux out of the bottom layers of oligotrophic euphotic zones than to the carbon flux of unlayered eutrophic euphotic zones. In contrast, Altabat (1989a) concluded that in the Sargasso Sea, the recycling of nutrients in the upper half of the euphotic zone was less efficient than that in the euphotic zone as a whole.

The relative contribution of fecal pellets to vertical flux also depends on epipelagic community structure. Michaels & Silver (1988) simulated the size distributions of pelagic producers and trophic positions of consumers, and their effects on the composition and amounts of sinking fluxes. Picoplankton were the dominant producers in the model, but they contributed little to downward fluxes due to the large number of trophic steps between picoplankton and producers of fecal pellets. Net phytoplankton, though less abundant than smaller phytoplankton, were important contributors to the vertical flux because of the comparatively few trophic steps between them and their consumers, which produce large sinking fecal pellets, and because blooms of netplankton can sink to the benthos directly. The vertical flux varied strongly with community composition of consumers producing fecal pellets. Generalist grazers, which ingest a broad size spectrum of prey from pico- and nanoplankton, were major exporters of fecal pellets to depth. Such generalists that form swarms, including salps and doliolids, may have important episodic impacts on the overall average export from the epipelagic.

The contribution of fecal pellet carbon to total particulate carbon flux out of the euphotic zone can also vary with size and relative carnivorous versus herbivorous feeding patterns of the zooplankton community. Small & Ellis (1992) found that the percentage of total carbon flux attributable to fecal pellet flux from larger zooplankton (>500 µm) in the Santa Monica Basin off California also varied with season, from 10% in October to 172% in May. Assuming no carnivory and adding in fecal pellet flux from smaller (200 to 500 µm) zooplankton, much of which may have been recycled in the epipelagic, percentages of total carbon flux represented by fecal pellet flux ranged from 18% in January and February to 199% in May.

The relative contribution of fecal pellets to total particulate carbon flux can vary in relation to El Niño conditions (González et al. 2000a,b). In January 1997, prior to the 1997-1998 El Niño in the northern Humboldt Current off Chile, zooplankton fecal pellets accounted for means of 5 to 10% of the total POC in sediment traps over the upper 300 m depth. This was during a period when the zooplankton assemblage was dominated by copepods. In July 1997, during the onset of El Niño, the deepening of the thermocline led to a reduction of nutrient input by upwelling, and chlorophyll levels were low. The zooplankton during this period included abundant salps and euphausiids, and zooplankton feces, primarily fecal strings of euphausiids, accounted for means of 24 to 38% of total sediment-trap POC. In post-El Niño conditions in January 1998, when copepods were again dominant, zooplankton fecal pellet carbon had declined to 2.7 to 11.3% of total sediment-trap carbon.

The relative contributions of zooplankton fecal pellets compared to ungrazed phytoplankton can also
vary in relation to upwelling seasons and copepod life cycles. Smith (2001) concluded that zooplankton grazing in the Arabian Sea could control vertical flux variations. During June at the onset of upwelling, large copepods in the epipelagic grazed extensively on diatoms, preventing diatom blooms. The largest vertical flux events were recorded near the end of the upwelling season in August and September, after the dominant copepods had migrated to depth to begin diapause, when ungrazed diatoms constituted the dominant component of sediment-trap contents (Passow et al. 1993).

The apparent importance of fecal pellet flux to depth may also depend on benthic conditions. Pilskaln (1991) found that zooplankton fecal pellets were extremely abundant in anoxic surface sediments of the Black Sea. These fecal pellets were packed with coccolithophorid remains and contributed substantially to the white coccolith-rich sediments. Pilskaln concluded that abundant fecal pellets in these anoxic sediments substantiated the claim that the widespread lack of fecal pellets in sediments deposited under aerobic conditions was due to remineralization by benthic microbes and consumers.

Part of the variability in estimates of the importance of fecal pellets in sedimentary flux may be due to patchiness of fecal pellets and the animals producing them. Using a submersible, Youngbluth et al. (1989) observed abundant fecal pellets (50 to 325 m$^{-3}$) in situ in the Gulf of Maine and canyons south of Georges Bank, where pellets were accumulated at night in 5 to 24 m thick layers in the pycnocline. Positions of these layers in the water column varied with time of day. The pellets were produced by the vertically migrating euphausiids Meganyctiphanes norvegica, which were present in enormous aggregations (up to 10^4 m$^{-3}$), usually near the seabed. These pellets sank rapidly (means of 200 to 211 ± 32 m d$^{-1}$) and were estimated to transport large amounts of organic matter (means of 7 to 12 mg C m$^{-2}$ d$^{-1}$) to the bottom. Youngbluth et al. (1989) concluded that amounts of vertical flux due to zooplankton fecal pellets can vary considerably with hydrography and zooplankton behavior.

MARINE SNOW

When I think of the floor of the deep sea...I see always the steady, unremitting, downward drift of materials from above, flake upon flake, layer upon layer...the most stupendous “snowfall” the earth has ever seen.”

Rachael Carson (1951) p. 74

Marine snow and other macroscopic organic aggregates may originate from a variety of sources. These include abandoned larvacean houses, diatom and dinoflagellate flocs, fecal aggregates and aggregates of miscellaneous detritus (Alldredge & Gotschalk 1990, Alldredge et al. 1998). Marine snow particles contain sticky microbially produced exopolymers that have high efficiencies of aggregation (Alldredge & McGilivary 1991, Stolzenbach 1993, Stolzenbach & Elimelech 1994). Large marine snow macroflocs form under conditions of high phytoplankton biomass and low wind speeds, and dissipate with wind-induced turbulence (Riebesell 1992). Marine snow also accumulates at water-column density discontinuities (MacIntyre et al. 1995).

Marine snow aggregates provide small-scale patchiness of larger particles that may be nutritionally enhanced parcels when consumed by larger pelagic organisms. Microscale chemical patches of oxygen and pH around marine snow particles and fecal pellets were confirmed by Allardige & Cohen (1987). Ploug et al. (1999) found that marine snow aggregates were net heterotrophic communities that were hotspots of microbial respiration in the water column. Allardige (2000) found that dissolved organic carbon associated with marine snow can be up to 31% of the total organic carbon in aggregates and suggested that previous measurements of sedimenting carbon that only included particulate carbon may have underestimated the total vertical flux of organic carbon.

Macroscopic aggregates (>1 mm) are abundant in epipelagic as well as mesopelagic and bathypelagic waters (Silver & Allardige 1981, Honjo et al. 1984, Davoll & Youngbluth 1990, Gardner & Walsh 1990, Pilskaln et al. 1998, Silver et al. 1998b). In Monterey Bay, California, phytoplankton-containing aggregates constituted about half the aggregates in the upper 40 to 250 m layers but declined to only 5% of aggregates at 400 m, prompting Silver et al. (1998b) to suggest that many sub-euphotic zone aggregates were derived from sources not tied to phytoplankton production cycles.

Aggregates are resistant to disaggregation (Allardige et al. 1990) and are typically chemically enriched with higher concentrations of organic carbon, nitrogen, protein, carbohydrate, lipid, phaeopigments, chlorophyll and particulate weight than of those in the surrounding water column (Allardige 1979, 1998), as well as with high levels of trace metals (Hebel et al. 1986).

Concentrations of attached bacteria, phytoplankton and heterotrophic protozoan cells (many of which appear alive), zooplankton, fecal pellets, other biogenic debris, and organic carbon on marine snow and other large particles can exceed those suspended in the surrounding water by as much as 2 to 4 orders of magnitude (Fellows et al. 1981, Silver & Allardige 1981, Caron et al. 1982, Bochdansky & Herndl 1992a,b, Lampitt et al. 1993b, Steinberg et al. 1994, Turley & Mackie 1994, Ploug et al. 1999, Waite et al. 2000). Levels of primary productivity and chlorophyll of algae attached to marine snow can exceed those of the surrounding water column by up to 2 orders of magnitude (Allardige & Cox 1982), but only marine snow of phytoplankton origin contributes significantly to primary production in surface waters (Allardige & Gotschalk 1990). For marine snow in the mesopelagic zone, however, even though bacteria attached to marine snow were >100 times more abundant than in surrounding seawater, since marine snow was rare (0.4 to 5.0 aggregates m⁻³), the contribution made by bacteria attached to marine snow to total mesopelagic zone bacterial production was insignificant, ranging from 0.01 to 0.39% (Allardige & Youngbluth 1985). Plumes of dissolved organics leaking from sinking aggregates may attract bacteria from the water column to attach to marine snow (Kierboe & Jackson 2001). There are also suggestions that bacteria attached to marine snow and other organic aggregates appear to be taxonomically different from those dominating water-column assemblages (DeLong et al. 1993).

Marine snow and other sinking particles may contain enhanced levels of viruses (Proctor & Fuhrman 1991). Large virus-like particles have been found in bulk sediment-trap material, in zooplankton guts and fecal pellets, and in phaeodarian radiolarians, which may have acquired viruses while feeding on sinking or suspended particulates (Gowing 1993).

Depending on their sizes, shapes and densities, marine snow particles may sink tens to hundreds of meters per day, which is either faster or slower than many types of zooplankton fecal pellets (Shanks & Trent 1980, Silver & Allardige 1981, Taguchi 1982b, Gorsky et al. 1984, Asper 1987, Allardige & Gotschalk 1988, Diercks & Asper 1997). Since marine snow particles 'scavenge' smaller particles including fecal pellets from the surrounding water as they sink (Hill & Nowell 1990), adherence to marine snow particles may either enhance or retard sinking rates of fecal pellets (Allardige 1979). A model by Jackson (2001) suggests that sinking rates of marine snow particles may be enhanced if high-density fecal pellets become embedded in the marine snow. Rapidly sinking mucous aggregates from web-feeding euthecosomatous pteropods scavenge picoplankton-sized particles, thereby greatly accelerating their sinking rates (Noji et al. 1997), and Waite et al. (2000) observed massive sedimentation of picoplankton embedded in organic aggregates in the South Pacific.

Some forms of marine snow are fecal pellets. Pomeroy & Deibel (1980) found that up to 4 d old fecal ribbons from pelagic tunicates (salps and doliolids) resembled the floculent organic aggregates colonized with microorganisms that are typically described as 'marine snow' in productive parts of the ocean. Older particles of feces resembled the uncolonized aggregates that appear to be ubiquitous throughout the
ocean. There was a microbial succession on fresh aggregates that initially contained phytoplankton remains but that subsequently developed populations of larger bacteria cells and later protozoans such as flagellates and ciliates. The microbial populations appeared to originate both from cells contained in the feces and from others colonizing from the surrounding water column. However, most bacteria cells in the feces were larger 1 to 3 µm rods and cocci, which were different from the <1 µm minibacteria in the seawater.

Marine snow is a food source for pelagic organisms. Lampitt et al. (1993a) found that marine snow particles in the northeast Atlantic exhibited diel variability in abundance and depth, and suggested that this was due to ingestion by vertically migrating mesopelagic fauna. Lampitt et al. (1993b) confirmed from both gut contents produced on natural diets and feeding experiments conducted at sea that several species of ostracods, copepods and the micronektonic amphipod *Themisto compressa* consumed marine snow. This implied that a food-web shortcut by which picoplankters attached to marine snow, which are too small to be efficiently consumed by mesozooplankton and micronekton, can become part of the diets of these upper-trophic-level consumers when they eat marine snow. Amphipod fecal pellets contained such picoplankters, and gut passage times for vertically migratory amphipods were long enough to allow marine snow consumed at night in the epipelagic to be eliminated at mesopelagic day-time depths. Lampitt et al. (1993b) calculated that such ‘gut flux’ for the amphipod population might constitute as much as 2% of the vertical flux measured simultaneously in sediment traps. Dagg (1993) suggested from both energy-budget imbalances and gut contents that the large (7 to 9 mm long) copepod *Neocalanus cristatus* in the sub-Arctic Pacific must be ingesting large detrital particles such as marine snow. There are other reports or suggestions that zooplankton ingest various types of marine snow, mainly originating from planktonic tunicates (Alldredge 1972, 1976, Hammer et al. 1975, Alldredge & Madin 1982, Ohutsuka & Kubo 1991). Also, Lawrence et al. (1993) found that copepods ingested and assimilated bacteria attached to detrital particles such as marine snow, again suggesting a shortcut between the microbial loop and the grazing food chain. Laboratory investigations have confirmed that marine snow is consumed by copepods and euphausiids (Bochdansky & Herndl 1992a, Dilling et al. 1998), and fish (Larson & Shanks 1996). Graham et al. (2000) attributed a nighttime reduction in amounts of marine snow in near-surface waters off California to consumption or disruption by euphausiids and large copepods that had migrated upward into the epipelagic. Indeed, Dilling & Alldredge (2000) and Goldthwait et al. (2001) found that euphausiids caused fragmentation of marine snow particles by the activity of swimming.

A particular type of macroscopic aggregate is the mucilage phenomenon in the Adriatic Sea (reviewed by Stachowitsch et al. 1990, Herndl 1992). These events have been known for centuries and can cause beach fouling on a massive scale (*mare sporco* or ‘dirty sea’ in Italian), and benthic anoxia. The mucilaginous accumulations are thought to be initially produced by diatoms (Heissenberger et al. 1996, Leppard et al. 1996, Najdek 1996). The intermittent timing and interannual variability of mucilage outbreaks makes pinpointing a cause difficult.

Alldredge et al. (1993) and Kierboe & Hansen (1993) described previously unknown forms of organic aggregates in the sea known as transparent exopolymer particles (TEP). TEP are small, transparent and extremely abundant, and are formed from dissolved exopolymers exuded by phytoplankton and bacteria. TEP range in the longest dimension from 3 to hundreds of micrometers, and in abundance from 28 to 500 ml⁻¹ in coastal California waters. TEP are sticky (B. E. Logan et al. 1995), have high levels of attached bacteria, and are major agents in the aggregation of diatoms and in the formation of marine snow. Alldredge et al. (1993) suggested that TEP might transform dissolved organic matter into particulates by a rapid abiotic pathway, in addition to remineralization by microbes. The abundance, size and extent of bacterial colonization of TEP are quite variable (Passow & Alldredge 1994, Mari & Kierboe 1996), and TEP can be important in the flocculation and mass sinking of diatom blooms (Passow et al. 1994, Alldredge et al. 1995, Passow & Alldredge 1995, Waite et al. 1997, Ploug & Jørgensen 1999, Ramaiah et al. 2001) and blooms of *Phaeocystis* spp. (Hong et al. 1997). However, Engel & Schartau (1999) found that diatom aggregates without TEP sank faster than those with TEP, because TEP reduced the density of aggregates. TEP appear to form from dissolved precursor material (Passow 2000), and phytoplankton appear to be the most important source of TEP, although bacteria may possibly enhance phytoplankton production of TEP (Passow et al. 2001). Schuster & Herndl (1995) concluded that turbulence was more important than bacteria in the water column in the formation of TEP particles in the Adriatic. Krembs & Engel (2001) found that TEP were abundant in Arctic sea ice. Colloidal TEP can be eaten by protozoans (Shimeta 1993, Tranvik et al. 1993) and larvaceans (Flood et al. 1992). Passow & Alldredge (1999) showed that TEP-nanoplankton clusters were readily grazed by euphausiids, and that this process shortcircuited the microbial loop by making cells normally too small to be efficiently grazed available to euphausiids after incorporation into TEP clusters.
Long & Azam (1996) found abundant proteinaceous fibrous particles in the sea that were 3 to 13 times more abundant than TEP, with up to 2 orders of magnitude greater area. Bacteria had colonized 20 to 40% of these particles. Long & Azam (1996) suggested that these proteinaceous particles may serve as nitrogen sources for bacteria and other organisms.

An important summary of both theoretical and empirical studies in the emerging fields of TEP, and the roles of aggregation and stickiness of phytoplankton and other particles in vertical flux was presented in a special issue of ‘Deep-Sea Research’ (Part II, Vol. 42, No. 1) entitled ‘Aggregation in marine systems’ (All-dredge & Jackson 1995, and papers referenced therein).

PHYTOPLANKTON SEDIMENTATION

‘...Huxley was certainly wrong in his interpretation of [Bathybius haeckeli] as a new and primitive life form, but his error was not quite so foolish as many of his contemporaries and subsequent commentators have suggested. Perhaps later generations of oceanographers are much more open to criticism for not recognizing a phenomenon of such potential significance [i.e., sedimented phytoplankton blooms] for so long!’

Rice (1983) p. 179

Phytoplankton were not considered to be a major component of the sedimentary flux until recently. This was because laboratory studies of sinking rates of phytoplankton cells gave sinking rates typically <1 to tens of m d\(^{-1}\) (Smayda 1970, 1971, Smayda & Bienfang 1983, and references therein). However, field studies over the last 2 decades revealed that some ungrazed phytoplankton blooms can sink directly to the benthos at unexpectedly rapid rates.

Bloom sedimentation was first shown for shallow coastal waters (20 m depth) of Kiel Bight (Smetacek et al. 1978, 1984, Smetacek & Hendriksen 1979, Smetacek 1980a,b, 1984). Peaks in phytoplankton sedimentation occurred during the spring diatom bloom in March and April. The low C:chl \(a\) ratios of sedimented materials indicated that it was primarily fresh phytoplankton. Phytoplankton sedimentation declined from May through August during a period when the phytoplankton was dominated by diatomflagellates and microflagellates, and zooplankton were abundant. The high C:chl \(a\) and C:N ratios of sedimented materials during summer indicated that it was highly degraded, due to decomposition under warmer temperatures or zooplankton grazing, or both. Sedimentation increased again during fall diatom and dinoflagellate blooms, when low C:chl \(a\) ratios again indicated that sedimented material was primarily phytoplankton instead of detritus. The highest rates of sedimentation were during winter, when most material collected in sediment traps was resuspended bottom sediments, with high C:chl \(a\) ratios, that had been mixed into the water column by turbulence from frequent storms.

There are other recent reports of episodic mass sedimentation of phytoplankton blooms in coastal waters. Bodungen et al. (1981) similarly reported that a spring bloom in the Baltic, comprising mainly the diatom *Skeletonema costatum*, sank to the benthos. This occurred under calm sea conditions, prior to seasonal thermal stratification. Calculated sinking rates for the *S. costatum* bloom were 30 to 50 m d\(^{-1}\). Cadée (1985) found that macroaggregates with intact cells of the coccolithophorid *Emiliania huxleyi* embedded in mucoid materials were collected in floating sediment traps in the epipelagic, but below the euphotic zone (40 to 70 m depth), during a spring bloom in the North Sea, just after the maximum abundance of this coccolithophorid in the surface layer. Sedimentation of seasonal blooms has also been observed in other nearshore waters off northern Europe (Peinert et al. 1982, Davies & Payne 1984, Cadée 1986, Nicolaisen & Christensen 1986, Noji et al. 1986, Peinert 1986, Skjoldal & Wassmann 1986, Rey & Skjoldal 1987, Kempe & Jennerjahn 1988, Lutter et al. 1989, Wassmann et al. 1991, Passow & Wassmann 1994, Trimmer et al. 1999, Reigstad et al. 2000, Olesen 2001), the Canadian Arctic (Atkinson & Wacasey 1987, Hsiao 1987, Tremblay et al. 1989, Riebesell 1993), British Columbia (Sancetta & Calvert 1988, Sancetta 1989a), California (Allredge & Gotschalk 1989, Gotschalk & Allredge 1989, Logan & Allredge 1989), Washington (Kjærboe et al. 1996), Alaska (Laws et al. 1988, Hansell et al. 1989, Waite et al. 1992), Narragansett Bay (Riebesell 1989) and Antarctica (Bathmann et al. 1991, Karl et al. 1991, Leverentz 1991, Rutgers van der Loeff & Berger 1991, Gowing et al. 2001). Walsh (1983) has speculated that mass sedimentation of phytoplankton blooms to continental shelf sediments may represent substantial global sinks of carbon and nitrogen, and a simulation by Boyd & Newton (1999) suggests that sinking of large ungrazed phytoplankton cells, probably diatoms, may be a major determinant of the flux of particulate organics in several ocean habitats.

Smetacek (1985) has argued that rapid mass sinking of diatom blooms may be a transition from growing to resting stages in the life histories of these algae. Smetacek suggested that sinking is of survival value in diatom species that survive long periods in cold and dark, but not warm nutrient-depleted surface waters. Formation of mucous diatom flocs would accelerate sinking rates of diatoms to depth, away from surface strata with high population levels of zooplankton, during or immediately prior to seasons of maximum grazing pressure. Smetacek (1985) also suggested that
diatom sinking may ‘seed’ coastal sediments with diatom resting spores, contributing to persistence of diatom species in an area by providing seed populations for the next growing season. Bodungen et al. (1986) found evidence for such a scenario in the Antarctic Peninsula region. Formation of diatom aggregates has also been shown to enhance sedimentation in the North Sea (Riebesell 1991a,b) and in the Antarctic (Riebesell et al. 1991).

Mass sedimentation of diatoms appears to have been occurring for tens of thousands to millions of years. Jordan et al. (1991) invoked floculation as a mechanism explaining a 3 cm thick layer of well-preserved diatom sediments from the upper Pleistocene in the Antarctic. Sancetta et al. (1992) summarized data on sinking of rhizosolenid diatoms and concluded that this is a common occurrence now, as well as in the past (Sancetta 1993). Schubert et al. (1998) used organic chemical biomarkers in sediments to reveal that the relative proportions of diatoms and dinoflagellates remained similar but that combined phytoplankton abundances tracked changes in ocean productivity in the Arabian Sea over the last 200 000 yr.

Sapropels (sediment layers with high concentrations of organic carbon) from the Pliocene to the Pleistocene age (5 million to 10 000 yr old) from the eastern Mediterranean are composed primarily of rhizosolenid diatoms (Kemp et al. 1999, Sancetta 1999). These appear to have formed dense mats during summer, which would be expected to be an oligotrophic period. However, such diatoms have endosymbiotic nitrogen-fixing cyanobacteria, which might have enabled them to survive during stratified nitrogen-depleted conditions. Mass sedimentation of these diatoms appears to have contributed to the widespread coincident hypoxia or anoxia recorded in these sediments.

Seasonal mass sedimentation of large diatoms is still a major feature in modern seas (Kemp et al. 2000, Smetacek 2000, Trull & Armand 2001). Examination of laminated sediments and diatom fluxes from sediment traps from the Gulf of California and the Mediterranean led Kemp et al. (2000) to propose that where there is a strong seasonal thermocline and nutrientline, several taxa of ‘giant’ (>50 µm in longest dimension) diatoms may be able to generate substantial production at depth during the summer. Included would be several species of the genera Rhizosolenia, other rhizosolenids such as Proboscia and Pseudosolenia, and species of Stephanopyxis, Thalassiothrix and Coscinodiscus. Some large diatoms such as these appear to be adapted to low light (Goldman 1993) and able to vertically migrate between the euphotic zone and nutrient-rich deeper layers by controlling buoyancy (Villareal et al. 1993, 1996, 1999). Their large size and robust thecae may also make them harder for grazers to eat; thus, they may live longer, allowing a biomass buildup (Smetacek 2000). If these giant diatoms persist at depth throughout the stratified summer period, autumn mixing may cause a ‘fall dump’ of these diatoms, which can produce as much, if not more, export production of diatoms as the typical spring bloom. This might prompt re-evaluation of the common assumption that diatomaceous sediments are paleontological evidence of upwelling because they might have been deposited under oligotrophic conditions instead.

Köroboe et al. (1998) found that diatom aggregates in the Benguela Current upwelling were extremely sticky and contributed little to vertical flux. This was because aggregates became colonized by the heterotrophic dinoflagellate Noctiluca scintillans (Tiselius & Köroboe 1998), which not only grazed on the diatom aggregates but also imparted buoyancy to them so that they did not sink.

Svensen et al. (2001) tested the hypotheses that increased levels of silicate would favor diatom growth, with consequent increases in sedimentation, and that increased turbulence would increase diatom sedimentation through increased aggregation. Neither hypothesis was upheld. While increased silicate did enhance diatom growth, this did not increase phytoplankton sedimentation, relative to communities dominated by flagellates, and increased turbulence had no effects on sedimentation of diatom- versus flagellate-dominated assemblages.

There can be a rapid benthic response to organic input from sinking phytoplankton blooms in shallow water. Graf et al. (1982, 1984) found that there was immediate stimulation of benthic microbial activity following sedimentation of a spring phytoplankton bloom in Kiel Bight. The bivalve Macoma baltica, a macrobenthic sediment surface feeder, commenced accumulation of lipid and glycogen reserves immediately following bloom sedimentation. Responses of other macrobenthic animals were less clear. It appeared that the organic material contributed by this bloom was remineralized within 2 to 3 wk, so its overall contribution to the annual benthic energy budget was only 15 to 25%. During sedimentation of subsequent phytoplankton blooms in Kiel Bight, Graf et al. (1983) found that an autumn phytoplankton bloom was not consumed rapidly by microbial processes, but a spring bloom was consumed within 5 to 6 wk. A simulation of the responses to the fall bloom agreed with field observations (Graf 1987). Supply of food from the surface layer to the benthos, as deduced from sediment samples, appears to be an important factor affecting macrobenthic community structure, biomass and metabolism on the continental shelf in the Bering and Chukchi Seas (Graebmeier et al. 1988, 1989, Graebmeier & McRoy 1989). Meiobrana gave varied re-
sponses to sedimenting phytodetritus, in that it was extensively ingested by harpacticoid copepods but not by other meiofauna (Rudnick 1989) or that there were no apparent relationships between interannual variations in meiofaunal abundance and supply of sedimenting phytodetritus in Auke Bay, Alaska (Fleeger et al. 1989). In the Cretan Sea (northeast Mediterranean), seasonal deposition of phytoplankton stimulated benthic responses by bacteria (Danovaro et al. 2000c) and meiofauna (Danovaro et al. 2000a). Deposition from phytoplankton blooms can also alter sediment nutrient regimes (Conley & Johnstone 1995) and production of dimethylsulfide (DMS) (Osinga et al. 1996).

Phytoplankton blooms can also sink directly into deep water (reviewed by Rice et al. 1986). Deuser & Ross (1980) and Deuser et al. (1981a) found that the flux of organic carbon and particles to the deep (3200 m) Sargasso Sea near Bermuda appeared closely tied to the annual cycle of phytoplankton primary production in surface waters. This signal persisted despite interannual variations (Deuser 1986, 1987, Deuser et al. 1990, 1995). This suggested that there was an efficient mechanism for rapid export (<60 d) of even fine particles from the surface to abyssal depths.

Billett et al. (1983) confirmed the rapid seasonal sedimentation of intact phytoplankton cells to depths of 1 to 4 km in the deep sea off Scotland. Phytoplankton was part of an amorphous organic matrix of fluffy detritus, which time-lapse photography revealed arrived on the sea floor within time intervals of a few hours during the spring–summer bloom period of April to July. Surface sediment samples revealed that the detrital matrix contained intact phytoplankton assemblages resembling those of spring and summer blooms in the overlying near-surface waters during periods immediately prior to sedimentation events. Spring blooms were dominated by diatoms, whereas summer blooms contained proportionately more coccolithophorids. Such rapid sedimentation implied sinking to depths of 2000 m over periods of as little as 2 to 3 wk, or sinking rates of 100 to 150 m d⁻¹. Incorporation of phytoplankton cells into fecal pellets may help explain the rapid descent in summer but not in the early spring, when zooplankton abundance was low, and fecal pellets were scarce in the settled detritus. It was suggested that incorporation of phytoplankton cells into gelatinous matrices enhanced sedimentation rates. Lampitt (1985) showed in subsequent years that the phytoplankton sedimentation recorded by Billett et al. (1983) was not an isolated incident but rather a regular summer occurrence, and extended the recorded depth of this phenomenon from 2000 m to 4000 m. Phytodetrital aggregates sinking from surface layers to 4500 m in the North Atlantic contained a rich community of active bacteria and cyanobacteria (Turley & Mackie 1995), which rapidly degraded and transformed the sedimented material in the deep sea (Lochte & Turley 1988, Pfannkuche 1993), as well as phaeodarian radiolarians and their fecal pellets (Riemann 1989). The formation of phytoplankton aggregates relates partly to coagulation efficiency (‘stickiness’), which increases when cell growth decreases and nutrient limitation increases (Kierboe et al. 1990). Such phytodetrital material is also utilized as food by a wide variety of benthic animals (Thiel et al. 1988) and benthic foraminifera (Gooday 1988). Widespread and abundant phytodetrital aggregates have also been photographed on the sea floor between 450 and 2400 m after the spring bloom on the continental slope of the northwestern Atlantic (Hecker 1990).

Similar linkages between seasonality of surface productivity patterns and vertical flux to the deep sea have been recorded for many areas. These include the Panama Basin (Honjo 1982), the Black Sea (Hay et al. 1990), the Arabian Sea (Haake et al. 1993), the Antarctic (Wefer et al. 1990, DiTullio et al. 2000), the North Pacific (Scharek et al. 1999), the North Atlantic (Honjo & Manganini 1993, Passow & Peinert 1993, Pfannkuche 1993), the Cretan Sea (Danovaro et al. 2000a) and the Barents Sea (Wassmann 1989, Wassmann et al. 1990, 1994, Andreassen et al. 1996, Andreassen & Wassmann 1998). Seasonally atypical transient-episodic vertical fluxes in the Sargasso Sea can also deliver labile phytoplankton-derived detritus not associated with the spring bloom to the deep Sargasso Sea to depths of 3400 m (Conte et al. 1998).

It has been suggested that mucoid agglomerations collected from the deep North Atlantic in 1857, which were described in 1868 by Thomas Henry Huxley as Bathymbus haeckelli, may have actually been collections of settled detrital ‘fluff’ containing phytoplankton (Rehbock 1975, Rice 1983). The story is frequently repeated in introductory oceanography textbooks of how Huxley thought that B. haeckelli was a primordial life form, but his explanation was subsequently discredited during the circumglobal expedition of the HMS ‘Challenger’ (1872 to 1876), when it was concluded that B. haeckelli was nothing more than a precipitate caused when seawater samples were preserved in alcohol. Rice (1983) has shown, however, that in Huxley’s descriptions of B. haeckelli, he noted inclusions that he called ‘coccoliths’, which had likely originated from coccolithophorids, although Huxley was unaware of this at the time. Subsequent drawings of B. haeckelli by Haeckel (reproduced by C. Wyville Thomson [1873], Fig. 63, presented in Rice 1983) show what are clearly coccoliths and coccolithophorids in the B. haeckelli matrix. Rice (1983) concluded that there is strong circumstantial evidence that the original samples of B. huxleyi collected in June and July of
1857 in the northeast Atlantic may have been sedimented blooms of coccolithophorids in a gelatinous matrix, such as those described for the same area and season by Billett et al. (1983). There is increasing evidence of seasonal sedimentation of particulates to various locations in the deep sea (Deuser & Ross 1980), including coccolithophorid blooms (Honjo 1982) and pine pollen (Hinga et al. 1979), which becomes incorporated into copepod fecal pellets (Turner 1991).

There are apparent deep-sea benthic responses to seasonality of phytoplankton and other particulate sedimentation (reviewed by Tyler 1988, Gooday & Turley 1990). Tyler et al. (1982, 1990) found that annual reproductive periodicities and between-species synchrony in the reproductive cycles of several species of deep-sea echinoderms in the northeast Atlantic matched the productive cycle in the overlying surface waters. Echinoderm spawning occurred in late winter and early spring, coincident with the spring bloom. Witte (1996) found similar seasonal reproduction in deep-sea sponges coincident with episodic vertical flux. Lampitt (1990) presented photographic evidence for a single barnacle on the deep-sea floor that its growth rate over a period of 7 mo was high and enhanced by the annual deposition of phytodetritus from the surface layer. Smith & Baldwin (1984) found that sediment community oxygen consumption (SCOC) off California and Hawaii at depths of 3800 to 5900 m was seasonal, with the highest values in early summer, suggesting a benthic response to seasonality of surface productivity. Cole et al. (1987) found that of the organic carbon that sedimnted to 3856 m, comprising largely coccolithophorids and associated macroaggregates, 50 to 85% was remineralized within 1 yr, and the decomposition of these surface-derived particulates accounted for virtually all of the benthic decomposition at this site. Turley & Lochte (1990) confirmed the potential for microbial processing of phytodetritus in laboratory experiments in which sterile detritus was incubated with deep-sea microbial communities under simulated abyssal conditions of high pressure and low temperature. Williams et al. (1987) used carbon isotopes to estimate that maximum estimates for turnover of organic carbon was 4 to 18 yr in chronologically old bathy- and abyssopelagic fish and crustaceans from the North Pacific, and that rapid sinking of organic detritus from the surface was the primary source of organic carbon in the diets of these animals. Gooday & Lambseahd (1989) found that phytodetritus seasonally settled to the deep sea in the northeast Atlantic was a microhabitat for benthic foraminifers, and that patchiness of phytodetritus caused patchiness and species distributions of foraminifers. Graf (1989) found that a pulse of copepod fecal pellets to the deep-sea benthos in the Norwegian Sea was utilized in <8 d by burrowing infauna. A detrital layer on the bottom of the northeast Pacific was seasonally composed of diatoms in summer or radiolarians in fall (Beaulieu & Smith 1998), but there was no significant correlation between distribution and abundance of deep-sea echinoderms and seafloor phyto-detritus (Lauerman & Kaufmann 1998). Pfannkuche et al. (1999) found that the benthic community response to sedimentation of a spring bloom in the North Atlantic included transient increases in metabolic activity but not in benthic biomass.

Supply and demand of organic matter for the deep-sea benthos

There have been several studies indicating that episodic input of organic matter to the deep-sea benthos appears to be an important aspect of supply and demand relationships. Comparisons of the supply of POC sedimenting to the floor of the North Pacific and SCOC, normalized to mineralization to CO₂, indicated shortfalls of carbon supply in meeting sediment consumption demands of as much as 97% of mean values (Smith 1987, 1989). These results were based on short-term measurements (14 d) of sediment-trap accumulations of POC and measurements of SCOC with in situ benthic respirometers. However, in a long time series (≥2 yr) of these measurements in the same area (Smith et al. 1992), when episodic input of POC was included in supply, there was agreement within 15% between organic carbon supply and demand. Smith et al. (1992) concluded that episodic inputs of organic matter can be critical for sustaining abyssal benthic communities below surface layers where seasonal inputs of primary production sediment to depth. In fact, Riebesell & Wolf-Gladrow (1992) simulated particle flux due to phytoplankton bloom aggregation and found that particle flux to the deep ocean could be solely explained by this process. Smith et al. (1994) confirmed concurrence of increased SCOC with episodic seasonal input of POC, and time-lapse photography revealed that mobile epibenthic megafauna such as holothurians and echinoids were twice as active when detrital aggregates reached the sea floor at 4100 m in spring as during other periods of the year.

Long-term time-series studies reveal that sedimentation patterns in the oligotrophic oceanic waters have seasonal, interannual and decadal components, as well as responses to major environmental perturbations such as upwelling or El Niño-Southern Oscillation events (Karl et al. 1996, Michaels & Knap 1996, Pilskaln et al. 1996, Baldwin et al. 1998, Drazen et al. 1998, Lee et al. 1998, Smith & Druffel 1998, Thunell 1998a, Hanson et al. 2000). The range of vertical
flux, excluding highly variable polar regions, varies about 11-fold world-wide, and there is a general linear relationship between surface primary productivity and organic carbon flux to 2000 m (Lampitt & Antia 1997). However, there are still major uncertainties regarding amounts of primary productivity exported by vertical flux and how these vary between locations, over time and with water-column food-web structure (Michaels et al. 1994a, Rivkin et al. 1996, Boyd & Newton 1997, Doney 1997, Emerson et al. 1997, Hansell et al. 1997a, Karl et al. 1997, McGillicuddy & Robinson 1997). Climate-induced domain shifts toward an ecosystem dominated by prokaryotes over the last 3 decades may be occurring in the North Pacific (Karl et al. 2001a), and this may have altered nutrient stoichiometry and flux pathways (Karl et al. 2001b) as well as export processes (Christian et al. 1997).

There is evidence, however, that at least some portions of the deep sea may be undergoing sustained reductions in the supply of organic matter supplied by vertical flux, and that these reductions may be related to processes in the overlying water column and atmosphere. A 7 yr time series of supply of POC sedimenting to the sea floor at 4100 m in the northeastern Pacific and SCOC revealed a pronounced decline in POC (52 to 59%) without any significant reduction in SCOC from 1989 to 1996 (Smith & Kaufmann 1999). This coincided with a period of increasing sea surface temperatures and declines in primary production, zooplankton biomass, kelp production and seabird abundance in the North Pacific (Druffel & Robison 1999). Smith & Kaufmann (1999) suggested that if these temperature increases are related to anthropogenic increases in greenhouse gases in the atmosphere, and if the decline in food supply to the deep sea is not reversed, concomitant shifts in the characteristics and composition of deep-sea benthic communities and the role of the ocean in the global carbon cycle could result. This apparent 7 yr deficit was reversed in the eighth year, by an increase in sedimentary flux (Smith et al. 2001). What remains to be seen is whether much of the ocean bottom periodically experiences deficits of sedimented POC relative to SCOC. In the only other long-term study of these parameters, in the Sargasso Sea off Bermuda, SCOC appears relatively constant over time, and sedimented POC appears sufficient to balance it (Sayles et al. 1994). Smith et al. (2001) suggested that additional sources of organic matter undersampled by sediment traps, such as episodic lateral advection, terrestrial discharges or long-term climate variations in the oceanic production system, may be important in resolving discrepancies between organic matter supply and demand in the deep sea.

SUMMARY

The vertical flux in the sea is due to intertwined combinations of zooplankton and nekton fecal pellets, marine snow and phytoplankton detritus. Some fecal pellets attach to marine snow, some forms of marine snow are fecal pellets, and some phytoplankton detritus forms marine snow. Portions of this flux reach the benthos, but much, if not most, is repackaged or recycled in the water column. Synthesis of the relative contributions of fecal pellets, marine snow and sinking phytoplankton to vertical flux and water-column recycling is elusive, since these processes are highly variable, situation-specific and dependent on multiple interacting factors. Within the last 2 decades a major discovery is that the deep sea is not as unvarying as earlier thought, but rather is subject to seasonal and episodic inputs of sedimenting organic matter, which may provoke benthic biological responses. Further, the sedimentary flux of fetal pellets, marine snow and phytodetritus is important not only to communities on the sea bottom but also to those in the water column. Together, fecal pellets, marine snow and sinking phytoplankton are major components of the 'biological pump' that not only transports and recycles materials in the sea but also may scrub greenhouse gases from the atmosphere.

Acknowledgements. I wish to thank Camilla Svensen of the University of Tromsø for an invitation to present an overview lecture at the 2001 Aquatic Sciences Meeting of the American Society of Limnology and Oceanography in Albuquerque, New Mexico, February 12 to 16, 2001, in a special session entitled: ‘To sink or not to sink: the role of zooplankton for export and retention of fecal pellets and aggregates (environmental conditions).’ That invitation prompted preparation of this review. Other presentations in that session, referenced in the ‘Literature cited’ dated (2001), include those of Urban-Rich, Svensen & Nejstgaard, Goldthwaite et al., Olesen, Baueraus, Leiding & Reimberg, and Jackson. I greatly appreciate the assistance of Debbie Ellis of the University of Massachusetts at Dartmouth in preparing visuals for the Albuquerque presentation. I also thank John Dolan for editorial advice that improved the paper.

LITERATURE CITED

Dagg MJ, Walser WE (1987) Ingestion, gut passage, and egestion by the copepod Neocalanus plumchrus in the laboratory and in the subarctic Pacific Ocean. Limnol Oceanogr 32:178–188

bacteria assemblages. Limnol Oceanogr 38:924–934
Dortch Q, Robichaux R, Pool S, Milsted D and 6 others (1997)
Dymond J, Collier R (1988)
Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Oceanogr 16:147–194
Fowler SW, Small LF (1972) Sinking rates of euphausiid fecal pellets. Limnol Oceanogr 17:293–296

Turner: Components of sedimentary flux

87

Mar Biol 77:235–246
Jackson GA (2001) Incorporating joint algal and fecal pellet aggregation and resulting flux from the surface mixed layer. Abstracts of papers presented at the American Society of Limnology and Oceanography Meeting, Albuquerque, New Mexico, February 12 to 16, 2001, p 73
Karl DM, Knauer GA, Martin JH (1988) Downward flux of
Kwint RLJ, Irigoien X, Kramer KJM (1996) Copepods and

Leverenter A (1991) Sediment trap diatom assemblages from

Moore HB (1931) The muds of the Clyde Sea Area. III. Chemical and physical conditions; rate and nature of sedimentation; and fauna. J Mar Biol Assoc UK 17:325–358

Nicolaïsen W, Christensen H (1986) Pelagic turnover and transport to the bottom of particulate organic material in the northern Øresund. Ophelia 26:317–332

Noji T, Turn: Components of sedimentary flux 93

Nicolaïsen W, Christensen H (1986) Pelagic turnover and transport to the bottom of particulate organic material in the northern Øresund. Ophelia 26:317–332

Noriki S, Ishimori N, Harada K, Tsunogai S (1985b) Removal of trace metals from seawater during a phytoplankton bloom as studied with sediment traps in Funka Bay, Japan. Mar Chem 17:75–89

Olesen M (2001) How small vertical loss rates can lead to exceptional high primary production in a stratified coastal system: Abstracts of papers presented at the American Society of Limnology and Oceanography Meeting, Albuquerque, New Mexico, February 12 to 16, 2001, p 106

Plannkuche O (1993) Benthic response to the sedimentation

Sautter LR, Thunell RC (1991) Planktonic foraminiferal response to upwelling and seasonal hydrographic conditions: sediment trap results from San Pedro Basin, South-
Shanks AL, Edmonson EW (1990) The vertical flux of metazoans (holoplankton, meiofauna, and larval invertebrates) due to their association with marine snow. Limnol Oceanogr 35:455–463
Sumida PTG, Tyler PA, Lampitt RS, Gage JD (2000) Reproduction, dispersal and settlement of the bathyal ophiuroid
Toggweiler JR (1989) Is the downward dissolved organic

Wassmann P (1986) Benthic nutrient regeneration as related to primary productivity in the west-Norwegian coastal zone. Ophelia 26:443–456

Wassmann P (1991b) Sampling and analysis of marine particles with PEBENO CO (Pelagic-Benthic Coupling in the Norwegian Coastal Zone), University of Tromsø, Norway.
In: Marine particles: analysis and characterization. AGU Geophys Monogr 63:97–99
Sarsia 84:239–252

Editorial responsibility: John Dolan, Villefranche-sur-Mer, France

Submitted: October 14, 2001; Accepted: December 20, 2001
Proofs received from author(s): February 5, 2002