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INTRODUCTION

Plankton are distributed in patches (Cushing 1953,
Steele 1978) which can be conceptualised as rare dis-

continuous local regions of high density, sparsely dis-
tributed over a larger background of low density. How-
ever, the extent and abundance of such patches are
difficult to quantify. Geostatistics is a powerful set of
tools that can assess patchiness (Legendre & Fortin
1989, Legendre & Legendre 1998). Underlying this
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ABSTRACT: The distribution of ciliates in a Mexican coastal lagoon was studied. The 4 goals were to:
examine small-scale (<100 m) patches; indicate how geostatistical techniques can be used to examine
these patches; make inferences concerning ciliate distribution and behaviour in the lagoon using geo-
statistical techniques; and assess geostatistics as a method for modelling ciliate distributions. Underly-
ing these goals we attempt to make geostatistical techniques accessible to the non-expert. We provide
an overview of the methodology, references to the geostatistical literature, and use our system as an
example. Ciliates were sampled in a 40 × 40 m grid, divided at 10 m intervals; the grid was further di-
vided into subsets, to determine 1 to 10 m scale variation. Between 30 and 35 points were sampled on
2 occasions (January and October). Ciliates were preserved with Lugol’s iodine; abundance and spe-
cies composition were determined by standard inverted microscopy. The work focused on 4 abundant
ciliate species. We indicate, using the variographic analysis, that the abundance of 3 of the 4 ciliates is
neither randomly nor homogeneously distributed, but exhibits a structured small-scale patchy distrib-
ution. We indicate that species-specific patterns of patchiness exist in stratified and in mixed waters,
supporting the notion of behavioural niche-separation of planktonic ciliates. Patches of <13, <18, and
<77 m were formed by Lohmaniella oviformis, Tintinnopsis sp. and Strombidium sp., respectively. In
contrast, Pleuronema sp. formed patches below the detection limits of the analysis (<1 m). Using geo-
statistical techniques, we established variograms and used them to model ciliate distribution and pre-
dict ciliate behaviour. Distribution maps were then generated that depicted the shape, distinctness,
and gradient of the different patches. After analysing the data, we proposed a working definition of a
‘ciliate patch’: regions with abundance above the cut-off of the upper quartile from the kriging pre-
diction model. Finally, error-maps were developed, indicating the coefficient of variation of the pre-
dicted distributions. We conclude that geostatistical analysis is a powerful tool to examine microzoo-
plankton at small-scales, and we support its further application in the field.

KEY WORDS:  Microzooplankton patchiness · Variographic analysis · Ordinary kriging · Tintinnopsis ·
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approach is the expectation that, on average, samples
close together have values (e.g. of abundance) more
similar than those further apart. This methodology has
been applied to examine the spatial distribution of a
number of aquatic populations in various systems (e.g.
Mackas 1984, Legendre & Troussellier 1988, Freire et
al. 1992, González-Gurriarán et al. 1993, Pelletier &
Parma 1994, Maravelias et al. 1996, Pinel-Alloul et al.
1999, Pinca & Huntley 2000, Roa & Tapia 2000, Passy
2001, Rueda 2001, Defeo & Rueda 2002), but to our
knowledge, it has not been applied to small-scale dis-
tributions of microzooplankton.

Many works that use geostatistics either provide de-
tailed methodology or assume expert knowledge on the
part of the reader. While we recognise the existence of
an entire literature devoted strictly to these details (e.g.
Isaaks & Srivastava 1989, Cressie 1993, Goovaerts
1997, Armstrong 1998, Chilès & Delfiner 1999 and ref-
erences therein), with some notable exceptions (Le-
gendre & Fortin 1989, Liebhold et al. 1993), there is a
lack of simple ‘how-to’ instructions on the processes of
geostatistics, using case-specific examples. Thus, as a
basis for our own work, and to encourage other aquatic
microbial ecologists to apply these techniques, we pro-
vide an overview of the methodology, references to the
appropriate literature for geostatistical details, and fi-
nally use our system as an example. Specifically, we re-
frained from complicating this description with jargon
and detailed formulae. In taking this approach, we de-
viate somewhat from a standard presentation; for clar-
ity some specific methods are incorporated into the ‘Re-
sults and discussion’ section.

This study has 4 main goals: (1) to examine the small-
scale (<100 m) distribution patterns of ciliates in a
coastal lagoon; (2) to assess how geostatistical tech-
niques can be applied to examine and quantify small-
scale patches of plankton; (3) to use these geostatistical
techniques to make inferences concerning ciliate dis-
tribution and behaviour in the lagoon; and (4) to assess
the ability of these techniques to model ciliate distribu-
tions in the lagoon.

MATERIALS AND METHODS

General overview of geostatistics. It is simple to cre-
ate contour/density maps from grid data (e.g. Fig. 1a,b)
using many existing software packages (e.g. Surfer,
Golden Software; S-Plus, MathSoft). Such maps pro-
vide some information regarding microplankton distri-
bution (e.g. Montagnes et al. 1999) but may be inade-
quate or misleading as they: (1) use simplistic methods
to create smoothed contours; (2) typically, do not pro-
vide a method to interpolate between contours or
extrapolate beyond the data set; (3) do not provide

detailed, quantifiable data regarding patch composi-
tion; and (4) do not provide an estimate of the error
associated with predicted values (e.g. of abundance).
Geostatistical analysis provides a method of solving
these problems, by assuming an underlying probabilis-
tic model that accounts for the pattern of spatial vari-
ability (Cressie 1993, Chilès & Delfiner 1999). Geosta-
tistics is based on the concept of random spatial
distributions; in our case, ciliate assemblages are
viewed as random patches in space, and the data col-
lected are a discrete observation of that distribution.

Here, we offer a simple step-by-step description of
the basic principles underlying this analysis, and we
assume that the variogram is valid over the area cov-
ered by the population (i.e. we assume a second order
stationarity hypothesis; see Roa & Tapia 2000).

First, data are collected over a region, ideally, but not
necessarily, forming a regular grid (Fig. 1a). Next,
comparisons are made among data (in our case, ciliate
abundance) at discrete distances; e.g. over all 1 m
intervals (short arrow, Fig. 1a), all √2 m intervals
(medium arrow, Fig. 1a), all 2 m intervals (long arrow,
Fig. 1a), etc. For each discrete distance (referred to as
a lag, h), data-pairs can be plotted on a scattergram to
examine the strength of their association (Fig. 1c). If
2 estimates from grid-points have an identical value,
then that point will fall on the 45° slope of the scatter-
gram, and if they differ substantially, they will fall far
from this line. An estimate of the variance of these data
is then computed for the scattergram at each lag fol-
lowing:

(1)

where γ̂ (h) is the estimated variance for any lag (h),
z(xi) is a datum-value at any one point, z(xi + h) is a
datum value at lag (distance) h from z(xi), and N(h) is
the number of pairs of points separated by h. Ideally, to
reduce biases, only lags less than half the maximum
lag are used, and all points of the variograms include
>30 data pairs (Isaaks & Srivastava 1989).

Each variance value, γ̂ (h), is then plotted against the
associated lag (h) to produce an ‘empirical variogram’
(Fig. 1d). Patchy systems typically follow the pattern
illustrated in Fig. 1d: as distances increase between
samples, the variance increases until variance remains
constant regardless of the lag, i.e. 2 samples very close
together are probably similar; as distance between
samples increases, they become less similar. Ulti-
mately, regardless of distance, there is a constant dis-
similarity between samples.

To assess the shape of the empirical variogram, func-
tions are fit to the data to provide a ‘model variogram’.
There are a number of potential functions (Isaaks &
Srivastava 1989, Goovaerts 1997, Armstrong 1998), but
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Fig. 1. Schematic description of the geostatistical method, using ciliate distribution as an example. Ciliates are collected from
points, generally forming a grid (a). To assess for patchiness, data can be processed by a simple contour-mapping function, to pro-
duce contour (or density) plots (b). If patchiness appears to exist, geostatistical analysis is then applied. First, ciliate abundance at
points separated by a common distance (lag, h) are calculated; data pairs can then be plotted on a scattergram (c). Next, this illus-
tration of similarity is quantified: for a single lag, differences are summed, squared, and divided by twice the number of pairs to
yield a variance (γ, equation). This process is repeated for each lag; e.g. the short, medium, and long arrows in (a) are examples of
the first 3 lags for which γ is calculated. Each of these estimates of γ is then plotted against the lag to produce an empirical vari-
ogram (points in d). Then, a model is fit to the variogram data (lines in d); these are used to predict abundance at unsampled
points and to assess the behaviour of the ciliate (see ‘Results and discussion’ on species). Commonly, exponential, spherical, or
Gaussian models are fit to the data (thin, medium, thick lines, respectively, in d). There are 3 main components of the variogram:
the nugget (c0); the range (a0); and the sill (c0 + c ), composed of the nugget variance (c0) and the structural variance (c) (see ‘Gen-
eral overview of geostatistics’). Once models are fit to the variogram, they are used to map ciliate abundance by kriging (see
‘Cross-validation and kriging’). Note that each model produces a different predicted distribution (e–g, see ‘General overview of 

geostatistics’)
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the 3 most commonly used are spherical, exponential,
and Gaussian functions (Fig. 1d). The spherical func-
tion indicates a system where patches are more struc-
tured (Fig. 1e); the exponential function indicates that
patches have fuzzy edges (Fig. 1f); the Gaussian func-
tion indicates an extremely continuous distribution
with patches that fade off smoothly (Fig. 1g). Thus, the
shape of the function (or model) fit to the variogram
also provides useful information concerning the struc-
ture of the system and the behaviour of the organism
(ciliates in our case).

The relationship illustrated in Fig. 1d indicates fea-
tures of the patchiness: the distance between the small-
est scale sampled and where the data become asymp-
totic (Fig. 1d: range, a0) indicates the range over which
patches will be observed; the asymptote (Fig. 1d: sill, c0

+ c) provides an indication of the variability of the data in
the sampling region; and the y-intercept (Fig. 1d). Note,
the sill is composed of the structural variance (c) and the
nugget (c0). The nugget is an unfortunate term stemming
from the geological roots of the methodology rather than
being named after a general phenomenon; it indicates
the difference between 2 samples at an infinitely small
distance from each other, either due to natural variation,
experimental error, or both. These 3 aspects of the data
tend to exist for most spatial distributions, but the shape
of the variogram varies depending on how data are
spatially distributed.

Furthermore, using a process called kriging (named
after D. G. Krige, who devised the method), the model
can then be used to interpolate between sampling
points on the grid (Fig. 1a) to provide a better predic-
tion of distribution (cf. Fig. 1b vs Fig. 1e-g). Finally, the
model can be incorporated into ecosystem models to
extrapolate patchiness to larger scales (e.g. rather than
initiating dynamic models with even or randomly dis-
tributed plankton, species-specific patterns of patchi-
ness could be imposed). Thus, geostatistical analysis
provides considerable information about a system.

The above description is simple, and the reader is
directed to Isaaks & Srivastava (1989), Cressie (1993),
Goovaerts (1997), Armstrong (1998), Chilès & Delfiner
(1999) and to the reviews of Legendre & Fortin (1989),
Rossi et al. (1992), and Burrough (1995). Below (see
‘Results and discussion’) we illustrate the usefulness of
this method, as applied to the distribution of 4 abun-
dant ciliate species in a coastal lagoon. We use these
data to assess the behaviour of these ciliates and to
indicate some of the subtle inferences that can be
made from geostatistical analysis concerning the biol-
ogy of ciliates in general.

Sampling design, collection, and enumeration. A
40 × 40 m grid, divided at 10 m intervals, was designed
following the requirements of the geostatistical analy-
sis (Yfantis et al. 1987, Burrough 1995). Ciliate abun-

dance was determined on 2 occasions (25 October 2000
and 23 January 2001) at a sampling point located in the
node of each cell. Five additional (October), and
10 additional (January) sampling points were added at
a distance of 1 m from some of the above-mentioned
points, to provide information for a better estimation of
the small-scale variability (Fig. 2).

Sampling took place near the centre of Chautengo la-
goon, Mexico (16° 37.4’ N, 99° 06.6’ W), at the 30 to
35 points of the grid described above (Fig. 2). On each
date, all samples were taken within 2 h, before midday
when thermally induced winds occur. Water column
temperature and salinity were recorded with a ther-
mometer and an American Optical refractometer. Trans-
parency was measured with a Secchi disk. Sampling was
conducted at 0.4 m by deploying 400 ml Niskin-type bot-
tles, built for use in shallow waters. Individual 400 ml wa-
ter samples were homogenised, and for each, 100 ml
subsamples were preserved with acid Lugol’s iodine
(2% final concentration) (Throndsen 1978).

Ciliates were enumerated by settling and examining 5
ml, following the Utermöhl method (Hasle 1978). Sam-
ples were viewed using an inverted microscope (×200
and ×400), equipped with phase-contrast optics. Al-
though all ciliate taxa were quantified, in this study only
4 case-species were examined: a tintinnid and a scutic-
ociliate from the October 2000 survey, and a strobilidiid
and a strombidiid from the January 2001 survey.

Data analysis. Simple contour maps of ciliate abun-
dance were made for exploratory analyses (see below)
using the triangulation method of Surfer (Golden Soft-
ware). Spatial analysis was conducted using the vari-
ogram as the basic tool for the characterisation of spa-
tial structure and mapping of ciliate abundance (see
above, Rossi et al. 1992, Goovaerts 1997). Model vari-
ograms were fit to the empirical variogram data for
each ciliate; for each case (each ciliate), 3 different

188

Fig. 2. Chautengo lagoon, Mexico, indicating the location of
the 40 × 40 m sampling grid of 30 points (empty circles,
October 2000), and 35 points (empty and solid circles, January 

2001)
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models were fit to the variogram according to an
approximate weighted least squares (WLS) procedure,
as described in Cressie (1993) (the best fit models are
indicated in Fig. 4). Mapping was based on ordinary
kriging, an interpolation technique that predicts values
at unsampled points, using the model variogram
(Isaaks & Srivastava 1989). To provide an indication of
the precision of estimates, the coefficient of variation
associated with each estimate was calculated as the
ratio of the standard deviation to the mean, both of
which are determined by kriging (Isaaks & Srivastava
1989). Some further details of the methodology associ-
ated with specific conditions are presented below.

RESULTS AND DISCUSSION

Environmental and biological variables

In October, the 1 m water column (i.e. from the surface
to the sediment) was stratified at ~0.8 m: salinity was
16 psu at the surface and 23 psu near the bottom, while
temperature was uniform, at 30°C throughout the
column. The Secchi depth in October was 0.6 m, there-
fore, the entire water column was well illuminated,
assuming the euphotic zone is 2 to 2.7 times the Secchi
depth (Parsons et al. 1977). In January, the 0.8 m water
column was mixed: salinity was 30 psu and temperature
was 29°C; the Secchi depth was 0.3 m. Thus, for each
individual month (October stratified, January mixed
water), samples taken at 0.4 m across the grid were from
waters with similar physical conditions.

Taxa for geostatistical analysis

In October, the ciliate community was dominated by a
tintinnid (Tintinnopsis sp.) and a scuticociliate
(Pleuronema sp.), which constituted up to ~70 and 10%
of the total ciliate numbers, respectively. Tintinnopsis sp.
abundance varied between 21 and 37 cells ml–1, where-
as Pleuronema sp. varied between 2 and 7 cells ml–1. In
January, Lohmaniella oviformis (5 to 23 cells ml–1) and a
medium sized (30 to 50 µm) Strombidium sp. (2 to 14 cells
ml–1) were the dominant ciliates, composing up to ~50
and 30% of the numbers, respectively. The following
sections are a step-by-step presentation of the analysis
conducted to uncover the underlying spatial structure of
the abundance of these 4 ciliates.

Exploratory data analysis

Before starting the variographic analysis, an
exploratory data analysis was performed to assess the

main features of the data and examine for outliers that
may influence the results of the analysis (Tukey 1977,
Cressie 1993). We used several of the exploratory tech-
niques but here we present only the contour maps of
the data.

These maps indicated the overall trends in the abun-
dance data (Fig. 3). Local maxima of Tintinnopsis sp.
were apparent: 2 distinct peaks of abundance occurred
over the background surface (Fig. 3a). The contour
map for Lohmaniella oviformis (Fig. 3b) indicated sev-
eral areas of high abundance. The spatial distribution
for Strombidium sp. (Fig. 3c) suggested 3 peaks of
abundance. The contour map for Pleuronema sp. indi-
cated higher values in the upper region and a small
peak near the centre of the grid (Fig. 3d). The contour
plots thus suggest that patchiness existed for all 4 spe-
cies. However, as stated above, contour maps have
limitations.

Structural analysis

Following the procedure outlined above (see ‘Mate-
rials and methods’ and Fig. 1), the next step was to cal-
culate variograms for the 4 species (Fig. 4). However a
preliminary requirement, not outlined above, was to
determine if the patch structure has a directional com-
ponent. For example, Langmuir currents may induce
elongated planktonic patches (Parsons et al. 1977), in
which case, the spatial variability will be higher when
perpendicular to the wind direction and smaller when
parallel to it.

A phenomenon with spatial variability, the same in
any direction, is known as isotropy, whereas direction-
ality results in anisotropy. Empirical variograms (i.e.
variograms presenting lag-data only; e.g. points on
Fig. 4 a–d) can be used to test for anisotropy (for details
see Rossi et al. 1992). To assess for anisotropic distribu-
tion, empirical variograms for all 4 ciliates were com-
puted for vertical and horizontal directions—given our
experimental design these were the only directions
that could be assessed. There was no marked
anisotropic effect, so the spatial distribution was
assumed to be isotropic. Furthermore, stable condi-
tions of weather and water column led us to adopt an
omnidirectional variogram. It was thus appropriate to
use empirical omnidirectional variograms in the analy-
sis. To perform variographic analysis we used 60%
(~30 m) of the maximum lag as the active lag distance,
as variograms decompose at intervals close to the max-
imum (Isaaks & Srivastava 1989). All point of the vari-
ograms, except the first one, included >30 data pairs
(see Fig. 4).

Variograms are sensitive to extreme data values (po-
tential outliers), as differences are squared (Eq. 1). To
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assess for the influence of such values, a further test
was conducted; a ‘robust’ variogram was computed
which can reduce the effect of outliers, without remov-
ing data (Cressie & Hawkins 1980, Maravelias et al.
1996). The comparison between the ‘classical’ and the
‘robust’ variogram indicated no remarkable differences
in terms of the underlying spatial structure. Thus, the
presence of high values did not affect the detection of
the patches, and these high values may actually repre-
sent the core of patches. Consequently, in subsequent
analyses, classical variograms were used.

The next step for data analysis was to fit models to
the empirical variogram data (i.e. lines on Fig. 4).
Using such models we can characterise the spatial

structure of ciliate abundance and estimate abundance
at unsampled points. The fitting of models was con-
ducted following the approximate WLS procedure
(Cressie 1993). This method gives more weight to the
lags with more observations, and with lower empirical
variogram values, allowing for a better fit of the vari-
ogram near the origin, which can be the most impor-
tant part of the model. Note: in practice most geostatis-
tical packages determine average lags from the data,
and thus variograms generally do not present lags
identical to those measured (cf. Fig. 2 with Fig. 4).

In fitting the omnidirectional variograms, the 3 mod-
els illustrated in Fig. 1 were considered, but only
2 adequately fit the data (based on the least weighted
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squares, Cressie 1993): a ‘spherical’ model with a
nugget effect and an ‘exponential’ model, also with a
nugget effect. These models are given by:

(2)

for the spherical model, and:

(3)

for the exponential model, where c0 is the nugget,
c0 + c is the sill and a0 is the range of the variogram
(Cressie 1993). These models were fit to the empirical
variograms using the interactive feature of S-Plus 2000
(MathSoft).

The variograms for Tintinnopsis sp. and Lohmaniella
oviformis both illustrated typical cases, similar to that
shown in Fig. 1d, but there were subtle differences
between them. In contrast, the variogram for Strombid-
ium sp. failed to reach a sill over the sampled distance,
while that of Pleuronema sp. appeared to have already
reached the sill. These 4 cases are discussed in detail
below.

Tintinnopsis sp. (Fig. 4a)

Tintinnopsis sp. was the dominant ciliate in October,
when the shallow water column was stratified. A
spherical function best fit the data of the empirical var-
iogram for Tintinnopsis sp., suggesting clearly defined
structured ciliate patches within the sampling grid (see
‘General overview of geostatistics’ above). The range
(Fig. 1d) for this species is ~18 m (Table 1); this is the
distance below which discrete patches might be
observed, e.g. patches could be 1, 10 or 15 m, but
unlikely 20 m in size. Patches on the order of 1 to 100 m
have been suggested for other tintinnids (e.g. Stoecker
et al. 1984), but size limitations of such patches have
generally not been proposed. Using geostatistical tech-
niques, we have now provided observational limits of
these patches.

The spatially structured component (c/(c0 + c) × 100,
Fig. 1d) was 74% of the total spatial variation (Table 1).
This ratio can be interpreted as the portion of the total
variance explained by a spatial model. The nugget
(Fig. 1d) accounts for the microscale (<1 m) variations
and the measurement error (the difference between
repeated ciliate counts made with the same water sam-
ple), and it represented the remaining 26% of the vari-
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ability. The nugget effect thus reflects, in plankton dis-
tribution, the existence of ciliate aggregations that
cannot be further resolved by our sampling. Buskey &
Stoecker (1988, 1989) have indicated that swimming of
the tintinnid Favella sp. would allow the ciliate to
remain in small-scale patches, and Kils (1993) has
demonstrated the existence of dense patches on the
order of centimetres. Such patches may produce the
microscale variance of the nugget that we estimated
for Tintinnopsis sp. The nugget may also represent
measurement error (e.g. variation between subsam-
ples); we are presently examining this error-term in a
separate study (Bulit et al. unpubl.). The nugget also
reflects how tight the patches are (Dalthorp et al.
2000); a small nugget indicates a tight patch. There-
fore, on the basis of the properties derived from the
nugget and range, patches of Tintinnopsis sp. are of
medium size relative to the sampled grid and tighter
than those of Lohmaniella oviformis and Strombidium
sp. patches (see below).

Lohmaniella oviformis (Fig. 4b)

This small strobilidiid, close in size to the nanoplank-
ton, was the dominant ciliate in January, when the wa-
ter column was mixed. Like Tintinnopsis sp., a spherical
function best fit the data of the empirical variogram for
Lohmaniella oviformis, although the exponential func-
tion provided almost as good a fit (Table 1). The range
for this species was 13 m, suggesting that patches of the
strobilidiid were slightly smaller than those of Tin-
tinnopsis sp. The sill of the L. oviformis model was also
lower than that of Tintinnopsis sp. (Table 1), indicating
less variability in its distribution. These small patches
could result from repeated cell divisions, as small cili-

ates can have generation times on the order of hours in
warm waters (Montagnes 1996), but patches might also
be due to swimming behaviour (see below).

For Lohmaniella oviformis, the spatially structured
component was 69% of the total spatial variation, with
the nugget representing 31% (Table 1). These results
suggest a similar structure in patches to that of Tin-
tinnopsis sp; possibly, the slightly larger nugget of L.
oviformis was due to its lower density (Fig. 3), and thus
potentially a larger measurement error. To date, there
are few studies on L. oviformis. Jonsson (1989) exam-
ined the vertical distribution of L. oviformis, indicating
a swimming velocity of 340 µm s–1. In contrast, Jonsson
(1989) found T. campanula to have a vertical swim-
ming velocity of 260 µm s–1. Furthermore, small, naked
strobilidiids tend to have a higher tumbling-reorienta-
tion rate than larger tintinnids (D.J.S.M. pers. obs.).
Thus, although it is small, the ability of L. oviformis to
accumulate in patches by rapid swimming and reori-
entation might be considerable, and we speculate that
this may explain the patches observed in the lagoon.

Strombidium sp. (Fig. 4c)

Strombidium sp. also dominated in January although
its mean abundance (8.0 ± 3.4 cells ml–1) was lower
than that of Lohmaniella oviformis. The variogram for
this strombidiid shows that the variance continued to
increase without reaching a sill. This suggests that
patches tend to be larger than the 40 m sampling grid.
Some geostatistical packages provide an option to fit a
linear variogram, but this does not allow prediction at
unsampled points (e.g. Fig. 1d). Thus, one option is to
fit an exponential model to the data, approximating the
linear shape with a range beyond the survey’s maxi-
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Ciliate Abundance Model Parameters Spatially structured Model statistics
x SD c0 c0 + c a0 component (%) Bias SD2 MSE

(γ, cells ml–1)2 (m) c/(c0 + c ) × 100

Tintinnopsis sp. 27.8 4.0 Spherical 4.5 17.5 17.5 74 –0.22 12.25 12.29*
Exponential 6.6 16.8 24.5 61 –0.20 13.10 13.14

Lohmaniella 12.4 4 Spherical 5 16 13 69 0.13 18.14 18.16*
oviformis Exponential 2.5 16.5 10 87 0.12 18.31 18.33

Strombidium sp. 8 3.4 Exponential 6 15 25.6 60 0.086 11.08 11.09*
Spherical 6 18 70 66 0.081 11.15 11.16

Pleuronema sp. 3.4 1.3 Nugget 14.5 14.5 <1 0

Table 1. Abundance statistics (x: mean; SD: standard deviation, measured as cells ml–1) and parameters of the different variogram
models for ciliate abundance, determined through cross validation (see ‘Cross-validation and kriging’ for details). The best fit, the
lowest according to Cressie (1993), for each ciliate is presented graphically in Fig. 4. See Fig. 1 for a definition of symbols (e.g. c0,

nugget effect; c0 + c, sill; a0, range). Cross-validation results of models and parameters selected to map the predictions of ciliate
abundance by ordinary kriging (see ‘Cross-validation and kriging’ for details): Bias, the mean prediction error (estimated – ob-
served); SD2: the variance of the error; MSE (mean squared error) = SD2 + bias2. See ‘Results and discussion’ for discussion of the 

models. *Lowest MSE
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mum allowable distance (i.e. 30 m for this study); we
followed this second option (see Goovaerts 1997). As
the exponential model approaches its sill asymptoti-
cally, the practical range is calculated as 3 × a0, as the
distance at which the model reaches 95% of its sill
(Goovaerts 1997, Armstrong 1998). In the case of
Strombidium sp., a0 was 25.6 m; therefore the practical
range was ~77 m. Thus, if the grid were larger, discrete
patches of this ciliate are likely to be have been
observed. The spatially structured component was
60% of the total spatial variation (Table 1).

It is unclear why this ciliate would form large diffuse
patches. However, there are many mixotrophic species
of Strombidium (Stoecker et al. 1989, Bernard & Ras-
soulzadegan 1994, Dolan & Pérez 2000); mixotrophs
might form patches larger than exclusively heterotro-
phic ciliates, as autotrophy would allow these ciliates
to occupy areas where there are no prey, assuming
that prey are also distributed in patches. Dale & Dahl
(1987) suggested that swimming behaviour of strom-
bidiid ciliates might cause concentration of organisms.
Jonsson (1989) indicated that some species of Strom-
bidium have swimming velocities of 450 to 680 µm s–1.
Thus, under very calm weather conditions and water
stability like those we found, this speed can be of sig-
nificance, and patches of Strombidium might be large.
However, the Strombidiidae comprises a diverse
group, and it may be imprudent to generalise based on
the few well-studied taxa.

Pleuronema sp. (Fig. 4d)

This species occurred in October at a lower abun-
dance (3.4 ± 1.3 cells ml–1) than Tintinnopsis sp. and it
differs in distribution from those species discussed
above. It appears from the variogram that a sill was
reached below the minimum sampling distance (1 m).
Thus, a pure nugget model was fit to the data (Table 1),
which indicates a lack of spatial resolution; i.e. patches
were not detected. Ideally, we would return to the field
and sample for this ciliate at a smaller scale. Note that
this analysis contradicts the observations predicted by
a simple contour map (i.e. Fig. 3d). Thus, the applica-
tion of geostatistical analysis has allowed a different,
and likely more accurate, evaluation of the distribution
of this ciliate.

We might predict that the bacterivorous nature of
this scuticociliate (Fenchel 1987, Dolan & Coats 1991,
Ederington et al. 1995) means that it forms patches
around detrital clumps. Furthermore scuticociliates
appear to be the most abundant ciliates in aggregates
of suspended matter (Artolozaga et al. 2000), and they
have been associated with detritus (Silver et al. 1984,
Sherr et al. 1986). Such clumps would undoubtedly be

microns to millimetres in size, and thus the patches
would be <<1 m. The samples of Pleuronema sp. that
have high values (13% of the total samples) may,
therefore, be chance collection of detrital material with
associated ciliates.

We have shown, using variographic analysis, that for
3 of the 4 evaluated ciliates, the abundance is neither
randomly nor homogeneously distributed, but rather
exhibits a structured small-scale patchy distribution.
We have also indicated that simply applying standard
contour fits to the data, using existing packages (see
‘General overview of geostatistics’ above) may provide
erroneous conclusions regarding patchiness (e.g. Pleu-
ronema sp. did not form patches when geostatistically
analised). Furthermore, we have indicated that spheri-
cal and exponential functions, and not the Gaussian
function, best model ciliate patches; this suggests tight,
rather than diffuse, patches (see Fig. 1). These are
potentially useful observations of patches, and we thus
support the application of these variographic tech-
niques to analyze microzooplankton distributions.

Cross-validation and kriging

In the next step of the analysis, we indicate how pre-
diction maps are generated and associated with the
coefficients of variation. In this phase, the variogram
models are used to predict abundance values at un-
sampled localities, using a linear prediction method
called ordinary kriging (Isaaks & Srivastava 1989,
Goovaerts 1997, Armstrong 1998).

In practice, the prediction is computed using only
those observations inside a selected ‘search radius’.
The performance of the best model, search radius, and
number of points to be used in the kriging system were
determined through a cross validation procedure. This
procedure consists of incrementally removing observa-
tions (abundance values) from the data set, one by one,
and re-estimating the value of the removed observa-
tion using the parameters being validated (Goovaerts
1997). Thus, a prediction error (predicted abundance –
measured abundance) was generated at each sam-
pling location.

The goal of this validation is to select the model and
the search-strategy parameters that give the minimum
mean squared error (MSE), by making a trade-off
between bias and variance (see Table 1). The MSE is
the sum of the squared bias (the mean of the error) and
the variance (the spread of the error) of the residuals
(Isaaks & Srivastava 1989). The X-valid procedure
(Geo-Eas 1.2.1; Englund & Sparks 1991) was used to
generate the residual vectors. Table 1 summarises the
results of crossed validated models and parameters
from the 2 best models assessed (out of 8 to 10 possible
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models). The models with the lowest MSE (values with
asterisks, Table 1) were then used to map the distribu-
tions of Tintinnopsis sp., Lohmaniella oviformis, and
Strombidium sp. (Fig. 3e–g). These distributions can
then be used to assess patchiness.

Assessing patches

Although many studies describe patches, a ‘patch’ is
rarely quantifiably defined; we offer 2 definitions and
then assess if either is appropriate. Following our ini-
tial argument that patches are rare, relative to a back-
ground of lower abundance, a patch might then be de-
fined as a region where the ciliate abundance exceeds
a cut-off value of the kriging predictions map, such as
(1) the median value or (2) the upper quartile value.
Below, we use our data to assess these 2 definitions.

The search strategy with the best performance for pre-
dicting tintinnid abundance used a circular search
neighbourhood of 12 m and the nearest 10 observations
(Table 1). The kriging-abundance predictions for tintin-
nids (Fig. 3e) were mapped using the spherical model
and these parameters. The resulting distribution differed
from that obtained from the contour plot (Fig. 3a). The
modelled distribution produced one extended patch
(70% of the total area), following Definition 1. In con-
trast, when Definition 2 was applied, 2 small patches ex-
isted and represented the 4.4% of the total area (Fig. 3e).
Following the initial premise that patches are rare, it ap-
pears that Definition 2 is more appropriate for the tintin-
nid. Similarly, the prediction map for Lohmaniella ovi-
formis was made using a spherical model, a circular
search neighbourhood of 12 m in radius, and considered
the 10 nearest points (Table 1). This modelled distribu-
tion (Fig. 3f) differed from the contour map (Fig. 3b),
where several areas were presumptively considered as
patches, and allowed quantification of the distribution:
by Definition 1, patches occupied 52% of the surface,
while by Definition 2, patches covered 23% of the total
area. Again, assuming patches are rare, the second def-
inition of a patch seems more appropriate. For Strom-
bidium sp., an exponential model was used, a circular
search neighbourhood of 20 m in radius, and the nearest
20 points were considered to make the kriging map
(Table 1). The modelled distribution (Fig. 3g) was dis-
tinctly different from that of the contour map (Fig. 3c).
Following Definition 1, the modelled distribution indi-
cated that a portion of a patch occupied 50% of the area,
but by Definition 2, there was a tiny part of a patch, lo-
cated at coordinates 0, 20, covering only 1% of the area,
yet again supporting Definition 2. In contrast to the 3
taxa examined above, fitting of a pure nugget model to
the empirical variogram for Pleuronema sp. precluded
the use of kriging (Goovaerts 1997). Therefore, at this

scale, Pleuronema sp. is considered to be randomly dis-
tributed, with no distinct patches.

We have thus assessed that in the lagoonal environ-
ment, structured ciliate patches exist at a small-scale in
stratified as well as in mixed waters. Following the
premise that patches are rare (covering <<50% of the
sampled area), and using quantitative criteria provided
by geostatistics, we have put some limits on the defini-
tion of these ciliate patches; they are nearer to being
associated with the abundance above the density cut-
off of the upper quartile range from kriging maps,
rather than above the median value. We have also
indicated a difference in predicted distribution when
kriging is applied to the data, relative to using tradi-
tional interpolation methods. This is because the con-
tour levels obtained by kriging are dictated by the var-
iogram model and are not simply based on isolated
points measured over the grid. Furthermore, the mod-
els illustrated in Fig. 4 can be used to predict patchi-
ness on a larger scale and thus could be used for
ecosystem models. However, like any estimates there
is error associated with these predictions; the next sec-
tion examines this error.

Estimating error of the modelled distribution

The maps for the coefficient of variation (CV) indi-
cate the precision of the estimated distribution
(Fig. 3h-j). This error term can then be used to assess
the predictable nature of the kriging map, taking
into account the variability of the predictions. The
CV for the predicted distribution of Tintinnopsis sp.
varied between 9 and 17% (Fig. 3h); the CV for
Lohmaniella oviformis ranged from 16 to 43% (Fig.
3i); the CV for Strombidium sp., ranged from 25 to
74% (Fig. 3j). As the CV was <100% in all cases, we
can conclude that outlying, or erratic, values that
affect the estimated distribution are rare or nonexis-
tent (Isaaks & Srivastava 1989). By examining the
kriging and the CV maps for all the ciliates, it can be
seen that at higher ciliate abundance, the CV forms
a homogeneous spatial pattern, increasing towards
the edges, where fewer points were sampled; this is
especially clear for the case of Tintinnopsis sp. (Fig.
3h). However, the CV may also vary inversely with
the predicted abundance, as depicted for L. oviformis
(Fig. 3i) and for Strombidium sp. (Fig. 3j). This sug-
gests that the uncertainty on the predicted values
increases at lower abundance and could be reduced
by adding more sampling points in those areas.
These estimates of error illustrate the precision of
modelling distributions and may thus ultimately be
used to help assess the predictability of larger scale
food-web models.

194



Bulit et al.: Spatial structure of planktonic ciliate patches

To our knowledge, this study constitutes the first
application of geostatistical techniques to model the
small-scale spatial structure of microplanktonic popu-
lations. Our results indicate different species-specific
patterns of patchiness at a small-scale and in different
hydrodynamic conditions, supporting the notion of
behavioural niche-separation of planktonic ciliates.
The size, shape, and distinctness of the patches were
characterised by the spatial dependence, which we
indicate can be summarised by 3 parameters: the
range, sill, and nugget. And finally, a working defini-
tion of patch was proposed and was used to charac-
terise the generated kriging predictions. Thus, geosta-
tistical analysis appears to be a powerful tool to
examine microzooplankton at small-scales, and we
support its further application in the field.
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